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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemicals present in pooled human 
blood samples, many appear to be exogenous albeit at low levels

• A tapestry of laws covers the chemicals people are exposed to in the 
United States (Breyer, 2009)

• Different testing requirements exist for food additives, 
pharmaceuticals, and pesticide active ingredients (NRC, 2007)

November 29, 2014
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• Most other chemicals, ranging from industrial waste to dyes to 
packing materials, are covered by the Toxic Substances Control Act 
(TSCA)

• Thousands of chemicals on the market were either 
“grandfathered” in or were allowed without experimental 
assessment of hazard, toxicokinetics, or exposure

• Thousands of new chemical use submissions are made to the 
EPA every year

• TSCA was updated in June, 2016 to allow evaluation of these and 
other chemicals

• New alternative methodologies (NAMs) are being developed to 
prioritize these existing and new chemicals for testing

November 29, 2014

Chemical Regulation in the United States
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• National Research Council (1983) identified chemical risk as 
a function of both inherent hazard and exposure

• To address thousands of chemicals, we need new approach 
methodologies that can prioritize those chemicals most 
worthy of additional study

• High throughput risk prioritization needs:
1. high throughput hazard characterization (Dix et al., 

2007, Collins et al., 2008)
2. high throughput exposure forecasts (Wambaugh et al., 

2013, 2014)
3. high throughput toxicokinetics (i.e., dose-response 

relationship) linking hazard and exposure

Potential 
Exposure Rate

mg/kg BW/day

Potential 
Hazard from in 

vitro with 
Reverse 

Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Chemical Risk = Hazard x Exposure

Rotroff et al. (2010)
Wetmore et al. (2012, 2014, 2015)
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Limited Available Data for Exposure 
Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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Understanding Exposure to Chemicals

“Overall, these data show that concentrations 
of many EDCs in biological samples and indoor 
air and dust co-vary, suggesting that some EDC 

mixtures may originate from common 
exposure sources and highlighting potential 
confounding by other EDCs in health effect 

studies of phthalates. Future work will utilize 
factor analysis to identify source profiles of 

EDC mixtures that are associated with urinary 
phthalate levels.” 

Rudel et al., 2003
Rudel et al., 2008
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2013: ExpoCast Team “Helps” With Correlating 
Exposure and Biomarkers

• The EPA’s Exposure Forecaster (ExpoCast) team works to develop new methods for exposure

• To correlate metabolites in urine with parent chemical exposures from dust and consumer products we need to 
know (at least):

• What chemicals are we talking about? CAS are not unique! Names are certainly not unique.
• Are there any toxicity data?
• Which metabolites link to which parent chemicals?
• What consumer products contain which chemicals?
• What does a given concentration of a chemical in urine (or plasma) imply about total body burden and 

exposure?
• What are the relevant physicochemical properties?

• In 2013 when we set out to do this analysis we could not answer most of these questions

• Now you can with the CompTox dashboard: https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard
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Understanding Exposure is a Systems Problem

• Exposure event unobservable: Can try to predict exposure by characterizing pathway
• Some pathways have much higher average exposures: In home “Near field” sources 

significant (Wallace, et al., 1987)
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Chemical Identity
• What chemicals are we talking about? Chemical Abstracts Service (CAS) Registry Numbers are not unique:

• Aspirin (CAS #: 50-78-2)
• Deleted CAS #: 2349-94-2, 11126-35-5, 11126-37-7, 26914-13-6, 98201-60-6

https://comptox.epa.gov/dashboard/
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Chemical Identity
• What chemicals are we talking about? Names are certainly not unique: 4,4'-DIHYDROXYPHENYL-2,2-PROPANE

https://comptox.epa.gov/dashboard/
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Chemical Identity
• What chemicals are we talking about? Names are certainly not unique: 4,4'-DIHYDROXYPHENYL-2,2-PROPANE

https://comptox.epa.gov/dashboard/
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Chemical Lists
• Can find chemicals by lists

https://comptox.epa.gov/dashboard/
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Chemical Lists
• Can find chemicals by lists
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High-Throughput Bioactivity 
Screening

 The dashboard provides in vivo and in vitro toxicity data, where available

 Most chemicals do not have in vivo toxicity data available (Judson, 2008)
• Bisphenol A vs. Bisphenol S

 Tox21:  Examining >10,000 chemicals using ~50 assays intended to 
identify interactions with biological pathways (Schmidt, 2009)

 EPA Toxicity Forecaster (ToxCast): 
• For a subset (>3000) of Tox21 chemicals run >1000 additional assay endpoints (Judson 

et al., 2010)

 Data are being revised, new chemicals tested, new assays added

Concentration

Re
sp
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In vitro Assay AC50

Concentration (µM)

Assay AC50
with Uncertainty
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Chemical Bioactivity Data
• Data from the ToxCast and Tox21 projects are available through the dashboard

https://comptox.epa.gov/dashboard/
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Chemical Bioactivity Data
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Chemical Bioactivity Data
• Data from the ToxCast and Tox21 projects are available through the dashboard

https://comptox.epa.gov/dashboard/
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Parent chemical

Analyte measured in urine

Figure from Wambaugh et al. (2013)

Mapping Parent Chemicals to NHANES Analytes
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Parent-Metabolite Linkage

https://comptox.epa.gov/dashboard/
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Chemical Toxicokinetics

• Toxicokinetics (TK) provides a bridge between toxicity and 
exposure assessment by predicting tissue concentrations due 
to exposure
• However traditional TK methods are resource intensive

• Need to understand what the human body does with a 
chemical: 

• absorption, distribution, metabolism, excretion (ADME)

• Can relate in vitro bioactive concentrations (µM) to steady-
state human doses (mg/kg body weight/day) using reverse 
toxicokinetics (Wetmore et al., 2012 and 2015):

• You divide by the steady-state plasma concentration, Css, 
to convert µM to mg/kg body weight/day

• Dashboard will give you Css predicted by HTTK
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• Studies like Wetmore et al. (2012, 2015), addressed 

the need for TK data using in vitro methods

The Need for In Vitro Toxicokinetics
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• Most chemicals do not have 
TK data – we use in vitro HTTK 
methods adapted from 
pharma to fill gaps

• In drug development, HTTK 
methods allow IVIVE to 
estimate therapeutic doses for 
clinical studies – predicted 
concentrations are typically on 
the order of values measured 
in clinical trials (Wang, 2010)

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002)

Rapid Equilibrium 
Dialysis (RED) 

Waters et al. (2008)

Figure from Barbara Wetmore
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Environmental chemicals:
Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~300 chemicals

• Most chemicals do not have 
TK data – we use in vitro HTTK 
methods adapted from 
pharma to fill gaps

• In drug development, HTTK 
methods allow IVIVE to 
estimate therapeutic doses for 
clinical studies – predicted 
concentrations are typically on 
the order of values measured 
in clinical trials (Wang, 2010)
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In Vitro-In Vivo Extrapolation (IVIVE)

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002)

Rapid Equilibrium 
Dialysis (RED) 

Waters et al. (2008)

Figure from Barbara Wetmore
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-base 
toxicokinetics (PBTK)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Physicochemical Properties
• Measured and predicted physicochemical properties are available

• OPEn structure–activity/property Relationship App (OPERA) by Mansouri, et al. (2018)

https://comptox.epa.gov/dashboard/
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Bulk Download of Data
• Can download databases and spreadsheets of data using Batch Search

https://comptox.epa.gov/dashboard/
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Chemical Sources
>2000 chemicals with Material Safety Data 
Sheets (MSDS) in Goldsmith et al., 2014

106 N
HAN

ES Chem
icals

• Near field sources have been known to be important 
at least since 1987 – see Wallace, et al.

• Hard to know what chemicals are in which materials

• Dashboard provides this information, and will be 
addressed in depth in subsequent lectures
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“In particular, the assumption 
that 100% of [quantity 
emitted, applied, or ingested] 
is being applied to each 
individual use scenario is a 
very conservative assumption 
for many compound / use 
scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models
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Limited Available Data for Exposure 
Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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Decision Trees
 Decision trees are a 

useful tool for 
making predictions of 
how something 
should be classified

 Unfortunately, they 
are unstable 
Dietterich (2000)

 In Wambaugh et al. (2015) various chemical properties, including Fraction 
unbound in plasma (Fup) and transporter affinities were used to predict 
whether Css would be over or underestimated
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Ensemble Predictions

 “Ensemble methods are learning algorithms that construct a set of classifiers and then classify new 
data points by taking a (weighted) vote of their predictions.” Dietterich (2000)

 Every model gets a “vote” – can think of this probabilistically

A B C A B C A B C A B C A B C

Four votes for “B” – 80%
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Bootstrap AGGregatING: Bagging

 How do we get multiple decision 
trees? We use the method of 
Random Forests (Brieman, 2001)

 Construct multiple training sets that 
are subsets of the available data

 The models corresponding to each 
data subset each get a vote

 Estimate the error of each tree 
using the data not in the subset
• Out of bag (OOB) error

Image from Wikipedia article on “cross-validation”
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Descriptor Subsets

 In Random Forests, each decision point only considers a random 
subset of the available predictors (Ho, 1995)

 Allows for large predictors sets, such as chemical structure 
chemotypes (thousands of structure features)

 Because only a subset of predictors are 
evaluated for each branching point in each 
tree, can evaluate how well do trees that 
include predictor X perform relative to trees 
that don’t include predictor X

 This is a measure of predictor importance 
(Archer et al., 2008)

 Can tell us which parameters drive the 
model

 Need to be careful about correlated 
variables
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Model Performance
 In addition to OOB (out of bag) error rate, we can look at 

how well the average prediction of the models does in 
classifying the data: true positives (TP), false positives 
(FP), true negatives (TN), false negatives (FN)

 Sensitivity = TP / (TP + FN)

 Specificity = TN / (TN + FP)

 Want to do both, balanced accuracy = (Sensitivity + 
Specificity)/2 

 Can use the option “sampsize” in randomForest R package 
to make sure that the training sets are balanced

Actual
Positives

Actual
Negatives

Predicted 
Positives TP FP

Predicted 
Negatives FN TN

Confusion Matrix
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R Code
 Liaw and Wiener’s R package “randomForest” 

ported the original Random Forests Fortran by 
Leo Breiman and Adele Cutler into R

 Can do both classification and regression (we 
have not discussed regression much here)

#Built in 1888 Swiss Fertility Data

help(swiss) # Display data information

Actual R code:
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R Code
 Liaw and Wiener’s R package “randomForest” 

ported the original Random Forests Fortran by 
Leo Breiman and Adele Cutler into R

 Can do both classification and regression (we 
have not discussed regression much here)

swiss #display the data

Actual R code:
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R Code
 Liaw and Wiener’s R package “randomForest” 

ported the original Random Forests Fortran by 
Leo Breiman and Adele Cutler into R

 Can do both classification and regression (we 
have not discussed regression much here)

library(randomForest) #load Random Forest
help(randomForest) # get help

Actual R code:
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R Code
 Liaw and Wiener’s R package “randomForest” 

ported the original Random Forests Fortran by 
Leo Breiman and Adele Cutler into R

 Can do both classification and regression (we 
have not discussed regression much here)

# Set regions with below median fertility to 
false, above median to true:
swiss$Fertility <-
swiss$Fertility>median(swiss$Fertility)
# Turn it into a “factor” which is how R 
describes a classifcation
swiss$Fertility <-
as.factor(swiss$Fertility)
# Build a random forests model:
mdl <- randomForest(Fertility~.,data=swiss)

Actual R code:
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R Code
 Liaw and Wiener’s R package “randomForest” 

ported the original Random Forests Fortran by 
Leo Breiman and Adele Cutler into R

 Can do both classification and regression (we 
have not discussed regression much here)

varImpPlot(mdl) # Variable importance

Actual R code:

Examination: percent of draftees 
receiving highest mark on army 
examination
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Understanding Exposure is a Systems Problem

• Exposure event unobservable: Can try to predict exposure by characterizing pathway
• Some pathways have much higher average exposures: In home “Near field” sources 

significant (Wallace, et al., 1987)
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Finding the Right Data
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat 

(Food, Food Additive, Food 
Contact), NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, 
Stockholm Convention, CPDat 
(Pesticide), NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water 
Occurrence, NORMAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We used Random Forests to relate chemical structure and properties to exposure pathway

Ring et al., submitted

 Data curation is the 
rate limiting step 
for application of 
Random Forests

 Need a set of 
positive and 
negative examples 
with descriptors

 Thanks to various 
software tools and 
the speed of 
modern computers, 
once you have the 
data building the 
models is relatively 
easy
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https://comptox.epa.gov/dashboard

• There are low levels of thousands of chemicals in commerce, relating 
exposures and health effects is an important unsolved problem

• The exposure pathway is the actual interaction of the receptor and media, and 
this event is often confounded by various sources of uncertainty

The views expressed in this presentation are those of the author and do not 
necessarily reflect the views or policies of the U.S. EPA

Toxicokinetics Exposure

Hazard

Chemical
Risk

EPA’s CompTox dashboard 
(Williams et al, 2017) can help you:
• Identify chemicals
• Find toxicity data
• Find lists of chemicals
• Find metabolites
• Identify products
• Find toxicokinetic information
• Get physicochemical properties
• Batch download data

https://comptox.epa.gov/dashboard
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