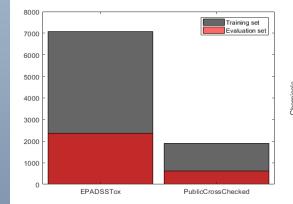
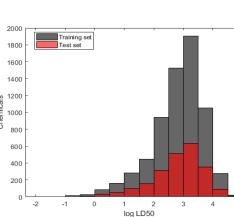

Collaborative Modeling Project for Predicting Acute Oral Toxicity Kamel Mansouri¹, Agnes Karmaus¹, Jeremy Fitzpatrick^{2,3}, Grace Patlewicz², Prachi Pradeep², David Allen¹, Warren Casey⁴, and Nicole Kleinstreuer⁴ ¹ILS, RTP, NC, USA; ²EPA/NCCT, RTP, NC, USA; ³ScitoVation LLC, RTP, NC, USA; ⁴NIH/NIEHS/DNTP/NICEATM, RTP, NC, USA

Abstract

With an increasing number of chemicals to assess for acute systemic toxicity potential and a lack of sufficiently predictive in vitro approaches, in silico models provide an alternative to predict acute oral toxicity and bridge data gaps. NICEATM and the ICCVAM Acute Toxicity Workgroup (ATWG) organized an international collaborative project to develop in silico models for predicting acute oral toxicity [1]. In total, 35 groups participated, submitting 139 predictive models built using a dataset of 11,992 chemicals. Models were developed for five endpoints: LD50 value, EPA hazard categories, GHS hazard categories, very toxic (LD50 < 50 mg/kg), and non-toxic (LD50 > 2000 mg/kg) [2]. Predictions within the applicability domains of the submitted models were evaluated using external validation sets, then combined into consensus predictions for each endpoint, forming the Collaborative Acute Toxicity Modeling Suite (CATMoS) [3]. The resulting consensus predictions leverage the strengths and overcome the limitations of individual modeling approaches. The consensus predictions performed at least as well as the in vivo acute oral toxicity assay in terms of accuracy and reproducibility. CATMoS consensus predictions can be generated for new chemical structures and are made available as free and open-source models via the OPERA predictive tool, which provides applicability domain assessments and accuracy estimates [4-5]. CATMoS predictions for the ~850k chemical structures in DSSTox will ultimately be publicly accessible via NTP's Integrated Chemical Environment and the EPA's CompTox Chemicals Dashboard [6-7].

Project Data


- Endpoints: five endpoints were selected by the ICCVAM ATWG member agencies to serve as endpoints for predictive modeling within the CATMoS project.
- Collected data: 34,508 rat oral LD50 values for 16,297 chemicals total.



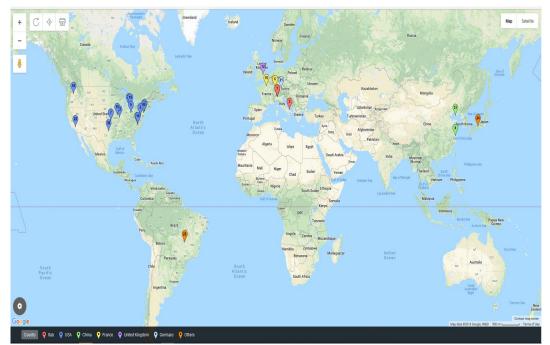
15.688 chemical structures 21,200 LD50 values

QSAR-ready standardization

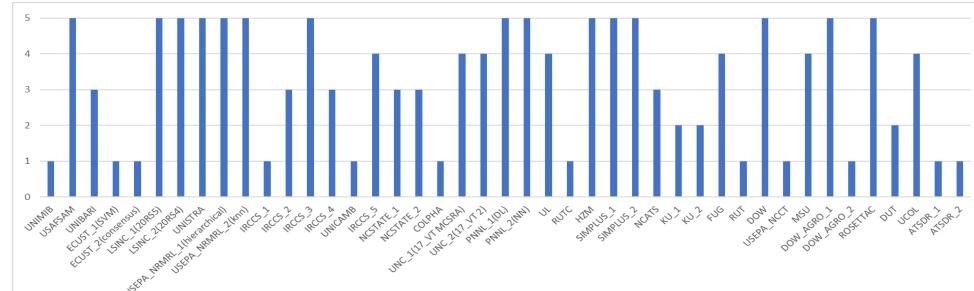
Desalted, stereochemistry stripped, tautomers and nitro groups standardized, valence corrected, structures neutralized

Available data split into:

- 75% training set: 8,994 chemicals 25% evaluation set: 2.998 chemicals
- Training data for all endpoints included in same structure file
- Similar distributions and variability for values and categories


11992 chemicals with

standardized structures


Similar distribution of chemical structure sources

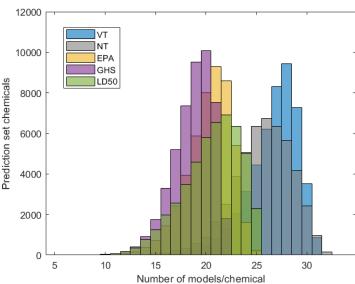
Collaborators

A consortium of <u>35 participants/groups</u> from around the globe representing academia, industry, and government

Group ID	Institution	Country
NICEATM	NTP Interagency Center for the Evaluation of Alternative Toxicological Methods	USA
UNIBARI	Università degli Studi di Bari	Italy
LOREAL	L'Oréal R&I	France
UNICAMB	University of Cambridge	UK
UNC	UNC Eshelman School of Pharmacy	USA
FUG	Federal University of Goias	Brazil
UNIMIB	University of Milano-Bicocca	Italy
DOW	The Dow Chemical Company	USA
IRCCS (5 groups)	Istituto di Ricerche Farmacologiche Mario Negri	Italy
MSU	Michigan State University	USA
SIMPLUS	Simulations Plus, Inc.	USA
KU	Kyoto University Graduate School of Medicine	Japan
ECUST	East China University of Science and Technology, China	China
USAFSAM	Henry M Jackson Foundation for the Advancement of Military Medicine	USA
RUT (2 groups)	Rutgers University	USA
COLPHA	Collaborations Pharmaceuticals, Inc.	USA
UL	Underwriters Laboratories	USA
NCSTATE	North Carolina State University	USA
PNNL	Pacific Northwest National Laboratory	USA
NCCT	National Center for Computational Toxicology, USEPA	USA
HZM	Helmholtz Zentrum München, Germany	Germany
UNISTRA	Universite de Strasbourg	France
NRMRL	National Risk Management Research Laboratory, USEPA	USA
LSINC	Leadscope Inc.	USA
NCATS	National Center for Advancing Translational Sciences, NIH	USA
ATSDR	Agency for Toxic Substances and Disease Registry, CDC	USA
ROSETTAC	Rosettastein Consulting UG	Germany
UCOL	University of Colorado	USA
DUT	Dalian University of Technology	China
DOW_AGRO	Dow Agrosciences	USA

- Documentation
- Availability of code

BA =


• VT • NT GHS

Model rediction

Consensus Modeling

Models received from participants. Participating groups submitted predictions for any one or up to all five of the acute toxicity endpoints.

Coverage and concordance of the models

Single model evaluation procedure

- **Qualitative evaluation:**
- Applicability domain definition
- Defined endpoint Unambiguous algorithm
- Availability of data used for

- modeling Mechanistic interpretation
- Predictivity: statistics on the evaluation set (Eval)

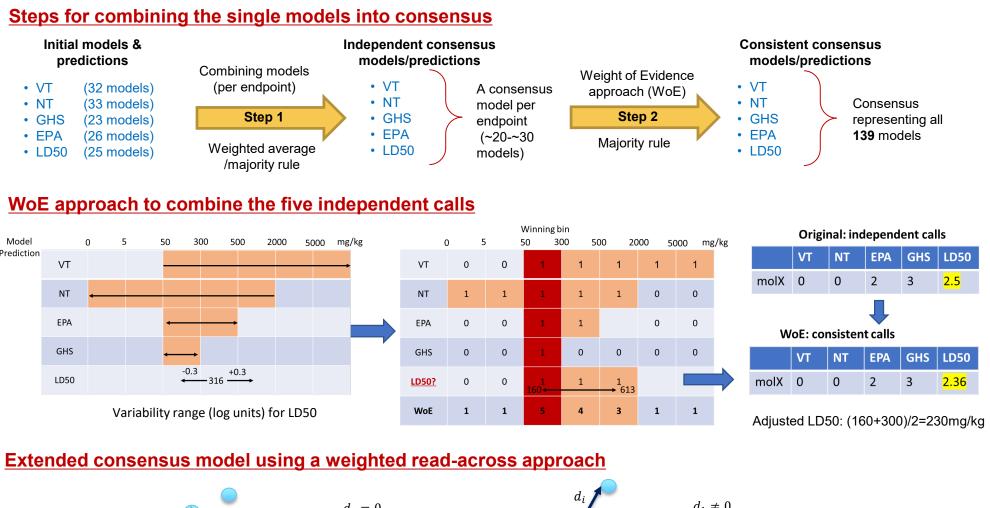
Quantitative evaluation:

0.2

0.4 0.6 0.8

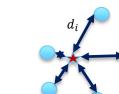
• Goodness of fit: training (Tr) statistics

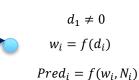
Predictions concordance


 Robustness: balance between (Goodness of fit) & (Predictivity)

S = 0.3 * (Goodness of fit) + 0.45 * (Predictivity) + 0.25 * (Robustness)

Categorical models (binary and multi-class):


- Goodness of fit = $0.7 * (BA_{Tr}) + 0.3 * (1 |Sn_{Tr} Sp_{Tr}|)$ $Predictivity = 0.7 * (BA_{Eval}) + 0.3 * (1 - |Sn_{Eval} - Sp_{Eval}|)$
- $Robustness = 1 |BA_{Tr} BA_{Eval}|$

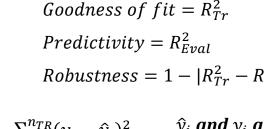

$$\frac{(Sn+Sp)}{2} \qquad Sn = \frac{TP}{TP+FN} \qquad Sp = \frac{TN}{TN+FP} \qquad R^2 = 1 - \frac{TN}{TN+FP}$$

 $d_1 = 0$ $Pred_i = N_i$

 d_i : Euclidean distance based on the selected descriptors for each endpoint

Automated, similarity-endpoint dependent read-across: weighted kNN

Consensus models evaluation 0.85 0.30 EPA Training 0.87 0.99 0.95 0.75 0.98 0.97 0.88 0.62 0.97 **CATMoS** in Practice

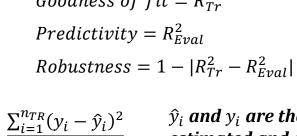

Example predictions. Structures taken from the EPA Comp	nTox Chemicals D						
Example predictions. Structures taken from the EPA CompTox Chemicals Dashboard.							
Image: Consensus output: Image: Consensus output: Image: Consensus output: Image: Consensus output:		Vitamin 67-97-0 Molecular For Average Mass: LD50: 42 log10 LD	Vitamin D3 67-97-0 DTXSID6026294 Molecular Formula: C ₂₇ H ₄₄ O Average Mass: 384.648 g/mol LD50: 42 mg/kg log10 LD50= 1.62 mard/dsstoxdb/results?search=DTXSID6026294				
MoleculeID CATMoS_VT_pred CATMoS_NT_pred CATMoS_EPA_pred CATMoS_GHS_	pred CATMoS_LD50_pred	AD_CATMoS	AD_index_CATMoS	Conf_index_CATMoS			
<u>'123-91-1'</u> 0 1 3	5 3.4053	1	1	0.9500			
'67-97-0' 1 0 1	2 1.2845	1	1	0.8684			
 Command line and GUI Single chemical and batch mode Windows OS and Linux Embeddable wrapper libraries (iava, C/C++, Python) 	OPERA models for physchem, environmental fate and to Version 2.3 (June 2019) A is a command line application developed in Matlab prov predictions as well as applicability domain and accuracy ped by: Hansouri rikamal@gmail.com : OPERA cargument_list>	iding QSAR	Environmental Ide LogRCF ACH Blodge R-Bic Toutiey endpoints ER (CERAPP) AR (CoMPARA) DAUE properties FUB Clim Output options Experimental values Experimental values Experimental values	EN2 3 Pred cov Browse Image:			

References

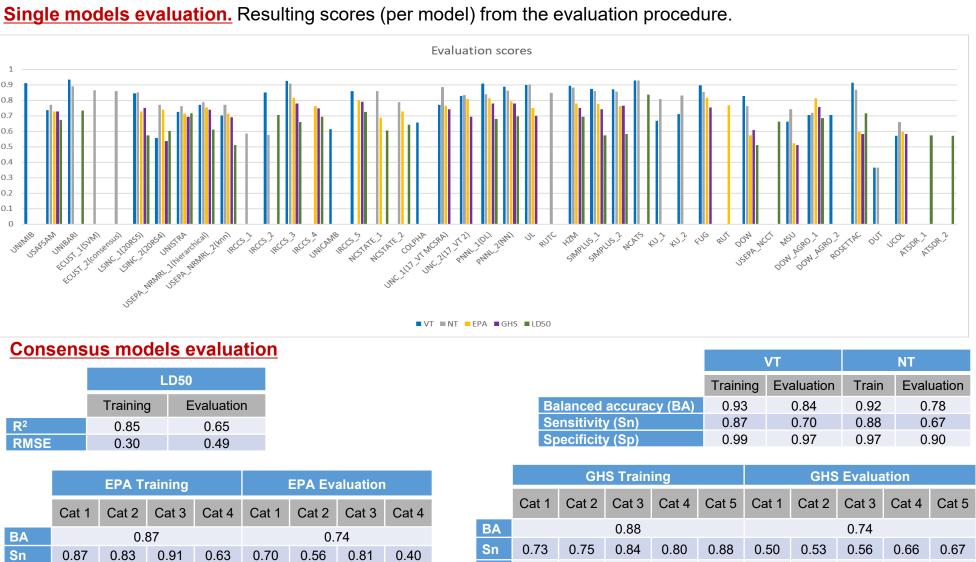
- Comput Toxicol 8:21–24.
- 2) Predictive Models for Acute Oral Systemic Toxicity. https://ntp.niehs.nih.gov/go/tox-models. Accessed 29 Aug 2019. 3) Kleinstreuer et al. 2018. Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation.
- 4) OPERA Open structure-activity/property relationship app. https://github.com/NIEHS/OPERA. Accessed 29 Aug 2019. 5) Mansouri et al. 2018. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminform

Acknowledgements

This project was funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN273201500010C. Disclaimer: The views expressed above do not necessarily represent the official positions of any federal agency. Since the poster was written as part of the official duties of the authors, it can be freely copied.



Continuous models:


 \hat{y}_i and y_i are the estimated and observed

- responses

 $\overline{\sum_{i=1}^{n_{TR}} (y_i - \bar{y})^2}$

Models Performance Evaluation

0.99

0.99

0.92 0.89 0.96 0.99 0.97 0.89 0.74 0.90

1) Strickland et al. 2018. Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies. Regul Toxicol Pharmacol 94:183–196.

- 6) Integrated Chemical Environment (ICE). https://ice.ntp.niehs.nih.gov/. Accessed 29 Aug 2019.
- 7) Williams et al. 2017. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform 9(1):61. https://comptox.epa.gov/dashboard/