

CompTox Chemicals Dashboard providing access to experimental and predicted environmental fate and transport data

Antony Williams¹, Chris Grulke¹, Kamel Mansouri² and Todd Martin³

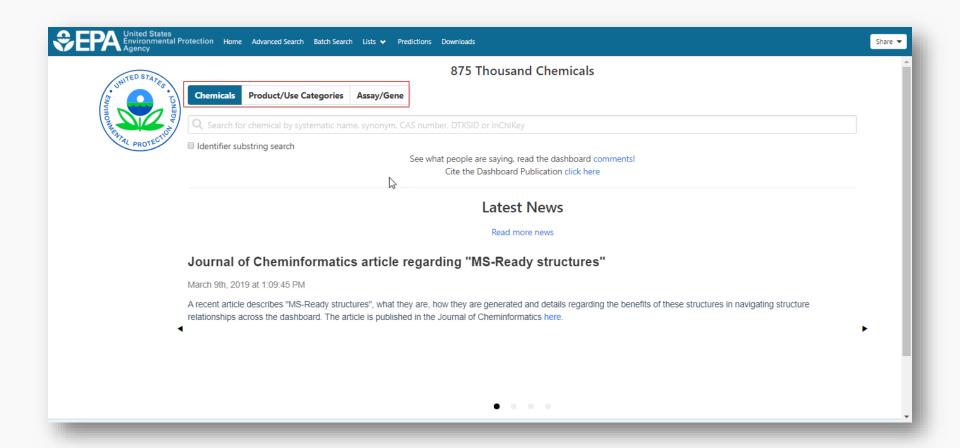
NCCT, U.S. Environmental Protection Agency, RTP, NC

2) Integrated Laboratory Systems, Research Triangle Park, NC.

3) NRMRL, U.S. Environmental Protection Agency, Cincinnati, OH

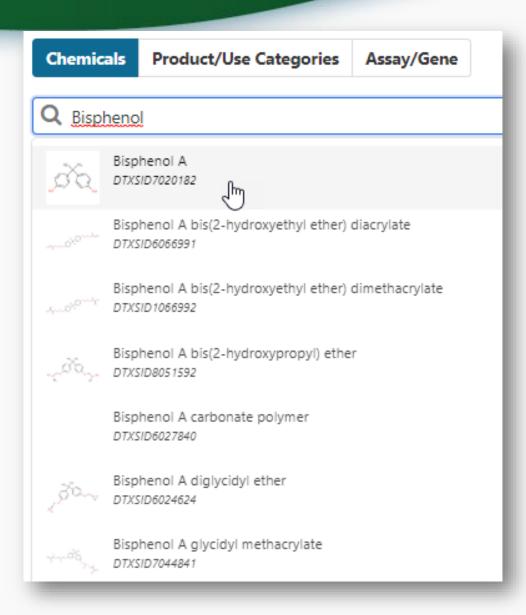
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

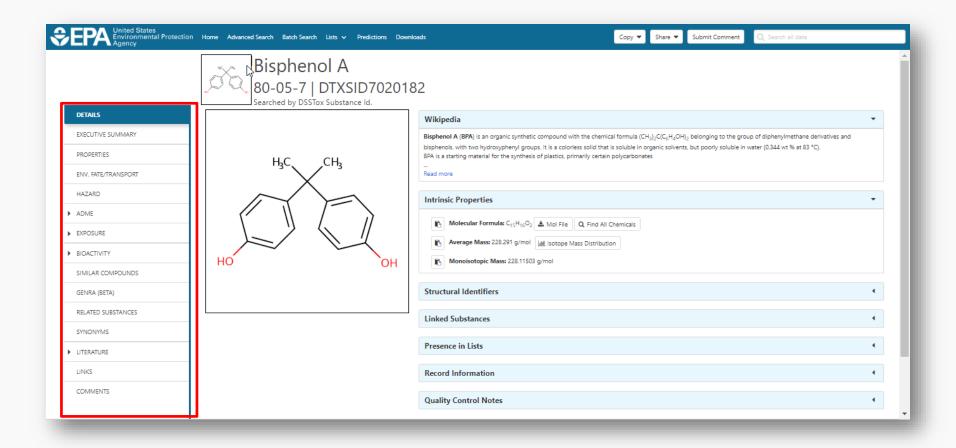
Overview

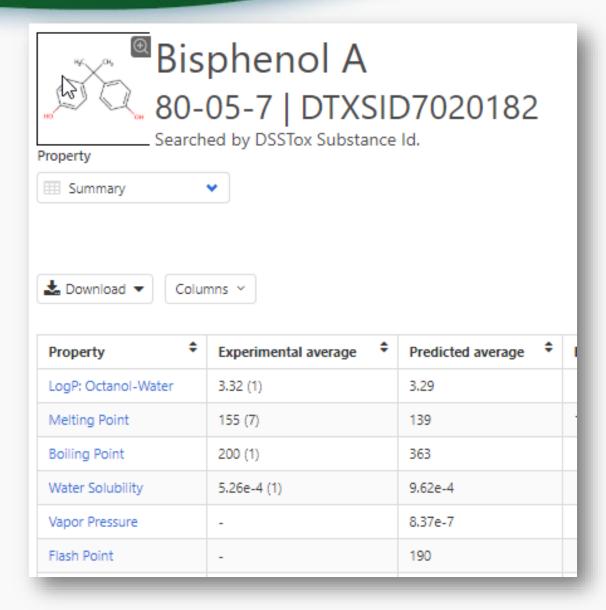


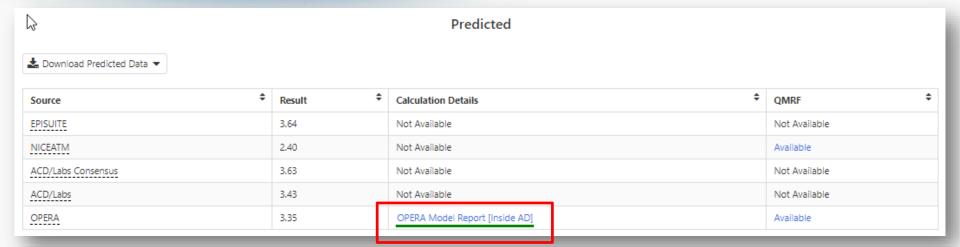
- The CompTox Chemicals Dashboard webbased database of 875k substances
- Associated data including:
 - In vivo hazard data
 - In vitro bioactivity screening data
 - Link farm to tens of public resources
- Includes experimental and predicted physchem and experimental fate and transport data
- Access to real-time predictions
- A quick overview of capabilities...

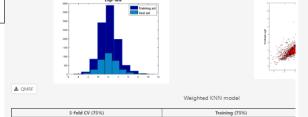
CompTox Chemicals Dashboard


https://comptox.epa.gov/dashboard


BASIC Search

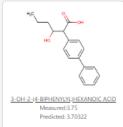

Detailed Chemical Pages

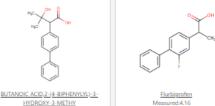

Experimental and Predicted Data


Prediction models and transparency

Bisphenol A 80-05-7 | DTXSID7020182

0.860


0.670


0.690

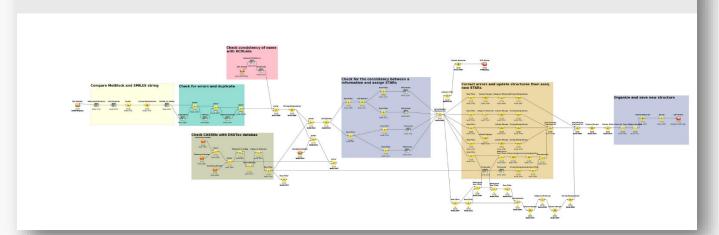
OPERA Models: LogP: Octanol-Water

rest Neighbors from the Training Set

Measured:2.69

Curated data

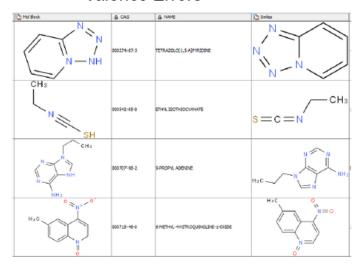
An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling


K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams

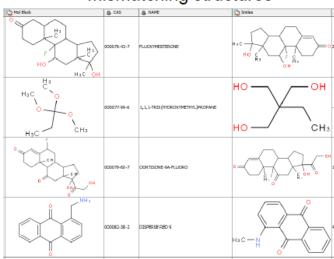
To cite this article: K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams (2016) An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling, SAR and QSAR in Environmental Research, 27:11, 911-937, DOI: 10.1080/1062936X.2016.1253611

To link to this article: https://doi.org/10.1080/1062936X.2016.1253611

Figure 8 of 14


Figure 8. The KNIME curation workflow developed based on the log *P* PHYSPROP dataset and generalized for application to other datasets.

Public PHYSPROP Dataset


Valence Errors

Duplicate Structures

Shuckere	Formula 6	rw c	CAS C	NAME (MP (Exitit? (ErrorMF (
O OH OH	C ₉ H ₉ O ₃	90.0779	000050-21-5	LACTIC ACID	1.620000000000 00s+001	2.265000898000 00e+881	5.5500899800089 00a+990
OH OH	C ₂ H ₈ O ₂	99.8779	000079-33-4	L-LACTIC ACID	5.3000000000000 00e+001	2.2880008889000 80e+881	-3.634900000000 000e+601
он О он	C ₂ H ₆ O ₂	90.6779	088599.92.3	ALHVOROXYPROPONIC ACID	1.800000000000 08e+001	2.2880008889000 80e+891	4.5500300300000 00e+000
OH OH	5,44,03	90.8779	018329-41-7	D-LACTIC ADD	5.28888000008889 89e+001	2.2880008888000 60e+891	-3.014900000000 000e+001

Mismatching structures

Covalent Halogens

Mol Block CIT	§ CAS	S NAME	Smiles
H ₃ C CH ₃	000056-93-9	BENZYLTRIMETHYL AMMONIUM CHLORIDE	H ₃ C N CI
H ₃ C CH	OCO058-05-3	TETRAETHIL AMHONIUM SOUDE	H ₃ C CH ₃
H ₃ C N ⁺	CH ₃	TETRAETHAL AMMONUAM BROMICE	H ₃ C CH ₃

LogP dataset: 15,809 structures

- CAS Checksum: 12163 valid, 3646 invalid (>23%)
- Invalid names: 555
- Invalid SMILES 133
- Valence errors: 322 Molfile, 3782 SMILES (>24%)
- Duplicates check:
 - -31 DUPLICATE MOLFILES
 - -626 DUPLICATE SMILES
 - -531 DUPLICATE NAMES
- SMILES vs. Molfiles (structure check)
 - -1279 differ in stereochemistry (~8%)
 - -362 "Covalent Halogens"
 - -191 differ as tautomers
 - -436 are different compounds (~3%)

OPERA Predicted Properties

Mansouri et al. J Cheminform (2018) 10:10 https://doi.org/10.1186/s13321-018-0263-1

Journal of Cheminformatics

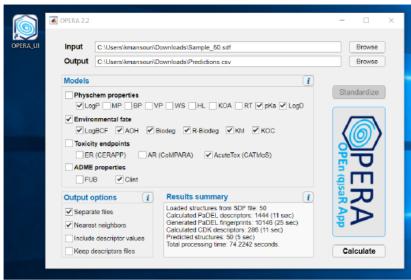
RESEARCH ARTICLE

Open Access

OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri 1,2,3* , Chris M. Grulke 1, Richard S. Judson 1 and Antony J. Williams 1

OPERA Models: https://github.com/kmansouri/OPERA


OPERA Standalone Application

Command line

Graphical User Interface

NIEHS / OPERA forked from kmansouri/OPERA						
Code The Pull requests (0)	Projects 0	Wiki <u>l₁ı</u> Insights ⇔ Set	ings			
		CLIDidi OCABd-l	and the state of t	hilibe domein and	-dia	
e and open-source applica	tion (command line and G	JUD providing USAK models	i predictions as well as applica	iollity domain and — is		
	,	ou) providing QSAK models nvironmental fate and toxico		bility domain and	idit	
curacy assessment for phys	cochemical properties, en	nvironmental fate and toxico			edit	
curacy assessment for phys	cochemical properties, en	nvironmental fate and toxico	logical endpoints.		dit	
	cochemical properties, en	nvironmental fate and toxico	logical endpoints.		care	

Open Source

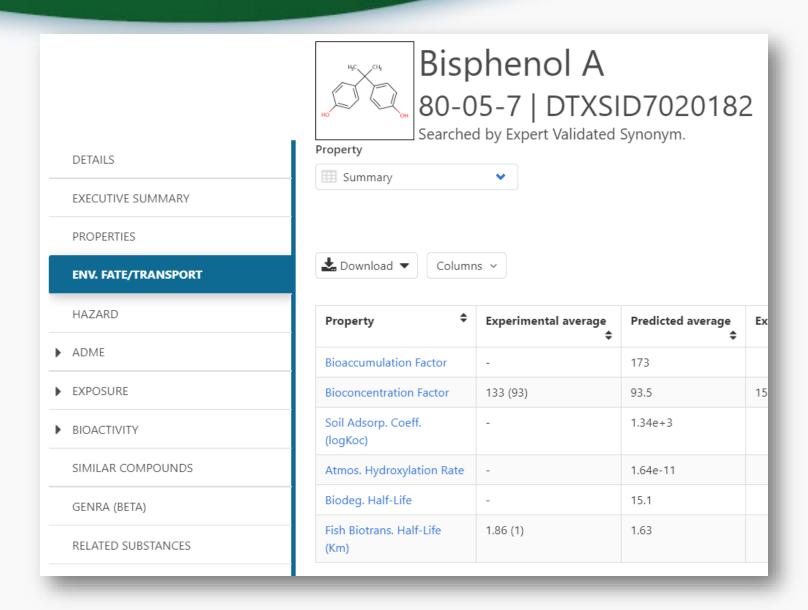
https://github.com/kmansouri/OPERA

■ README.md

OPERA

OPERA is a free and open-source/open-data suite of QSAR models providing predictions on physicochemical properties, environmental fate and toxcicity endpoints as well as additional information including applicability domain and accuracy assessment. All models were built on curated data and standardized QSAR-ready chemical structures. OPERA is available in command line and user-friendly graphical interface for Windows and Linux operating systems. It can be installed as a standalone desktop application or embedded in a different tool/workflow.

References:


- [1] Mansouri K. et al. J Cheminform (2018) https://doi.org/10.1186/s13321-018-0263-1.
- [2] Mansouri, K. et al. SAR and QSAR in Env. Res. (2016). https://doi.org/10.1080/1062936X.2016.1253611
- [3] Williams A. J. et al. J Cheminform (2017) https://doi.org/10.1186/s13321-017-0247-6
- [4] The CompTox Chemistry Dashboard (https://comptox.epa.gov/dashboard)
- [5] JRC QSAR Model Database https://qsardb.jrc.ec.europa.eu/qmrf/endpoint

Models:

- * Latest version OPERA v2.2:
 - + Molecular descriptors:
- PaDEL (2.21) (https://doi.org/10.1002/jcc.21707)
- CDK (2.0) (https://doi.org/10.1186/s13321-017-0220-4)

Environmental Fate and Transport

Environmental Fate and Transport

Source \$	Result	Experimental Details
ECOTOX: aguatic	150	Species: Navicula incerta; Response Site: Not reported
ECOTOX: aguatic	150	Species: Navicula incerta; Response Site: Not reported
ECOTOX: aquatic	100	Species: Navicula incerta; Response Site: Not reported
ECOTOX: aguatic	100	Species: Navicula incerta; Response Site: Not reported
PhysPropNCCT	43.7	
ECOTOX: aguatic	38.4	Species: Oncorhynchus mykiss; Response Site: Liver
ECOTOX: aguatic	25.0	Species: Oncorhynchus mykiss; Response Site: Liver
ECOTOX: aguatic	22.0	Species: Oncorhynchus mykiss; Response Site: Liver
ECOTOX: aguatic	10.8	Species: Oncorhynchus mykiss; Response Site: Liver
ECOTOX: aquatic	8.70	Species: Oncorhynchus mykiss; Response Site: Liver

ECOTOX data

ECOTOX Knowledgebase		Home	Search	Explore	Help	(Contact Us
June 13, 2019 See update totals	Recent chemicals with full searches and of 2-Phenylphenol Amicarbazone Fluazifop-p-butyl	Flutolan	il Polyfluoroalkyl S	Substances	Total in database 11,722 Chemicals 48,683 References	12,775 Species 939,392 Results	
	WE l Please click here to provide fee		OX VERSION 5! e can continue to	improve your ex	perience.		

Other prediction modules TEST Desktop Software

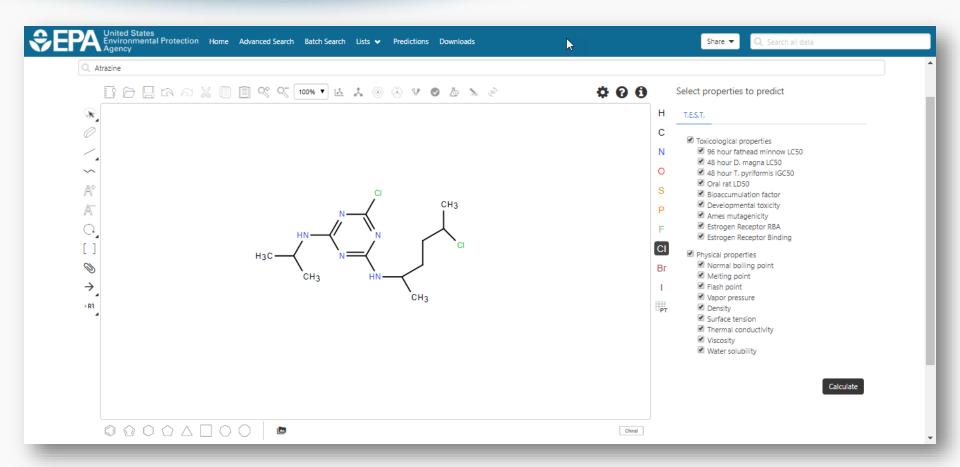
Toxicity Estimation Software Tool (TEST)

On this page:

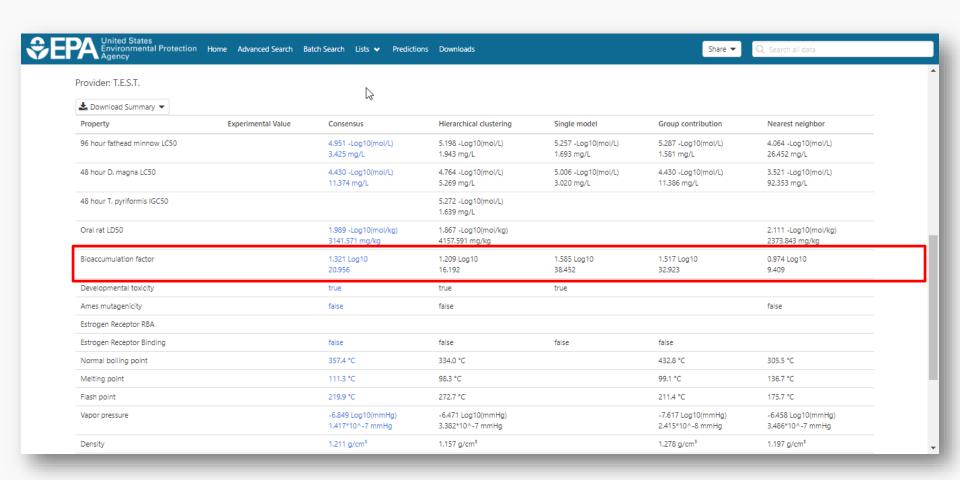
- QSAR Methodologies
- What's New in Version 4.2.1?
- Prior Version History
- System Requirements
- <u>Installation Instructions</u>
- Publications
- Get Email Alerts

The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical characteristics of the structure of chemicals (known as molecular descriptors). Simple QSAR models calculate the toxicity of chemicals using a simple linear function of molecular descriptors:

Ask a Technical Expert


Got a question about our research model? Want to give us feedback? Contact a technical expert about <u>TEST</u>.

Real-Time Predictions Based on TEST


Real-Time Predictions

TEST Predictions Detailed calculation reports

TEST Predictions Detailed calculation reports

Predicted Vapor pressure at 25°C for ClC=1N=C(N=C(N1)NC(C)CCC(Cl)C)NC(C)C from Consensus method

Prediction results

Endpoint	Experimental value	Predicted value
Vapor pressure at 25°C Log10(mmHg)	N/A	-6.85
Vapor pressure at 25°C mmHg	N/A	1.42E-07

Individual Pre		
Method	Predicted value Log10(mmHg)	\prec
Hierarchical clustering	-6.47	-("-()
Group contribution	-7.62	
Nearest neighbor	-6.46	

Predictions for the test chemical and for the most similar chemicals in the external tes

If the predicted value matches the experimental values for similar chemicals in the test set (and the similar che

Prediction results (colors defined in table below) -3.0 -3.0 MAE = 0.67 MAE = 0.67 MAE = 0.67 -5.5 MAE = 0.67 -5.5 -7

MAE*
0.47
0.67

CAS	Structure	Similarity Coefficient	Experimental value Log10(mmHg)	Predicted value Log10(mmHg)
CIC=1N=C(N=C(N1)NC(C)CCC(CI)C)NC(C)C (test chemical)	-K		N/A	-6.85
<u>7287-19-6</u>	بالبا	0.83	-5.91	-5.86
<u>130339-07-0</u>	AND,	0.77	-5.62	-7.11
<u>21725-46-2</u>	~ <u>`</u>	0.76	-6.86	-7.01
<u>120928-09-8</u>	W W	0.58	-7.59	-7.67
101200-48-0	of it	0.56	-9.41	-9.76
<u>119738-06-6</u>	approx	0.55	-7.23	-9.11

Built on TEST Web Services

https://www.epa.gov/sites/production/files/2018-08/documents/webtest_users_guide.pdf

https://comptox.epa.gov/dashboard/web-test/

User's Guide for WebTEST (version 1.0) (Web-services Toxicity Estimation Software Tool)

A Web-Sei from Mole

5. USING THE	WEB SERVICE	43
5.1.	Downloading the Web-TEST project	43
5.2.	Importing the project into Eclipse	43
5.3.	Building WebTEST in Maven	43
5.4.	Starting a local server for WebTEST	43
5.5.	Running a client to perform batch calculations	44
5.6.	Run batch calculations without using a server	47
5.7.	"GET" API call	48
5.8.	"POST" API call	49
5.9.	Docker	50

Batch Searching

- Given a set of chemicals how can data be harvested?
- OPERA and TEST predictions have been generated for structures in the database

 How can the dashboard be used to harvest data for hundreds to thousands of chemicals...

Example list of chemicals - Opioids

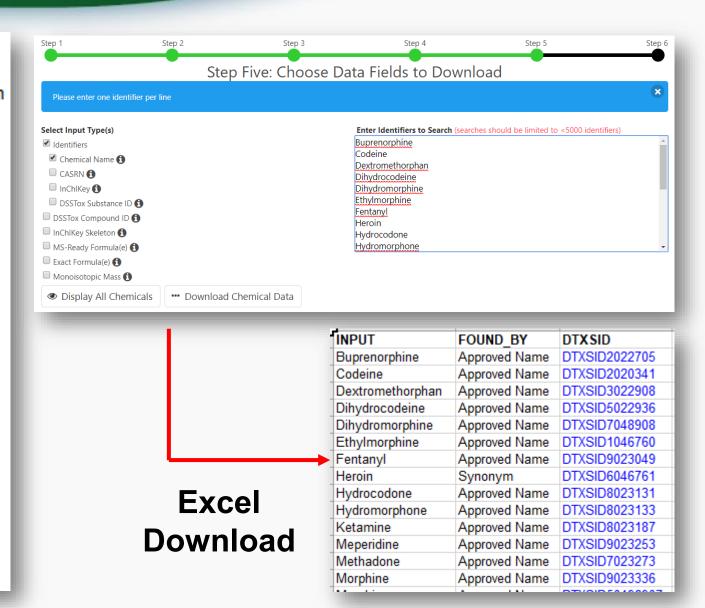
Trends in Environmental Analytical Chemistry

Volume 20, October 2018, e00059

Opioid occurrence in environmental water samples—A review

Marina Celia Campos-Mañas a, Imma Ferrer b ≥ 🖾, E.Michael Thurman b, Ana Agüera a

■ Show more


https://doi.org/10.1016/j.teac.2018.e00059

Get rights and content

Batch Search Names

Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone Ketamine Meperidine Methadone Morphine Morphinone Naloxone Naltriben 0xycodone Oxymorphone Propoxyphene Sufentanil Tramadol

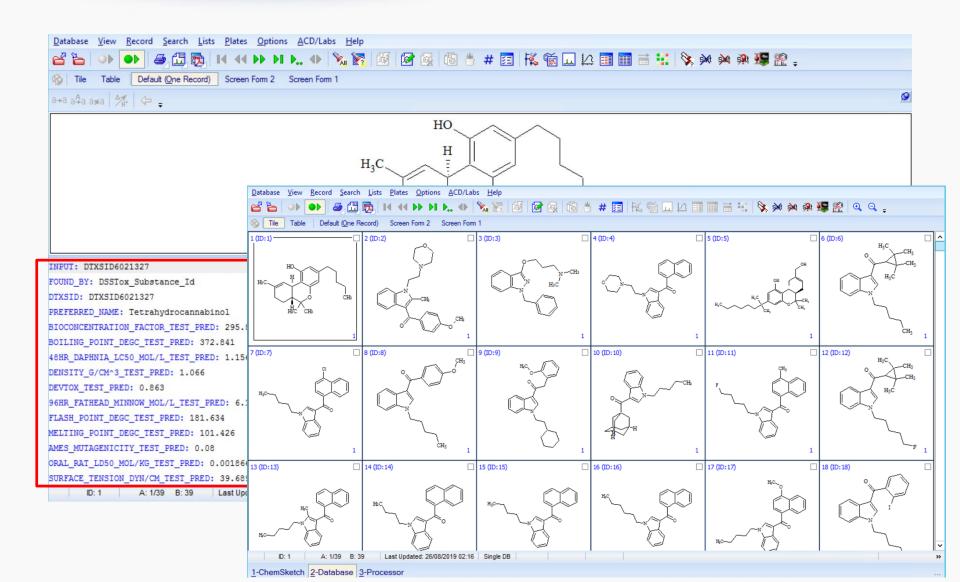
Include Other Data of Interest

Chemical Identifiers

- ✓ DTXSID
- Chemical Name
- ☐ DTXCID **(**)
- ✓ CAS-RN
- ✓ InChlKey <a>f
- ☐ IUPAC Name 🚹

Structures

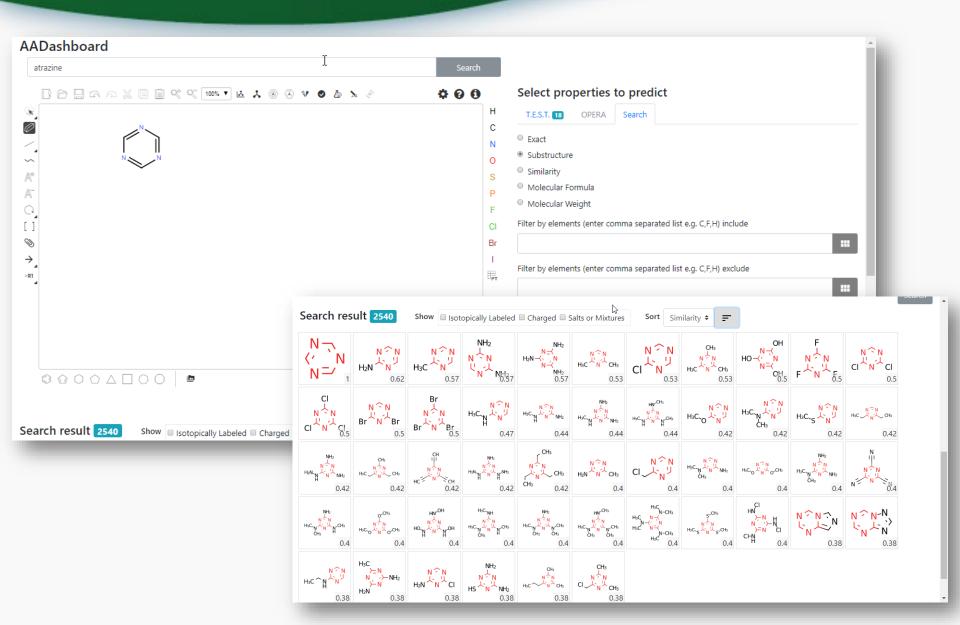
- ☐ Mol File 🚯
- SMILES 1
- InChl String
- ✓ MS-Ready SMILES
- QSAR-Ready SMILES (1)


Intrinsic And Predicted Properties

- Molecular Formula 6
- Average Mass <a>6
- Monoisotopic Mass 6
- TEST Model Predictions
- OPERA Model Predictions

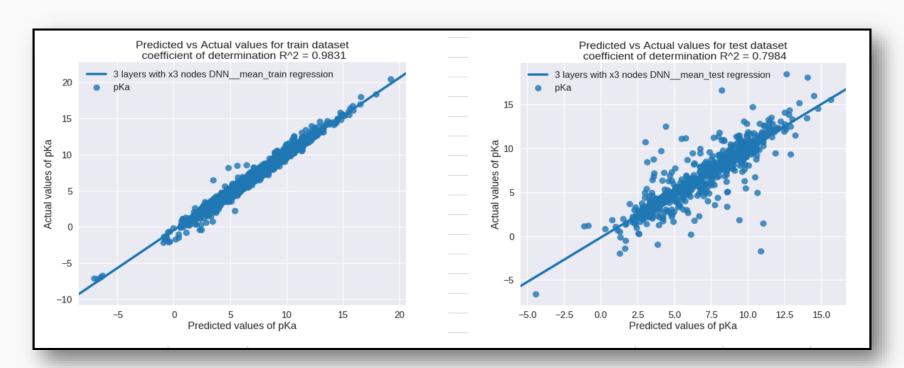
INPUT	DTXSID	CASRN	MOLECIII AR E	MONOISOTOPIC	MS DEADY SMI
	DTXSID202		C29H41NO4		[H]C12CC3=C4C
	DTXSID202		C18H21NO3		[H]C12CC3=C4C
	DTXSID302		C18H25NO		[H]C12CC3=C(C=
	DTXSID502		C18H23NO3		[H]C12CC3=C4C
	DTXSID704		C17H21NO3		[H]C12CC3=C4C
Ethylmorph	DTXSID104	76-58-4	C19H23NO3	313.1677936	[H]C12CC3=C4C
Fentanyl	DTXSID902	437-38-7	C22H28N2O	336.2201635	CCC(=O)N(C1CC
Heroin	DTXSID604	561-27-3	C21H23NO5	369.1576228	[H]C12CC3=C4C
Hydrocodon	DTXSID802	125-29-1	C18H21NO3	299.1521435	[H]C12CC3=C4C
Hydromorph	DTXSID802	466-99-9	C17H19NO3	285.1364935	[H]C12CC3=C4C
Ketamine	DTXSID802	6740-88-1	C13H16CINO	237.0920418	CNC1(CCCCC1=
Meperidine	DTXSID902	57-42-1	C15H21NO2	247.1572289	CCOC(=0)C1(CC
Methadone	DTXSID702	76-99-3	C21H27NO	309.2092645	CCC(=O)C(CC(C)
Morphine	DTXSID902	57-27-2	C17H19NO3		[H]C12CC3=C4C
Morphinone	DTXSID501	467-02-7	C17H17NO3	283.1208434	[H]C12CC3=C4C(
Naloxone	DTXSID802	465-65-6	C19H21NO4	327.1470582	[H]C12CC3=C4C
Naltriben	-	-	-	-	-
	DTXSID502		C18H21NO4		[H]C12CC3=C4C
	DTXSID502		C17H19NO4		[H]C12CC3=C4C
	DTXSID102		C22H29NO2		CCC(=O)OC(CC1
	DTXSID602		C22H30N2O2S		CCC(=O)N(C1=C
Tramadol	DTXSID908	27203-92-5	C16H25NO2	263.188529	COC1=CC=CC(=

Batch search results - SDF



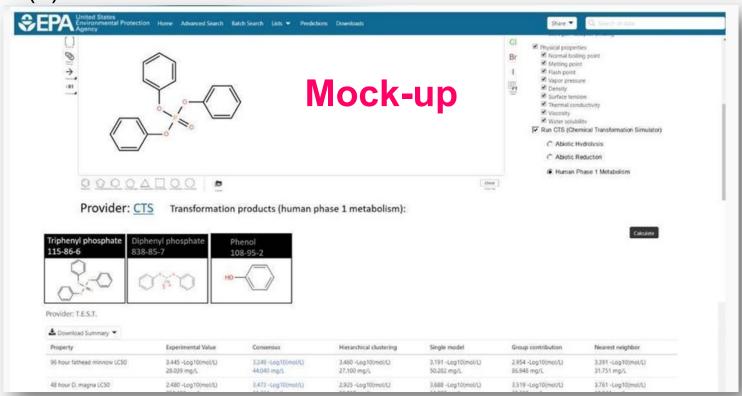
Work in Progress

Prototype Development Structure/substructure search



OPERA pKa Prediction Model

 pKa prediction models based on Open Data Set of 8000 chemicals – acidic, basic and amphoteric chemicals



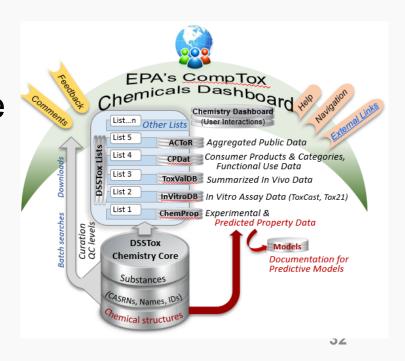
Accepted for publication to Journal of Cheminformatics

"Chemical Transformation Simulator"

- Chemical Transformation Simulator has public web services already available
 - (1) Abiotic Hydrolysis
 - (2) Abiotic Reduction
 - (3) Phase 1 Metabolism

Ongoing Extraction of Data

Data are extracted from literature based on agency priorities


 Specific data sets of interest at present include those available for PFAS chemicals

Data releases are every 6 months at present

Conclusion

- Dashboard access to data for ~875,000 chemicals
- Ongoing aggregation of physicochemical property and environmental fate and transport data
- Retraining and rebuilding of models will occur as new data are assembled
- Web services already available for TEST predictions with services for OPERA next
- Future developments include integration of chemical transformation simulator

Acknowledgements

EPA-RTP

- An enormous team of contributors from NCCT, especially the IT software development team and data curation team
- US-EPA ECOTOX for sharing data from their database
- Valery Tkachenko for development of TEST web services

Contact

Antony Williams

NCCT, US EPA Office of Research and Development,

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821

https://doi.org/10.1186/s13321-017-0247-6