

US-EPA Comptox Chemicals Dashboard to support mass spectrometry targeted and non-targeted analysis

Antony Williams¹, Alex Chao², Tom Transue³, Tommy Cathey³, Elin Ulrich⁴ and Jon Sobus⁴

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 Oak Ridge Institute of Science and Education (ORISE) Research Participant, RTP, NC

3) General Dynamics Information Technology, RTP, NC

4) National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

August 2019 ACS Fall Meeting, San Diego

CompTox Chemicals Dashboard

https://comptox.epa.gov/dashboard

875k Chemical Substances

Sepa United States Environmental Agency	Protection Home Advanced Search Batch Search Lists 🛩 Predictions Downloads	Share 🔻				
UNITED STATES	875 Thousand Chemicals	Î				
	Chemicals Product/Use Categories Assay/Gene					
ao market	Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChIKey					
AL PROTEC	Identifier substring search See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here					
	Latest News					
	Read more news					
	Journal of Cheminformatics article regarding "MS-Ready structures"					
	March 9th, 2019 at 1:09:45 PM					
	A recent article describes "MS-Ready structures", what they are, how they are generated and details regarding the benefits of these structures in navigating structure relationships across the dashboard. The article is published in the Journal of Cheminformatics here.					
	• • • •	Ţ				
-						

Detailed Chemical Pages

COMMENTS

DETAILS		
EXECUTIVE SUMMARY		
PROPERTIES	xme Advanced Search Batch Search Lists ∨ Predictions Downl	nkoads Copy 💌 Share 💌 Submit Comment 🔍 Search all data
ENV. FATE/TRANSPORT	Bisphenol A	82
HAZARD	Searched by DSSTox Substance Id.	Wikipedia •
ADME	ӉӡҀͺͺͺ͵ϹӉ₃	Bisphenol A (BPA) is an organic synthetic compound with the chemical formula $(CH_{3})_2 C(C_6H_4 OH)_2$ belonging to the group of diphenylmethane derivatives and bisphenols, with two hydroxyphenyl groups. It is a colorfess solid that is soluble in organic solvents, but poorly soluble in water (0.344 wt % at 83 °C). BPA is a starting material for the synthesis of plastics, primarily certain polycarbonates –
▶ EXPOSURE		Read more Intrinsic Properties
▶ BIOACTIVITY		Molecular Formula: C ₁₅ H ₁₆ O ₂ Mol File Q. Find All Chemicals
SIMILAR COMPOUNDS	но он	Monoisotopic Mass: 228.11503 g/mol
GENRA (BETA)		Structural Identifiers
RELATED SUBSTANCES		Presence in Lists
SYNONYMS		Record Information 4
LITERATURE		Quality Control Notes
LINKS		

Sources of Exposure to Chemicals

	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.	2		
DETAILS		Product and Use C	ategories (PUCs) 🚺	
EXECUTIVE SUMMARY	🛓 Download 👻		2	
PROPERTIES	Columns V 10 V			Search query
ENV. FATE/TRANSPORT	Product or Use Categorization	Categorization type	Number of Unique Products	
HAZARD	manufacturing, metals	CPCat Cassette	17	
ADME	adhesive	CPCat Cassette	17	
EXPOSURE		CPCat Cassette	16	
EXPOSORE		CPCat Cassette	12	
PRODUCT & USE CATEGORIES		CPCat Cassette	11	
FRODUCT&U	SE CATEGORIES	CPCat Cassette	8	
		CPCat Cassette	8	
CHEINICAL WE	IGHT FRACTION	CPCat Cassette	8	
		CPCat Cassette	7	
CHEMICAL FU	NCTIONAL USE	CPCat Cassette	6	
TOXICS RELEA	ASE INVENTORY	First << < 1 2 3 4 5	6 7 8 9 10 > >> Last	
MONITORING	DATA			
EXPOSURE PR	REDICTIONS			

Physicochemical properties and environmental fate and transport

Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.)
Summary V	
La Download 🔻 Columns 🗸	

Property 🗘	Experimental average 🗧 🕈	Predicted average 🗘 I
LogP: Octanol-Water	3.32 (1)	3.29
Melting Point	155 (7)	139
Boiling Point	200 (1)	363
Water Solubility	5.26e-4 (1)	9.62e-4
Vapor Pressure	-	8.37e-7
Flash Point	-	190

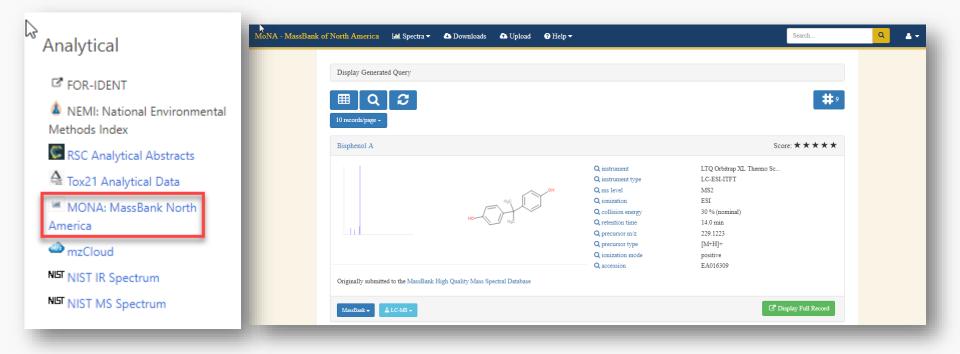
SEPA United States Environmental Protection

 Can provide access to toxicity, environmental fate and transport and metabolism data

 Individual chemicals can map to degradation products and metabolites

 Advanced searches support mass and formula searches

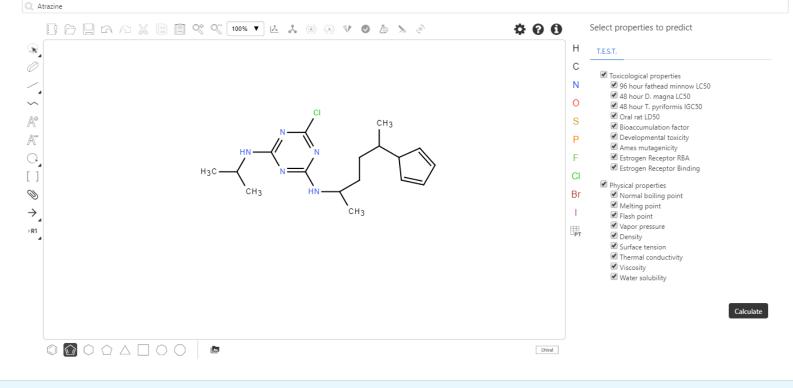
Link farm to public resources



Bisphenol A 80-05-7 | DTXSID7020182

	Searched by Approved I	Name.			
DETAILS	General	Toxicology	Publications	Analytical	Prediction
EXECUTIVE SUMMARY	EPA Substance Registry Service	ACTOR	Toxline	FOR-IDENT	3 2D NMR HSQC/HMBC Prediction
PROPERTIES	Household Products Database Chemical Entities of Biological Interest	^{OH} t DrugPortal	Environmental Health Perspectives NIEH5	NEMI: National Environmental Methods Index RSC Analytical Abstracts	Proton NMR Prediction
ENV. FATE/TRANSPORT	(ChEBI) PubChem	ChemView	National Toxicology Program	Tox21 Analytical Data	ChemRTP Predictor
HAZARD	🛱 Chemspider	CTD	G Google Books G Google Scholar	MONA: MassBank North America mzCloud	LSERD
ADME	(a) CPCat	Gene-Tox	G Google Patents	NST NIST IR Spectrum	
EXPOSURE	DrugBank HMDB	HSDB	PPRTVWEB PubMed	NIST MS Spectrum	
BIOACTIVITY	W Wikipedia Q MSDS Lookup	LactMed	IRIS Assessments		
SIMILAR COMPOUNDS	ChEMBL	International Toxicity Estimates for Risk	EPA HERO MIOSH Skin Notation Profiles		
GENRA (BETA)	Chemical Vendors CalEPA Office of Environmental Health	Superfund Chemical Data matrix	MIOSH Pocket Guide		
RELATED SUBSTANCES	Hazard Assessment	 NIOSH IDLH Values ACToR PDF Report 	RSC Publications		
SYNONYMS	ToxPlanet	Toxics Release Inventory	Springer Materials		
LITERATURE	ACS Reagent Chemicals	CREST	 Federal Register Regulations.gov 		
LINKS	W Wikidata ChemHat: Hazards and Alternatives Toolbox		Bielefeld Academic Search Engine CORE Literature Search		
COMMENTS	Wolfram Alpha ScrubChem		 Concluterature search 		
	ECHA Brief Profile				

MassBank of North America https://mona.fiehnlab.ucdavis.edu

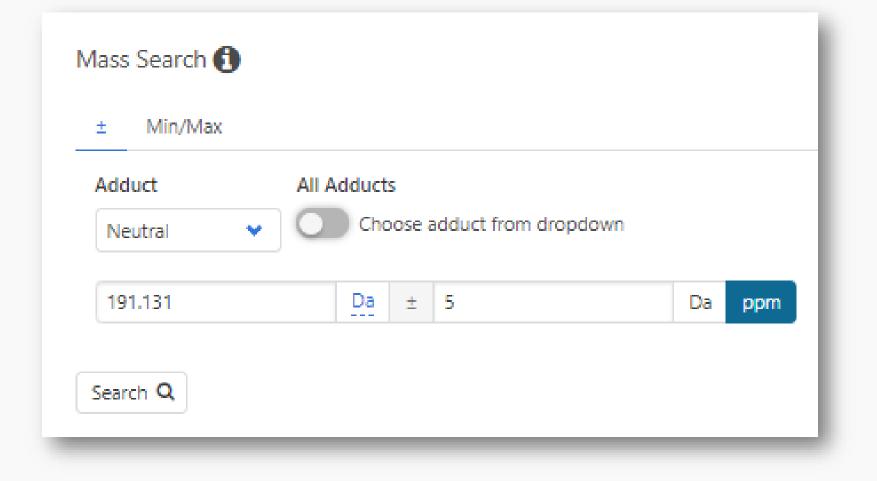


Toxicity Estimation Software Tool (TEST) Real Time Predictions

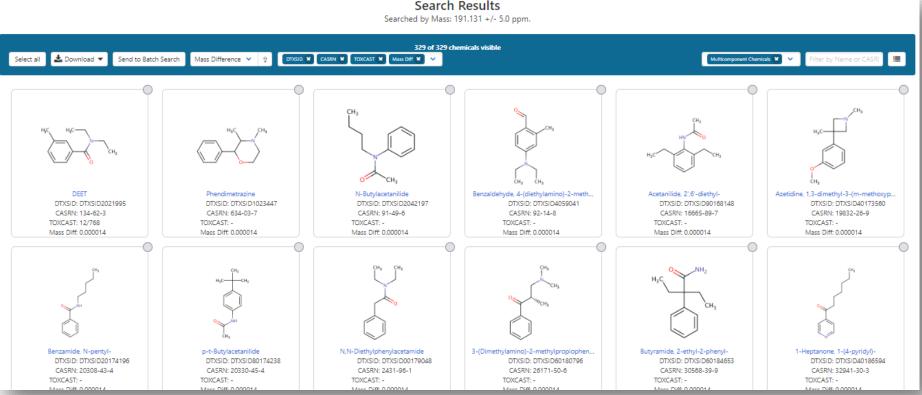
Share 💌

United States Environmental Protection Home Advanced Search Batch Search Lists - Predictions Downloads Agency

Predictions


Discover.Connect.Ask.About/DisclaimerACTORContact

Mass & Formula Searching


Advanced Searches Mass Search

Advanced Searches Mass Search

Search Results

MS-Ready Structures for **Formula Search**

Molecular Formula Search 🚺

💿 MS Ready Formula 🚯 🔿 Exact Formula 🚯

Formula

Please use the format of the following example: C6H8O2 or C6H(8-10)O(0-2)

Search Q

"MS-Ready Structures" https://doi.org/10.1186/s13321-018-0299-2

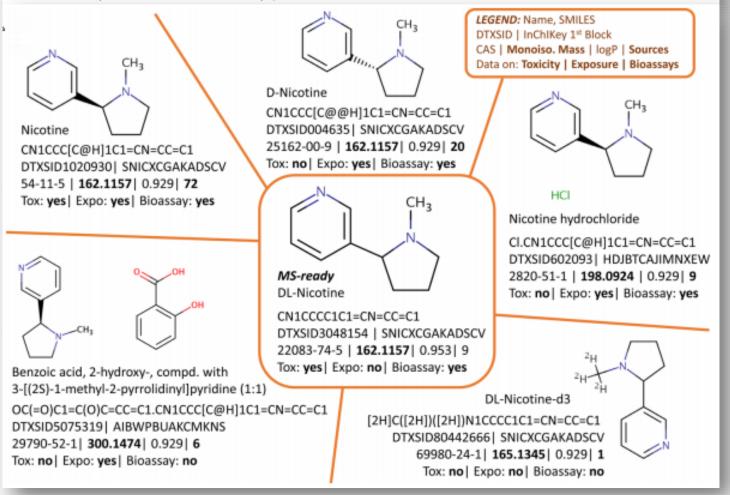
McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2 Journal of Cheminformatics

METHODOLOGY

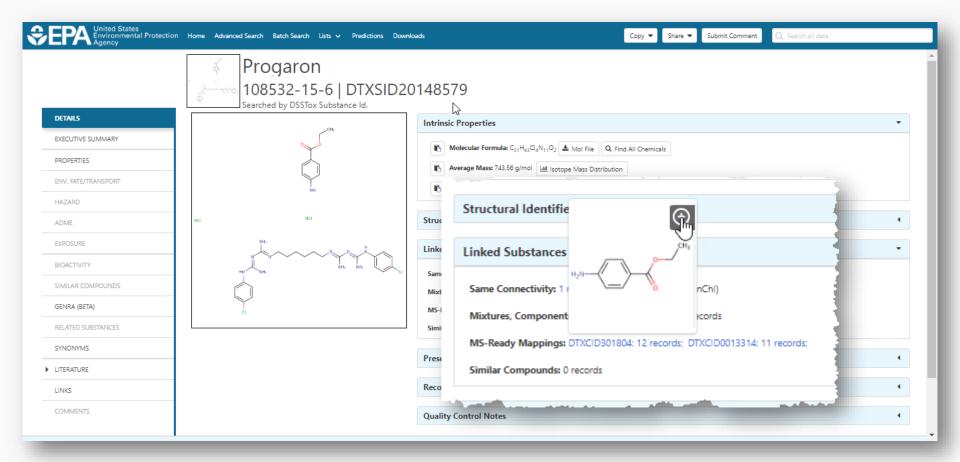
Open Access

"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

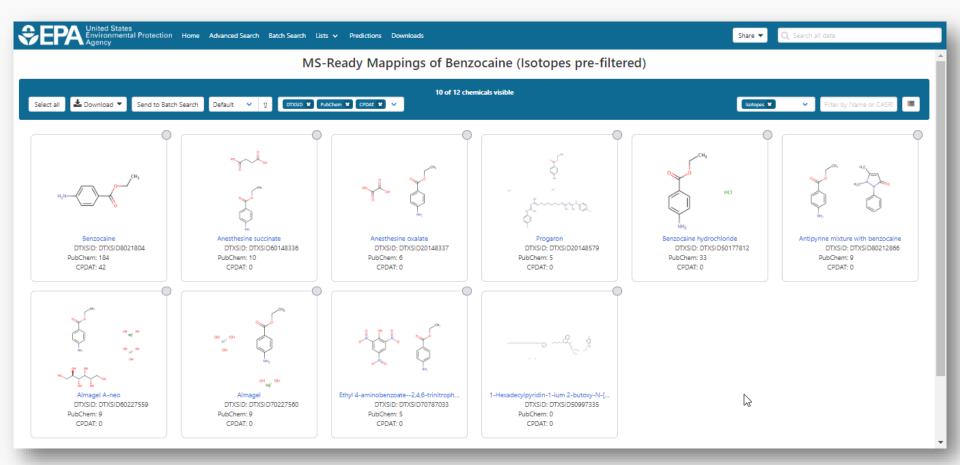
Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}



pubs.acs.org/est

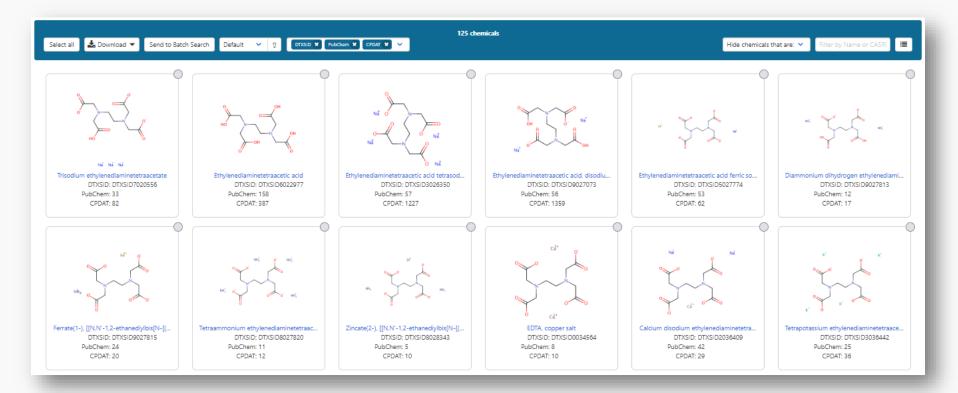

Open Science for Identifying "Known Unknown" Chemicals

Emma L. Schymanski*^{,†}[©] and Antony J. Williams^{*,‡}[©]


MS-Ready Mappings

MS-Ready Mappings Set

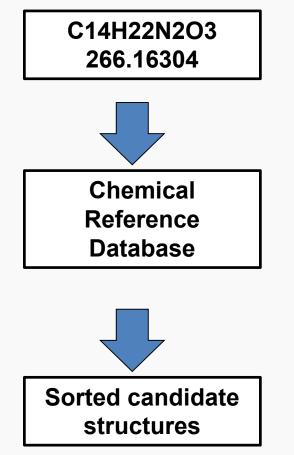
MS-Ready Mappings


• EXACT Formula: C10H16N2O8: 3 Hits

2	Formula	Ready Formula 🚯 🧿 Exact Formu 6N2O8	ila 🚹
v	Select all 🕹 Download 🔻 Send to	Batch Search Default 👻 🕆 DTXSID 🗙	3 of 3 chemi
	$\begin{split} & \stackrel{o}{\leftarrow} $	$\begin{array}{c} & \stackrel{\circ}{\leftarrow} \stackrel{\bullet}{\leftarrow} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{$	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $

MS-Ready Mappings

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

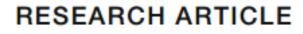

- 125 chemicals returned in total
 - 8 of the 125 are single component chemicals
 - 3 of the 8 are isotope-labeled
 - 3 are neutral compounds and 2 are charged

Candidate ranking

Data Source Ranking of "known unknowns"

- Mass and/or formula is for an unknown chemical but contained within a reference database
- Most likely candidate chemicals have the most associated data sources, most associated lit. articles or both

dronmental Protection

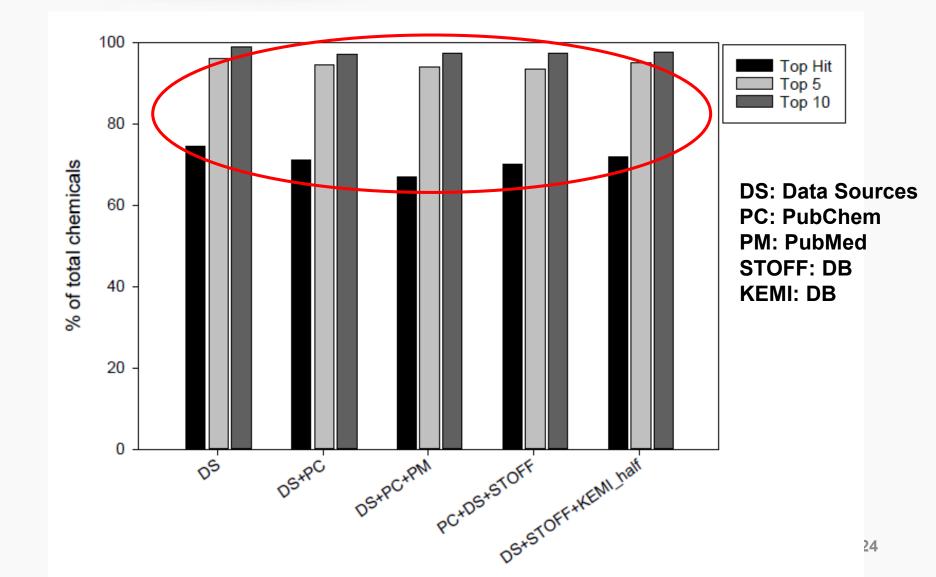

Is a bigger database better?

C American Society for Mass Spectrometry, 2011

J. Am. Soc. Mass Spectrom. (2012) 23:179–185 DOI: 10.1007/s13361-011-0265-y

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

- ChemSpider was 26 million chemicals then
- Much BIGGER today
- Is bigger better??


Using Metadata for Ranking

- Use available metadata to rank candidates
 - Associated data sources
 - Associated lists in the underlying database
 - Associated data sources in PubChem
 - Specific types (e.g. water, surfactants, pesticides etc.)
 - Number of associated literature articles (Pubmed)
 - Chemicals in the environment the number of products/categories containing the chemical is a very important source of data

Identification ranks for 1783 chemicals using multiple data streams

Comparing Search Performance

CrossMark

Ånal Bioanal Chem (2017) 409:1729–1735 DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran¹ · Jon R. Sobus² · Antony J. Williams³

- Dashboard content was 720k chemicals
- Only 3% of ChemSpider size
- What was the comparison in performance?

SAME dataset for comparison

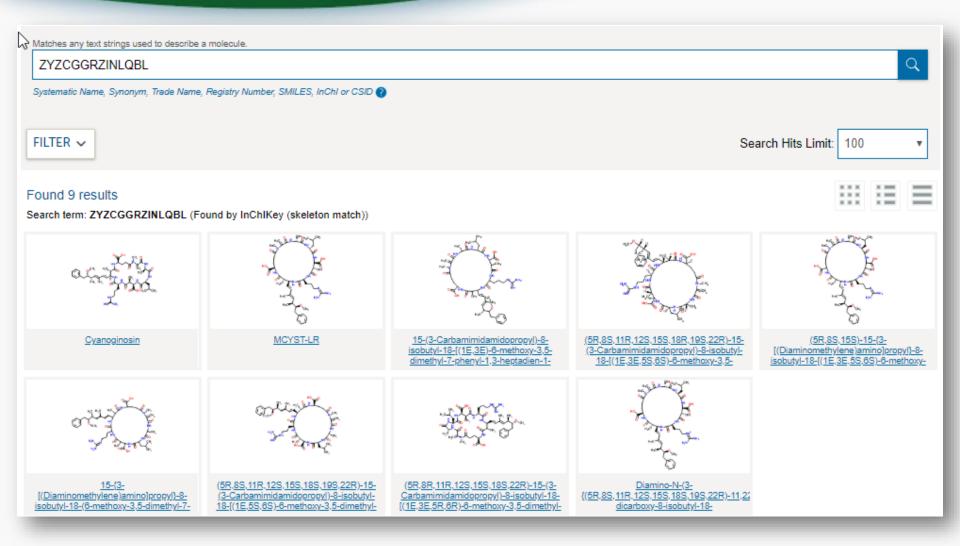
Compound class	Number in class	Average rank	Number of compounds in each position rank-ordered				
			#1	#2	#3	#4	#5+
Pharmaceutical drug	72	1.4	55	9	6	2	
Industrial chemicals	42	5.5	28	6	3		5
Personal care products	8	6.1	3	1			4
Steroid hormones	7	1.0	7				
Perfluorochemicals	6	1.2	5	1			
Pesticides	12	2.3	6	2	3		1
Veterinary drugs	3	1.3	2	1			
Dyes	2	1.0	2				
Food product/natural compounds	4	3.8	2			1	1
Illicit drugs	2	2.0	1		1		
Misc. molecules	3 ^a	1.3	2	1			

How did performance compare?

	Mass-based searching		Formula-based s	searching
	Dashboard	ChemSpider	Dashboard	ChemSpider
Average rank position Percent in #1 position	1.3 85%	2.2 ^a 70%	1.2 88%	1.4 80%

^a Average rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the average rank position is 3.5

For the same 162 chemicals, Dashboard outperforms ChemSpider

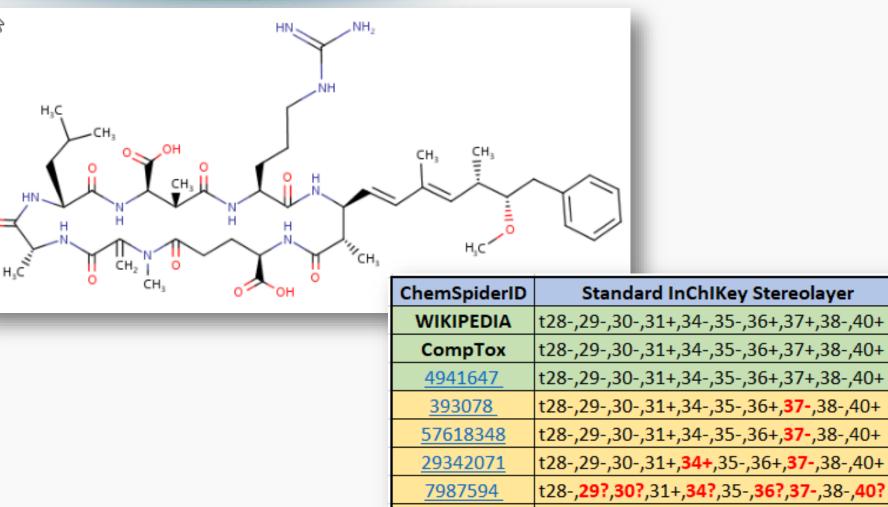


Summary statistics and rank-ordered position in the CompTox Chemistry Dashboard and ChemSpider of the 89 compound subset from the Little et al. [7] study

		Average rank		Numb	er in eac	eh positi	on rank-	ordered
		(±SD)		#1	#2	#3	#4	#5+
Mass-based	Dashboard	1.2 ± 0.7		77 ^a	5	3	3	
	ChemSpider	2.2 ± 6.1^{b}		68	8	7	1	5
Formula-based	Dashboard	1.1 ± 0.4		78 ^a	8	2		
	ChemSpider	1.3 ± 1.0		77	8	2	1	2

^aOne chemical (tephrosin) not present in the Dashboard

Will the correct Microcystin LR Stand Up? ChemSpider Skeleton Search



United States Environmental Protection

Agency

Comparing ChemSpider Structures

2

t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
t28-,29-,30-,31+, 34+ ,35-,36+, 37- ,38-,40+
t28-, 29?,30? ,31+, 34? ,35-, 36?,37- ,38-, 40?
t28-, 29?,30+,31-,34+,35+,36-,37- ,38-, 40-
NONE
NONE

invironmental Protection

Agency

Comparing ChemSpider Structures

ChemSpiderID	InChlKey	# Stereocenters	# Different
WIKIPEDIA	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
CompTox	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>4941647</u>	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>393078</u>	ZYZCGGRZINLQBL-GWRQVWKTSA-N	10/10	1
<u>57618348</u>	ZYZCGGRZINLQBL-UPPCHHEJSA-N	10/10	1
<u>29342071</u>	ZYZCGGRZINLQBL-IIJTUTQBSA-N	10/10	2
<u>7987594</u>	ZYZCGGRZINLQBL-BESLYTPASA-N	5/10	6
<u>22900854</u>	ZYZCGGRZINLQBL-QAXSDTKVSA-N	9/10	8
<u>19692240</u>	ZYZCGGRZINLQBL-ORZJCNCZSA-N	0/10	10
<u>2831283</u>	ZYZCGGRZINLQBL-UHFFFAOYSA-N	0/10	10

Other Searches

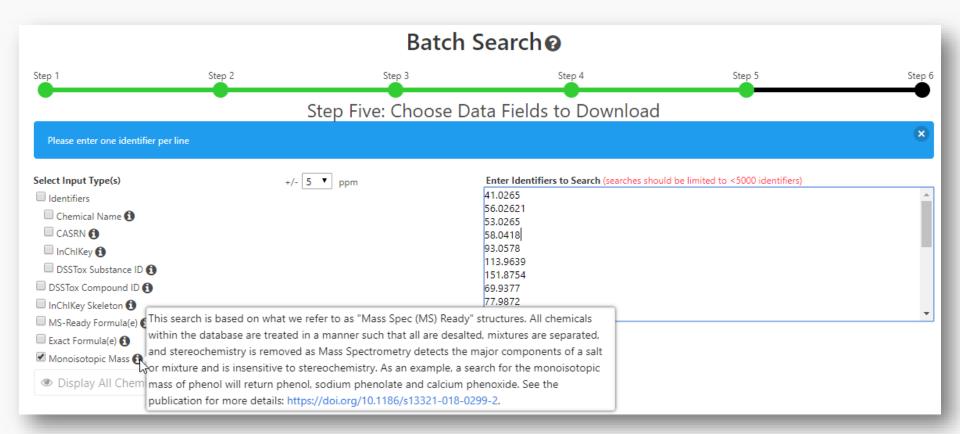
UniChem

Pub Chem About

ZYZCGGRZINLQBL

Treating this query as a text search.

Compounds (17)


Show All entries									
	CMR. Query InChl	src_id	Source	src_compound_id					
	matches	1	ChEMBL	CHEMBL444092					
	matches	4	Guide to Pharmacolog	y <u>4735</u>					
	matches	6	KEGG Ligand	<u>C05371</u>					
	matches	7	ChEBI	<u>6925</u>					
	matches	9	ZINC	ZINC000169715525					
	matches	9	ZINC	ZINC000255288110					
	matches	9	ZINC	ZINC000255288111					
	matches	9	ZINC	ZINC000255288112					
	matches	9	ZINC	ZINC000255288113					
	matches	9	ZINC	ZINC000255288114					
	matches	9	ZINC	ZINC000255288115					
	matches	9	ZINC	ZINC000583653042					
	matches	9	ZINC	ZINC000669680403					
	matches	10	eMolecules	<u>26754757</u>					
	matches	10	eMolecules	<u>31239828</u>					
	matches	11	IBM Patent System	DA3C2F25F29692734272194ED0E2C009					
	matches	14	FDA SRS	EQ8332842Y					

 Singleton searches are useful but we work with thousands of masses and formulae!

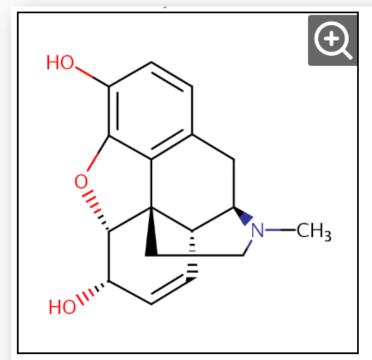
- Typical questions
 - What is the list of chemicals for the formula $C_x H_y O_z$
 - What is the list of chemicals for a mass +/- error
 - Can I get chemical lists in Excel files? In SDF files?
 - Can I include properties in the download file?

Batch Searching Formula/Mass

Invironmental Protection

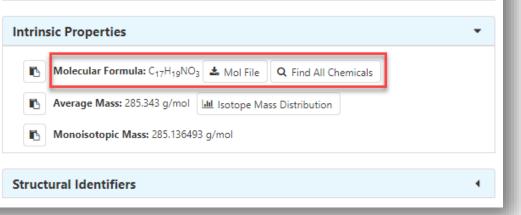
Agency

Searching batches using MS-Ready Formula (or mass) searching

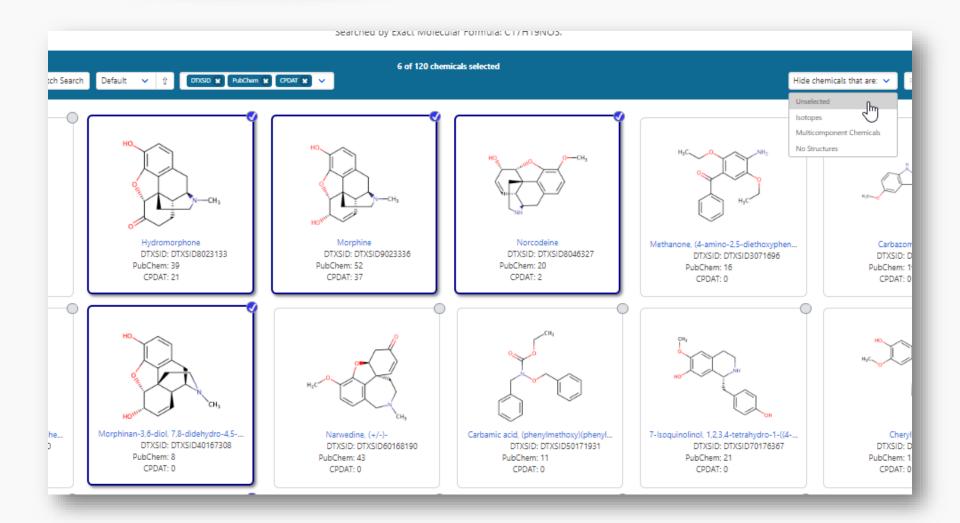

4	A	В	С	D	E	F	G
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES
2	C14H22N2O3	DTXSID2022628	29122-68-7	Atenolol	C14H22N2O3	266.163042576	46
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol	C14H22N2O3	266.163042576	32
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3	266.163042576	20
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3	338.116398	19
6	C14H22N2O3	DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3	266.163042576	19
7	C14H22N2O3	DTXSID2048531	5011-34-7	Trimetazidine	C14H22N2O3	266.163042576	14
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol	C14H22N2O3	266.163042576	12
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide	C14H22N2O3	266.163042576	7
10	C14H22N2O3	DTXSID4020111	51706-40-2	dl-Atenolol hydrochloride	C14H23CIN2O3	302.1397203	6
11	C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3	266.163042576	5
12	C18H34N2O6S	DTXSID3023215	154-21-2	Lincomycin	C18H34N2O6S	406.213757997	35
13	C18H34N2O6S	DTXSID7047803	859-18-7	Lincomycin hydrochloride	C18H35CIN2O6S	442.1904357	22
		DTXSID20849438			C18H35CIN2O6S	442.1904357	1
	C10H12N2O		486-56-6	Cotinine	C10H12N2O	176.094963014	40
16	C10H12N2O	DTXSID8075330	50-67-9	Serotonin	C10H12N2O	176.094963014	22
17	C10H12N2O	DTXSID8044412	2654-57-1	4-Methyl-1-phenylpyrazolidin-3-one	C10H12N2O	176.094963014	18
18	C10H12N2O	DTXSID80165186	153-98-0	Serotonin hydrochloride	C10H13CIN2O	212.0716407	11
19	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O	176.094963014	10
20	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9
21	C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine	C10H12N2O	176.094963014	7
22	C10H12N2O	DTXSID40178777	2403-66-9	2-Benzimidazolepropanol	C10H12N2O	176.094963014	7
23	C10H12N2O	DTXSID80157026	13140-86-8	N-Cyclopropyl-N'-phenylurea	C10H12N2O	176.094963014	6
24	C10H12N2O	DTXSID30205607	570-14-9	4-Hydroxytryptamine	C10H12N2O	176.094963014	6
25	C14H18N4O3		17804-35-2	Benomyl	C14H18N4O3	290.137890456	68
26	C14H18N4O3		738-70-5		C14H18N4O3		51
27	C14H18N4O3	DTXSID40209671			C14H19CIN4O3	326.1145682	8
28	C14H18N4O3	DTXSID70204210	55687-49-5	Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,	C14H18N4O3	290.137890456	5
29	C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
30	C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-		290.137890456	3
	C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)		308.14845514	3
	C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
33	C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny		437.191048229	3
	C14H18N4O3	DTXSID20143781	101204-93-7	1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam	C14H18N4O3	290.137890456	3
35	C12H11N7	DTXSID6021373	396-01-0	Triamterene	C12H11N7	253.107593382	52
36	C12H11N7	DTXSID00204465			C12H11N7	253.107593382	7
37	C12H11N7		7300-26-7		C12H9N7	251.091943318	4
38	C12H11N7	DTXSID00848025			C12H13N7O4S	351.074973101	1
39	C12H11N7	DTXSID50575293	92310-83-3	(1E)-N-Phenyl-1,2-bis(1H-1,2,4-triazol-1-yl)ethan-1-imine	C12H11N7	253.107593382	1
40	C8H9NO2	DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2		75
11	CSHONO2	DTVSID6026667	13/ 20 3	Mothyl 2 aminohonzoato	C8H0NO2	161.063328534	50

Related Searches to Support Mass Spectrometry

Find me "related structures" Formula-Based Search



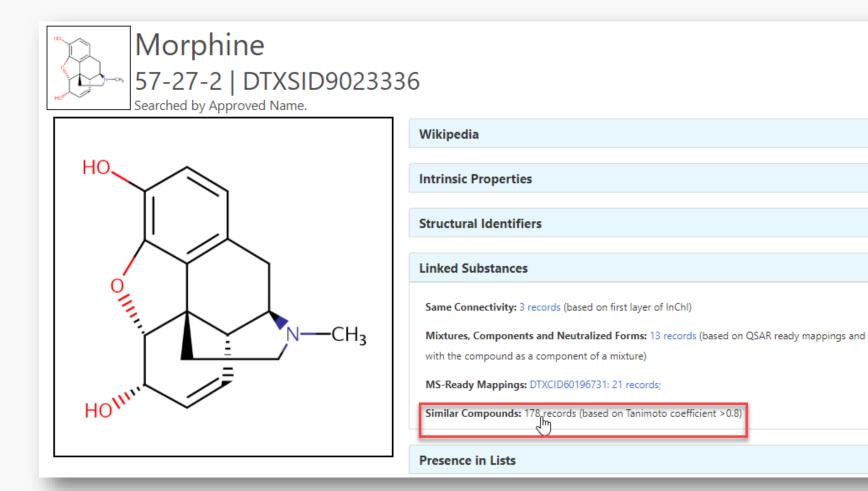
Wikipedia


Morphine is a pain medication of the opiate family which is found naturally in a number of plants and animals. It acts directly on the central nervous system (CNS) to decrease the feeling of pain. It can be taken for both acute pain and chronic pain. It is frequently used for pain from myocardial infarction and during labor. It can be given by mouth, by injection into a muscle, by injection under the skin, intravenously, injection into the space around the

Read more

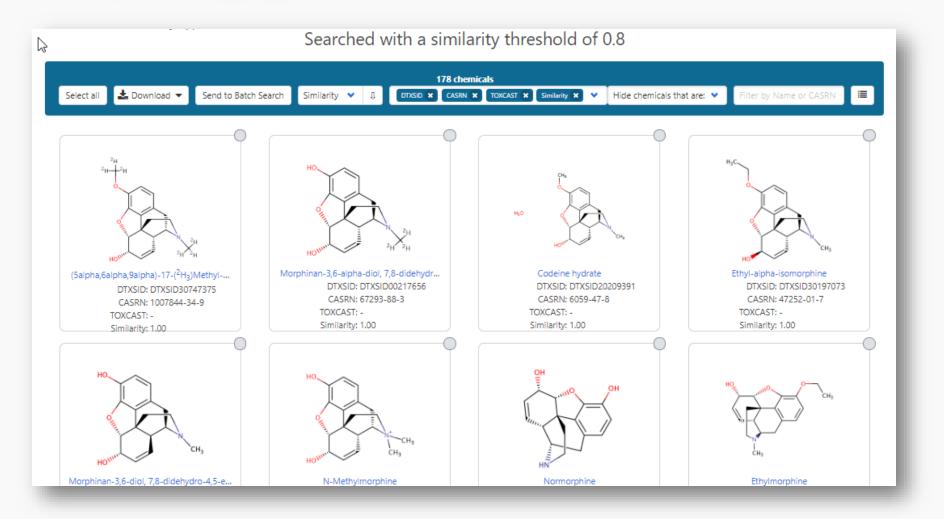
Select Chemicals of Interest

Find me "related structures" Based on Structure Similarity

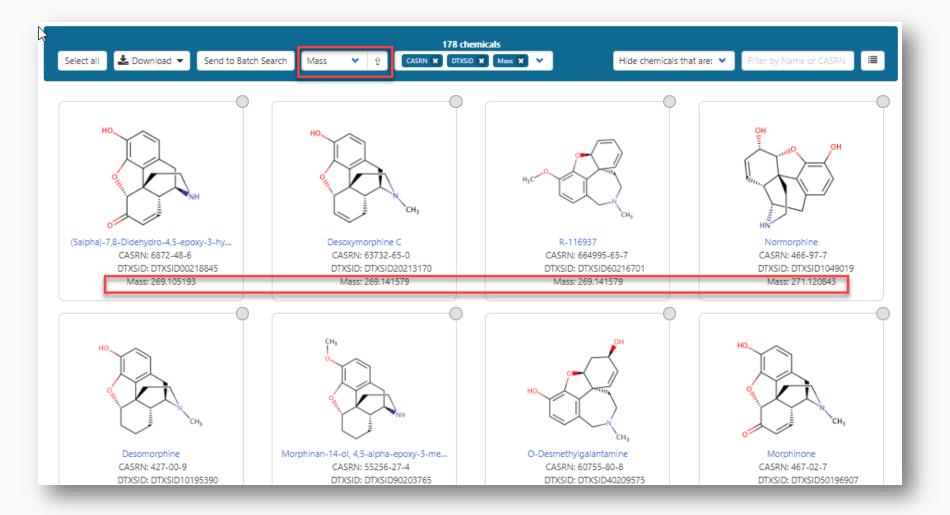


•

•


•

-


Find me "related structures" Based on Structure Similarity

Find me "related structures" Structure Similarity – sort on mass

Chemical lists

Chemical Lists

Copy Filtered Lists URL

mass

 Home
 Advanced Search
 Batch Search
 Lists
 Predictions
 Downloads

 Lists of Chemicals
 Lists of Chemicals
 List of Assays
 List of Assays

📩 Download 🔻

Columns ~

List Acronym 🗘	List Name 🗘	Last Updated 🗘	Number of Chemicals 🕈	List Description 🗘
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from Agriculture and Agri-Food Canada, Government of Canada

EPAHFR: Hydraulic Fracturing

44

2

WATER|EPA; Chemicals associated with hydraulic fracturing

🔍 Search EPAHFR Chemicals

Identifier substring search

List Details

Description: Chemicals used in hydraulic fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracking Drinking Water Assessment Final Report (Dec 2016). Citation: U.S. EPA, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-16/236F, 2016. <u>https://www.epa.gov/hfstudy</u>

*Note that Appendix H chemical listings in Tables H-2 and H-4 were mapped to current DSSTox content, which has undergone additional curation since the publication of the original EPA HF Report (Dec 2016). In the few cases where a Chemical Name and CASRN from the original report map to distinct substances (as of Jan 2018), both were included in the current EPAHFR chemical listing for completeness; additionally, 34 previously unmapped chemicals in Table H-5 are now registered in DSSTox (all but 2 assigned CASRN) and, thus, have been added to the current EPAHFR listing. **Number of Chemicals:** 1640

2 Cſ NĤa NH. OH Alkylbenzenesulfonate linear Ammonium chloride Ammonium hydroxide Diammonium citrate DTXSID: DTXSID3020041 DTXSID: DTXSID0020078 DTXSID: DTXSID5020079 DTXSID: DTXSID4020080 PubChem: 82 PubChem: 0 PubChem: 19 PubChem: 83 CPDAT: 83 CPDAT: 260 CPDAT: 18 CPDAT: 857

List of Opioids – Presence in Lists?

Trends in Environmental Analytical Chemistry

Volume 20, October 2018, e00059

Opioid occurrence in environmental water samples—A review

Marina Celia Campos-Mañas ª, Imma Ferrer ^b ペ ⋈, E.Michael Thurman ^b, Ana Agüera ª

Show more

https://doi.org/10.1016/j.teac.2018.e00059

Get rights and content

Batch Search Names

Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone Ketamine Meperidine Methadone Morphine Morphinone Naloxone Naltriben 0xycodone Oxymorphone Propoxyphene Sufentanil Tramadol

Step 1	Step 2	Step 3	Step 4	Step 5	Step
-	Step	o Five: Choose	e Data Fields to Do	wnload	
Please enter one	e identifier per line				×
Select Input Type(s Identifiers Chemical Nam CASRN () InChIKey () DSSTox Substa DSSTox Compou InChIKey Skeleto MS-Ready Formu Exact Formula(e) Monoisotopic M	ance ID (1) and ID (1) on (1) ula(e) (1)		Enter Identifiers to Search Buprenorphine Codeine Destromethorphan Dihydrocodeine Dihydrocodeine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone	n (searches should be limited to	o <5000 identifiers)
Oisplay All		Chemical Data			
Oisplay All		Chemical Data	TINPUT	FOUND BY	DTXSID
Oisplay All		Chemical Data	INPUT Buprenorphine	FOUND_BY Approved Name	DTX SID DTX SID2022705
Oisplay All		Chemical Data		_	
Display All		Chemical Data	Buprenorphine	Approved Name	DTXSID2022705
Display All		Chemical Data	Buprenorphine Codeine	Approved Name Approved Name	DTXSID2022705 DTXSID2020341
Display All		Chemical Data	Buprenorphine Codeine Dextromethorphan	Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908
Display All		Chemical Data	Buprenorphine Codeine Dextromethorphan Dihydrocodeine	Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936
Display All		Chemical Data	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl	Approved Name Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049
Display All		Chemical Data	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761
Display All	Chemicals ••• Download (Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID6046761
Display All			Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID6046761 DTXSID8023131
Display All	Chemicals Townload C	el	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydrocodone Ketamine	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID6046761 DTXSID8023133 DTXSID8023133
Display All	Chemicals ••• Download (el	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydrocodone Hydromorphone Ketamine Meperidine	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID8023131 DTXSID8023133 DTXSID8023187 DTXSID9023253
Display All	Chemicals Townload C	el	Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydrocodone Ketamine	Approved Name Approved Name Approved Name Approved Name Approved Name Approved Name Synonym Approved Name Approved Name Approved Name	DTXSID2022705 DTXSID2020341 DTXSID3022908 DTXSID5022936 DTXSID7048908 DTXSID1046760 DTXSID9023049 DTXSID6046761 DTXSID6046761 DTXSID8023133 DTXSID8023133

Batch Search in specific lists

	INPUT	DTXSID	MASSBANKREF	NEMILIST	WRTMSD	NORMANPRI	SUSDAT
	Buprenorph	DTXSID202	-	_	Y	-	Y
	Codeine	DTXSID202	Y	Υ	Υ	Y	Y
	Dextrometh	DTXSID302	Υ	Υ	Υ	-	Y
	Dihydrocod	DTXSID502:	Υ	_	Y	Y	Y
	Dihydromor			-	-	-	Y
	Ethylmorph	DTXSID104	-	-	Y	-	Y
	Fentanyl	DTXSID902	Y	-	Y	-	Y
💌 N	Heroin	DTXSID604	Y	-	Y	Y	Y
💌 N-	Hydrocodor			Y	Y	Y	Y
	Hydromorph			-	Y	-	Y
<u>N</u>	Ketamine			-	Y	-	Y
🗹 N	Meperidine			-	Y	-	Y
<u> </u>	weinadone			Y	Y	-	Y
🗹 📐		DTXSID902		Υ	Υ	Y	Y
	Morphinone			-	-	-	Y
<u> </u>	Naloxone	DTXSID802	-	-	Y	-	Y
	Naltriben	-	-	-	-	-	-
	Oxycodone			Y	Y	Y	Y
	Oxymorpho			-	Y	-	Y
	Propoxyphe			Y	Y	-	Y
	Sufentanil			-	Y	-	Y
<u> </u>	Tramadol	DTXSID908	Υ	Y	Y	Y	Y

API services and Open Data

- Available API and web services
- Open Data available for download

	casrn	dsstox_substance_id	ncludes the CAS Number, DSSTox substance identifier (DTXSID) and the Preferred Name. preferred_name
2	26148-68-5	DTXSID7020001	A-alpha-C
3	107-29-9	DTXSID2020004	Acetaldehyde oxime
4	60-35-5	DTXSID7020005	Acetamide
5	103-90-2	DTXSID2020006	Acetaminophen
6	968-81-0	DTXSID7020007	Acetohexamide
7	18523-69-8	DTXSID2020008	Acetone[4-(5-nitro-2-furyl)-2-thiazolyl] hydrazone
8	75-05-8	DTXSID7020009	Acetonitrile
9	127-06-0	DTXSID6020010	Acetoxime
10	65734-38-5	DTXSID6020012	N'-Acetyl-4-(hydroxymethyl) phenylhydrazine
)SS	Tox MS Ready M	lapping File	Posted: 11/14/2016

DSSTox SDF File

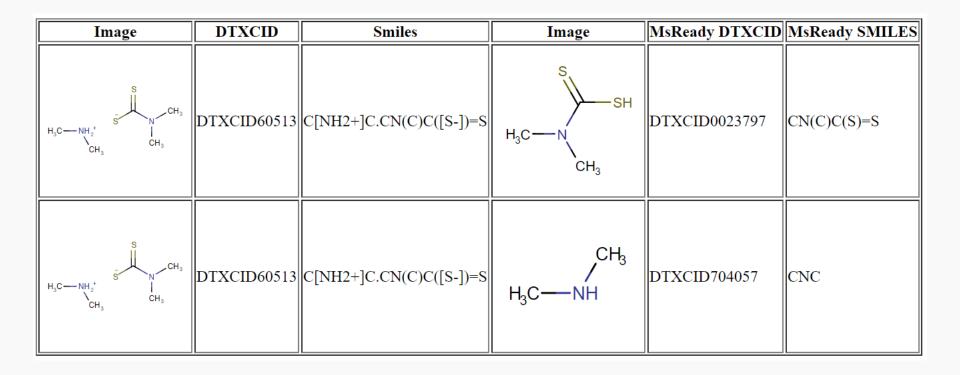
Posted: 12/14/2016

This zip file contains the entire chemical structure collection of over 700,000 chemicals from the DSSTox database contained in one large SDF file. The file contains the structure, The DSSTox Structure Identifier (DTXCID), The DSSTOX Substance Identifier (DTXSID listed as PubChem External Data Source), the associated Dashboard URL, associated synonyms and Quality Control Lovel datails. In order to view an SDE file you will need to have assess to the appropriate piece of coffware to open an SDE file. Twended to have assess to the appropriate piece of coffware to open an SDE file.

Web Services https://actorws.epa.gov/actorws/

- Dozens of web services to provide access to data
- Data in UI, JSON and XML format

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=80-05-7

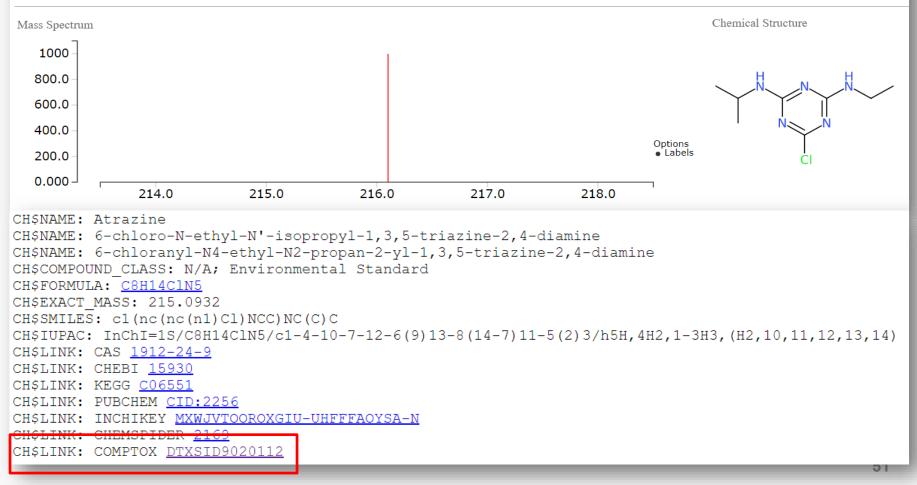

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=DTXCID60513

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-N

Example: InChIKey to DTXCIDs

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier =UVOFGKIRTCCNKG-UHFFFAOYSA-N

MassBank mapping to Dashboard



MassBank Record: EA028808

Home | Search | Record Index | Data Privacy | Imprint | MassBank ID:

Go

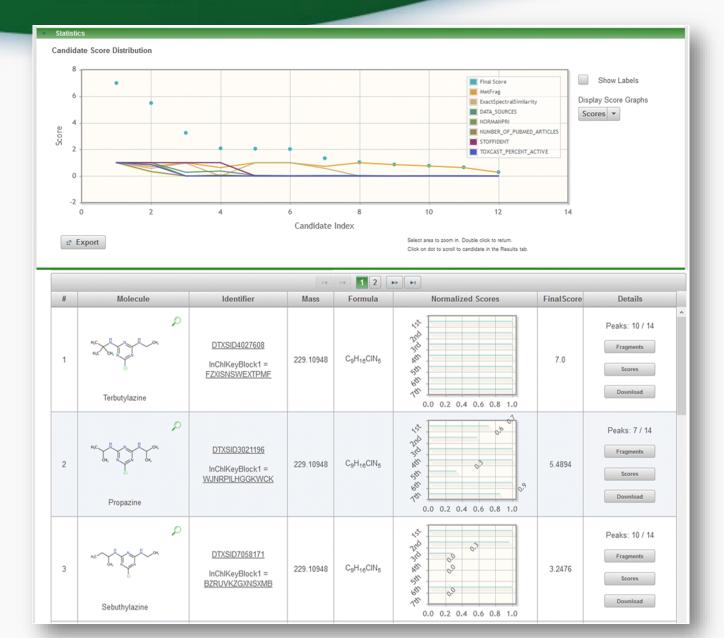
Atrazine; LC-ESI-ITFT; MS2; CE: 15%; R=15000; [M+H]+

Benefits of Open Data

NORMAN Suspect List Exchange

https://www.norman-network.com/?q=node/236

NORMAN


Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

Wastewater Suspect List based on Swedish Product Data	Wastewater Suspect List Original File with Mapped DTXSIDs (12/02/2019)	KEMIWWSUS InChlKeys (12/02/2019)	A prioritized list of 1,123 substances relevant for wastewater based on Swedish product registry data, including scores. Provided by Stellan Fischer, KEMI.
Algal toxins list from CompTox	ALGALTOX XLSX, CSV (14/02/2019) CompTox ALGALTOX List	ALGALTOX InChlKeys (14/02/2019)	List of algal toxins (generated during blooms) from the CompTox Chemicals Dashboard.
CCL 4 Chemical Candidate List	CCL4 XLSX, CSV (14/02/2019) CompTox CCL4 List	CCL4 InChlKeys (14/02/2019)	Contaminants that are not (yet) regulated in the USA but are known or anticipated to occur in public water systems; from CompTox.
Hydrogen Deuterium Exchange (HDX) Standard Set	HDXNOEX XLSX, CSV (14/02/2019) CompTox HDXNOEX List CompTox HDXEXCH List	HDXNOEX InChlKeys (14/02/2019)	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule HRMS (Ruttkies et al. submitted). HDXEXCH list also contains observed deuterated species.
Neurotoxicants Collection from Public Resources	NEUROTOXINS XLSX, CSV (14/02/2019) CompTox NEUROTOXINS List	NEUROTOXINS InChlKeys (14/02/2019)	A list of neurotoxicants compiled from public resources, details on CompTox and Schymanski <i>et al.</i> (submitted).
Statins Collection from Public Resources	STATINS XLSX, CSV (14/02/2019) CompTox STATINS List	STATINS InChlKeys (14/02/2019)	A list of statins (lipid-lowering medications) compiled from public resources, details on CompTox.
Synthetic Cannabinoids and Psychoactive Compounds	SYNTHCANNAB XLSX, CSV (14/02/2019) CompTox SYNTHCANNAB List	SYNTHCANNAB InChlKeys (14/02/2019)	A list of synthetic cannabinoids and psychoactive compounds assembled from public resources, from CompTox.

Integration to MetFrag in place

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0299-2

54

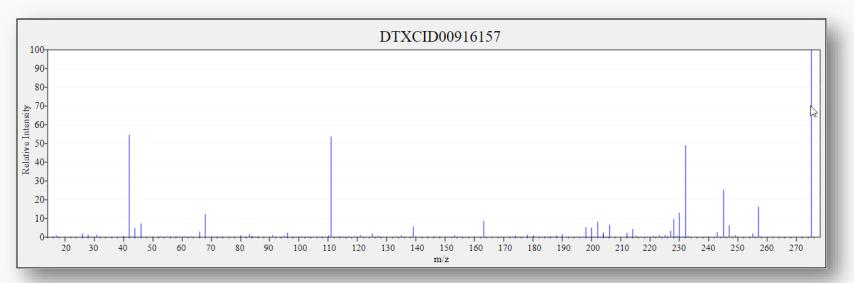
In Progress

- Predicted Spectra for candidate ranking
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database

Predicted Mass Spectra

http://cfmid.wishartlab.com/

- February 2015, Volume 11, <u>Issue 1</u>, pp 98–110 | <u>Cite as</u>


Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification

Authors and affiliations

Felicity Allen 🖂 , Russ Greiner, David Wishart

Authors

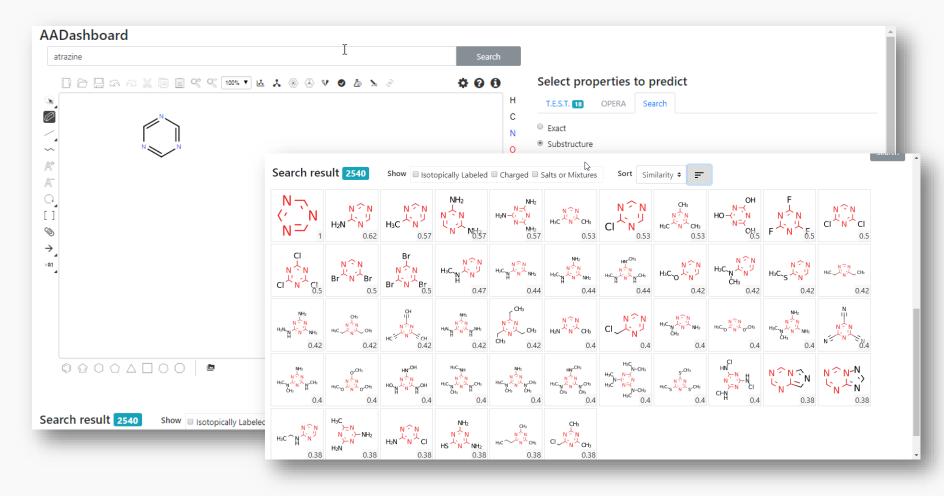
- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard

Search Expt. vs. Predicted Spectra

SEPA United States Environmental Protection Agency	Home Advanced Search Batch Search Lists 🛩 Predictions Downloads	Share - Q. Search all data
	Non Target Analysis Prototype	Â
	Mass Search <u>± Min/Max</u> 321.138493476 Da <u>± 0.0000002 Da ppm</u>	
	Molecular Formula Search	
	Mass or Formula must be entered before searching spectrum Ionization Type ESI+ ESI+ ESI- EI Spectra Input	
	Single Energy Multiple 304.1332052 11.6199475 • 198.0913404 7.306439699 • 123.0440559 6.538348292 • 196.0756904 6.269463115 • 216.1019051 4.700461978 •	
	Peak Match Window: 0.02 Da ppm	

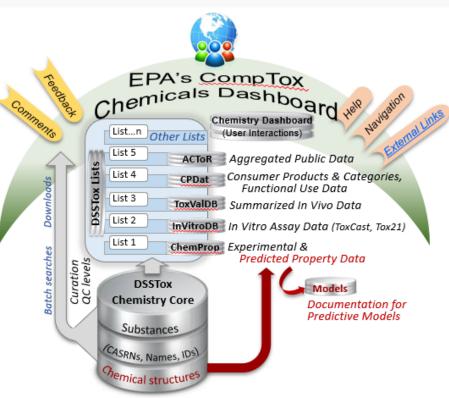
CFM-ID Predicted Library Available

- United States Environmental Protection Agency
- Predictions generated and stored for >700,000 structures
- Python code to score experimental vs predicted spectra
- Cosine dot product match score calculation


Data Descriptor | OPEN | Published: 02 August 2019 Linking *in silico* MS/MS spectra with chemistry data to improve identification of unknowns

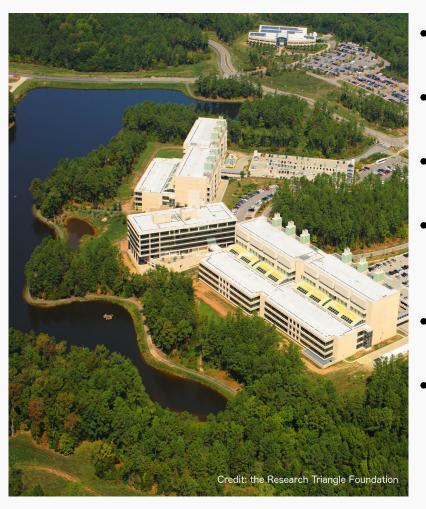
Andrew D. McEachran[™], Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris Grulke, Jon R. Sobus & Antony J. Williams[™]

Scientific Data 6, Article number: 141 (2019) | Download Citation 🚽


Prototype Development Structure/substructure search

Conclusion

- Dashboard access to data for ~875,000 chemicals
- MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Dashboard and contents are one part of the solution
- New API and Web Services are in development



nvironmental Protection

Agency

Acknowledgements

- NCCT IT development team
- Tommy Cathey, ACTOR Web Services
- Nancy Baker, Abstract Sifter
- Todd Martin & Valery Tkachenko, WebTEST
- Kathie Dionisio & Kristin Isaacs, CPDat
- Thanks to Emma Schymanski, University of Luxembourg, for coordinating all efforts with the NORMAN Network for curation of lists on the Suspect Exchange

Antony Williams

US EPA Office of Research and Development National Center for Computational Toxicology EMAIL: <u>Williams.Antony@epa.gov</u> ORCID: https://orcid.org/0000-0002-2668-4821