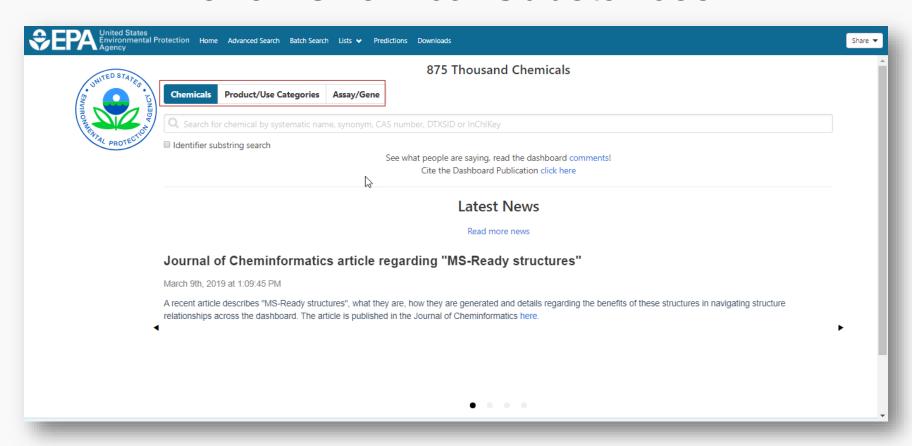


Non-targeted analysis supported by data and cheminformatics delivered via the CompTox Chemicals Dashboard

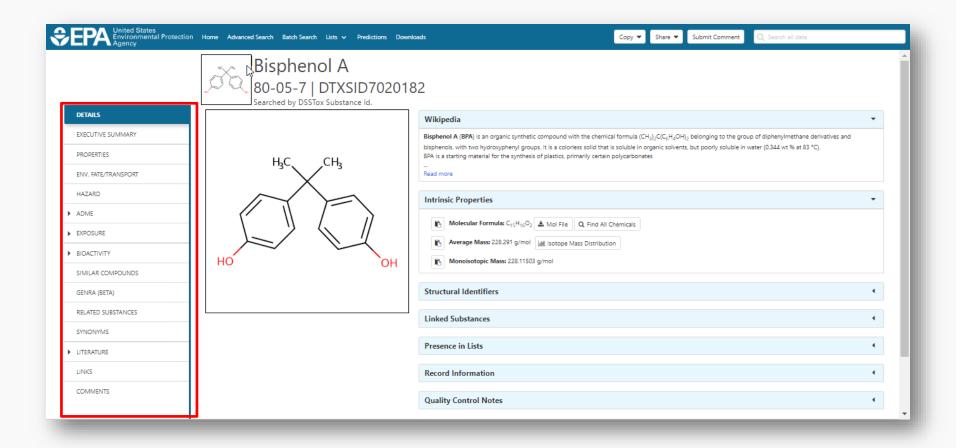
Antony Williams¹, Alex Chao², Tom Transue³, Tommy Cathey³, Elin Ulrich¹ and Jon Sobus¹

- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, RTP, NC
 Oak Ridge Institute of Science and Education (ORISE) Research Participant, RTP, NC
 GDIT, Research Triangle Park, North Carolina, United State
- The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

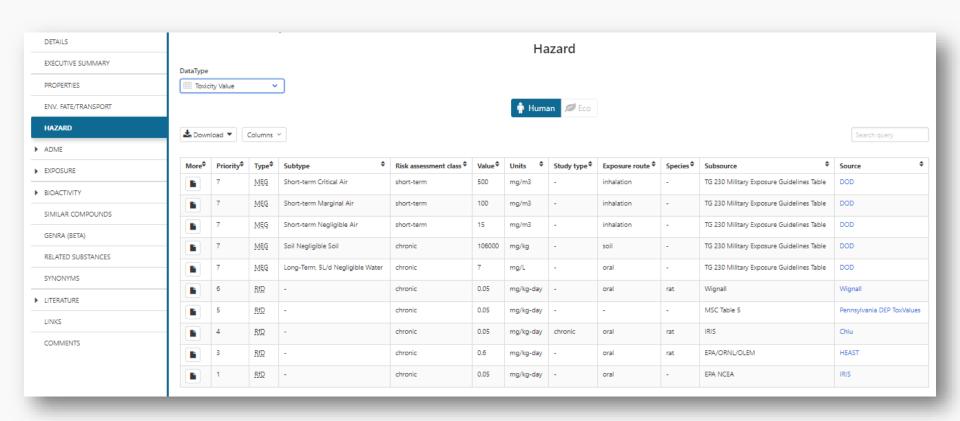
An intro to the Dashboard


- Freely available web-based database from the National Center for Computational Toxicology
- Providing data for 875,000 substances including
 - Experimental and predicted physicochemical properties
 - In vivo toxicity data harvested from dozens of public resources
 - In vitro bioactivity data for thousands of chemicals and assays
 - Exposure data including chemicals in consumer products
 - Real time predictions for >20 physchem and toxicological endpoints
- Dashboard is used by mass spectrometrists for chemical identification
- A quick view of general capabilities...

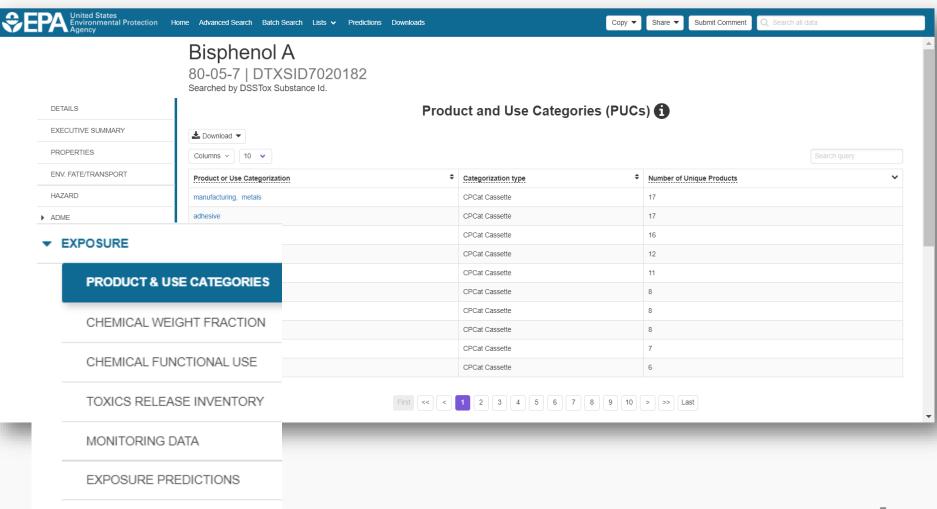
CompTox Chemicals Dashboard



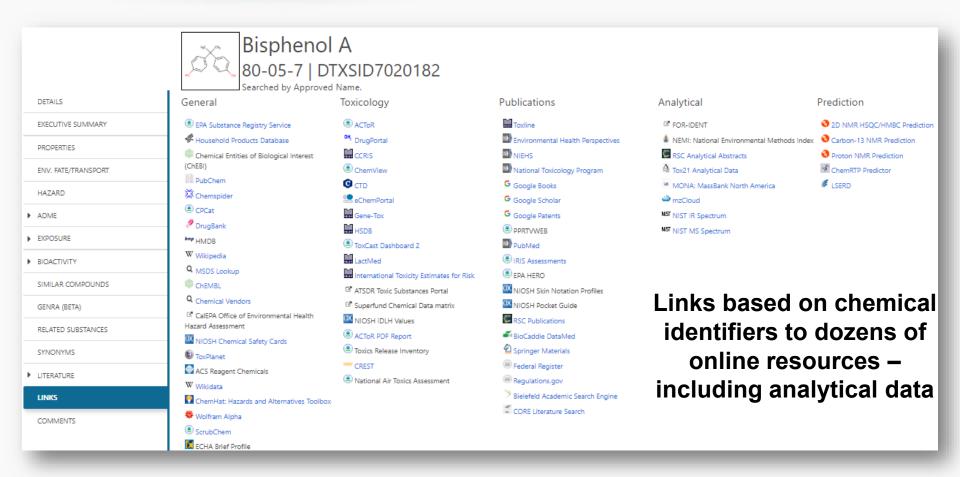
875k Chemical Substances

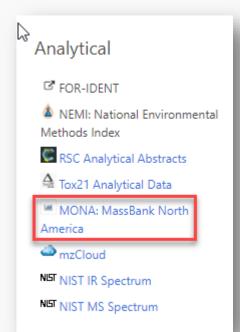

Detailed Chemical Pages

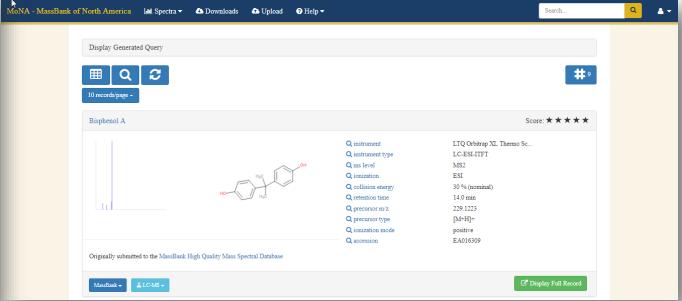
Access to Chemical Hazard Data



Sources of Exposure to Chemicals


PRODUCTION VOLUME


Link Access



MassBank of North America https://mona.fiehnlab.ucdavis.edu

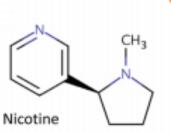
"MS-ready" structures

McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2

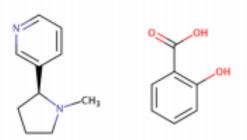
Journal of Cheminformatics

METHODOLOGY

Open Access

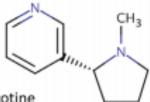

"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}


Overview of MS-Ready Structures

- All structure-based chemical substances are algorithmically processed to
 - Split multicomponent chemicals into individual structures
 - Desalt and neutralize individual structures
 - Remove stereochemical bonds from all chemicals

CN1CCC[C@H]1C1=CN=CC=C1 DTXSID1020930| SNICXCGAKADSCV 54-11-5 | **162.1157**| 0.929| **72** Tox: **yes**| Expo: **yes**| Bioassay: **yes**



Benzoic acid, 2-hydroxy-, compd. with 3-[(2S)-1-methyl-2-pyrrolidinyl]pyridine (1:1)

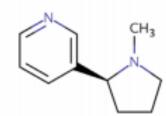
OC(=0)C1=C(0)C=CC=C1.CN1CCC[C@H]1C1=CN=CC=C1

DTXSID5075319| AIBWPBUAKCMKNS


29790-52-1 | **300.1474** | 0.929 | **6** Tox: **no** | Expo: **yes** | Bioassay: **no**

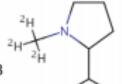
D-Nicotine

CN1CCC[C@@H]1C1=CN=CC=C1 DTXSID004635| SNICXCGAKADSCV 25162-00-9 | **162.1157**| 0.929| **20**


Tox: no | Expo: yes | Bioassay: yes

CN1CCCC1C1=CN=CC=C1
DTXSID3048154 | SNICXCGAKADSCV
22083-74-5 | **162.1157** | 0.953 | 9
Tox: **yes** | Expo: **no** | Bioassay: **yes**

LEGEND: Name, SMILES DTXSID | InChiKey 1st Block


CAS | Monoiso. Mass | logP | Sources Data on: Toxicity | Exposure | Bioassays

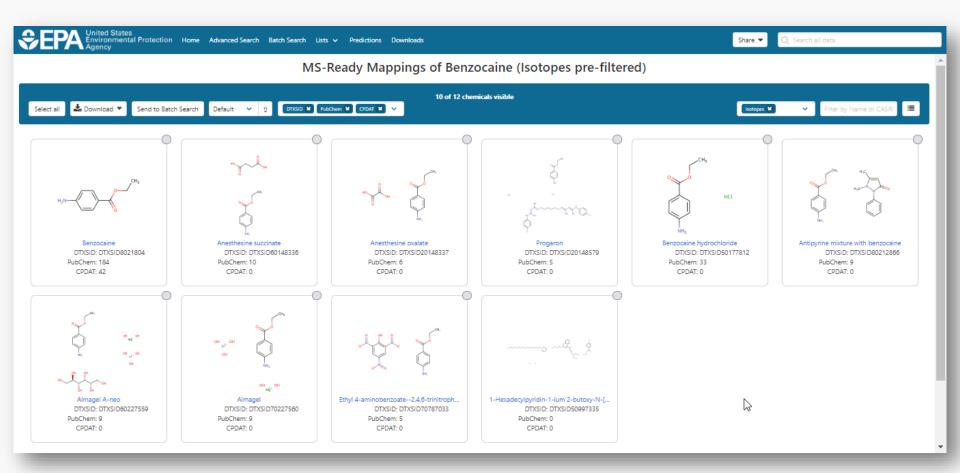
HCI

Nicotine hydrochloride

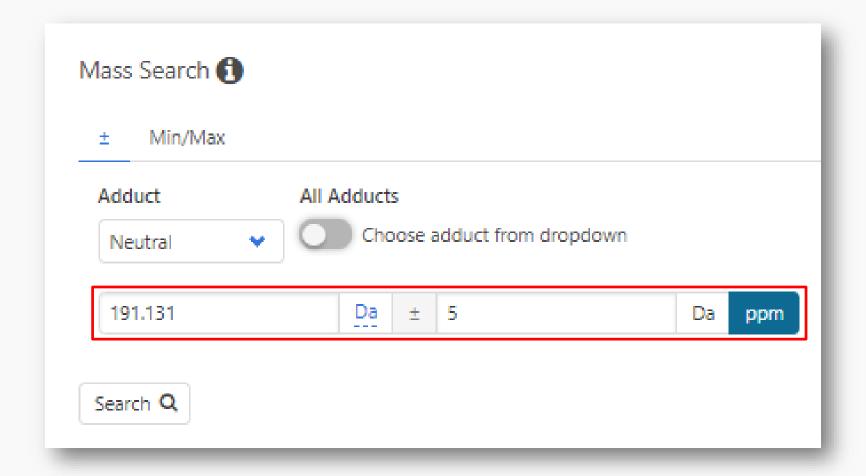
CI.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID602093| HDJBTCAJIMNXEW 2820-51-1 | **198.0924** | 0.929| **9** Tox: **no**| Expo: **yes**| Bioassay: **yes**

DL-Nicotine-d3

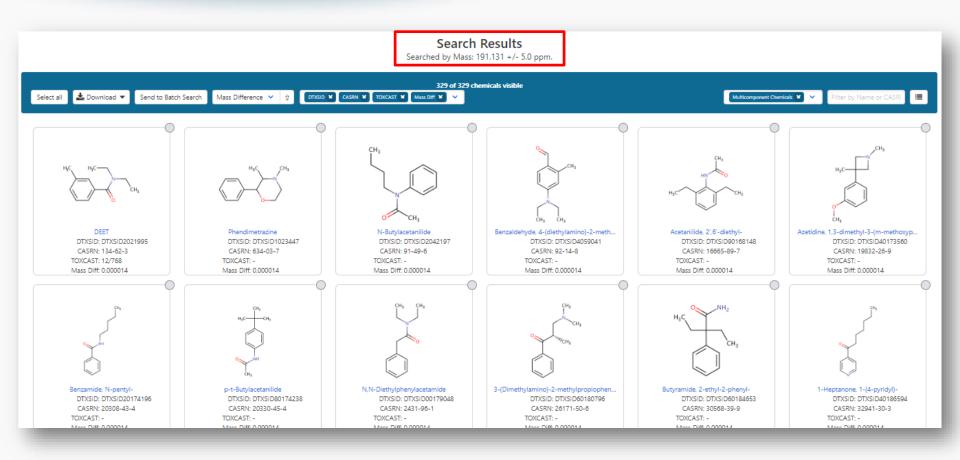
[2H]C([2H])([2H])N1CCCC1C1=CN=CC=C1 DTXSID80442666| SNICXCGAKADSCV 69980-24-1| **165.1345**| 0.929| **1**

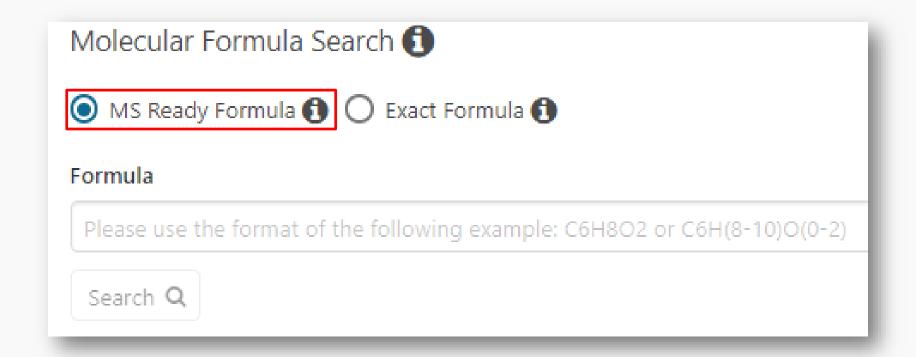

Tox: no | Expo: no | Bioassay: no

MS-Ready Mappings Set All substances containing component

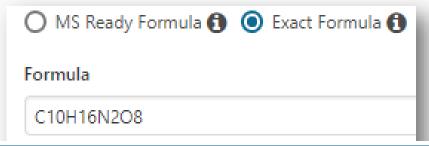


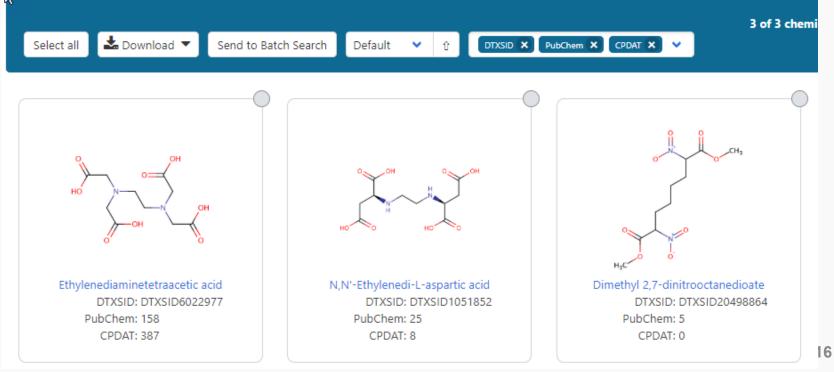
Mass/Formula Searching and Metadata Ranking


Advanced Searches Mass Search


Advanced Searches Mass Search

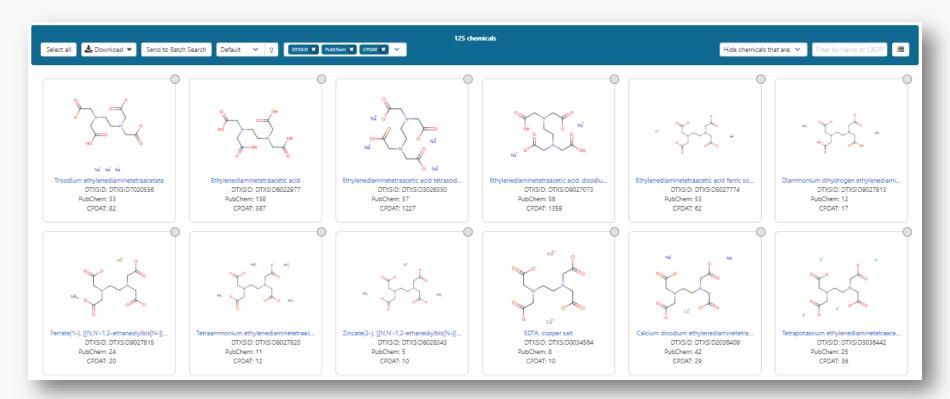
MS-Ready Structures for Formula Search





MS-Ready Mappings

EXACT Formula: C10H16N2O8: 3 Hits



MS-Ready Mappings

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

Candidate ranking using metadata

C American Society for Mass Spectrometry, 2011

J. Am. Soc. Mass Spectrom. (2012) 23:179–185DOI: 10.1007/s13361-011-0265-y

RESEARCH ARTICLE

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

Data Source Ranking of "known unknowns"

 A mass and/or formula search is for an *unknown* chemical but it is a *known* chemical contained within a reference database C14H22N2O3 266.16304



Chemical Reference Database

 Most likely candidate chemicals have the most associated data sources, most associated literature articles or both

Sorted candidate structures

Dashboard Metadata for Ranking

- Chosen dashboard metadata to rank candidates
 - Associated data sources
 - Lists in the underlying database (more about lists later)
 - Associated data sources in PubChem
 - Specific source types (e.g. water, surfactants, pesticides)
 - Number of associated literature articles (Pubmed)
 - Chemicals in the environment the number of products/categories containing the chemical is an important source of data (from CPDat database)

Comparing Search Performance

Anal Bioanal Chem (2017) 409:1729–1735 DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran 1 · Jon R. Sobus 2 · Antony J. Williams 3

- When dashboard contained 720k chemicals
- Only 3% of ChemSpider size
- What was the comparison in performance?

SAME dataset for comparison

Compound class	and class Number in class Average ra		Number of compounds in each position rank-ordered				
			#1	#2	#3	#4	#5+
Pharmaceutical drug	72	1.4	55	9	6	2	
Industrial chemicals	42	5.5	28	6	3		5
Personal care products	8	6.1	3	1			4
Ster sid homones Perfluorochemicals		SAME	7 5)A	TA	SE	T
Pesticides	12	2.3	6	2	3		1
Veterinary drugs	3	1.3	2	1			
Dyes	2	1.0	2				
Food product/natural compounds	4	3.8	2			1	1
Illicit drugs	2	2.0	1		1		
Misc. molecules	3 ^a	1.3	2	1			

How did performance compare?

Summary statistics and rank-ordered position in the CompTox Chemistry Dashboard and ChemSpider of the 89 compound subset from the Little et al. [7] study

		Average rank	Numb	Number in each position rank-ordered				
		(±SD)	#1	#2	#3	#4	#5+	
Mass-based	Dashboard	1.2 ± 0.7	77 ^a	5	3	3		
	ChemSpider	$2.2 \pm 6.1^{\text{b}}$	68	8	7	1	5	
Formula-based	Dashboard	1.1 ± 0.4	78ª	8	2			
	ChemSpider	1.3 ± 1.0	77	8	2	1	2	

^aOne chemical (tephrosin) not present in the Dashboard

For the same 162 chemicals, Dashboard outperforms ChemSpider for both Mass and Formula Ranking

Data Quality is important

Data quality in free web-based databases!

Review Keynote Towards a gold standard: **ELSEVIER** quality in public domain

Drug Discovery Today

Volume 16, Issues 17-18, September 2011, Pages 747-750

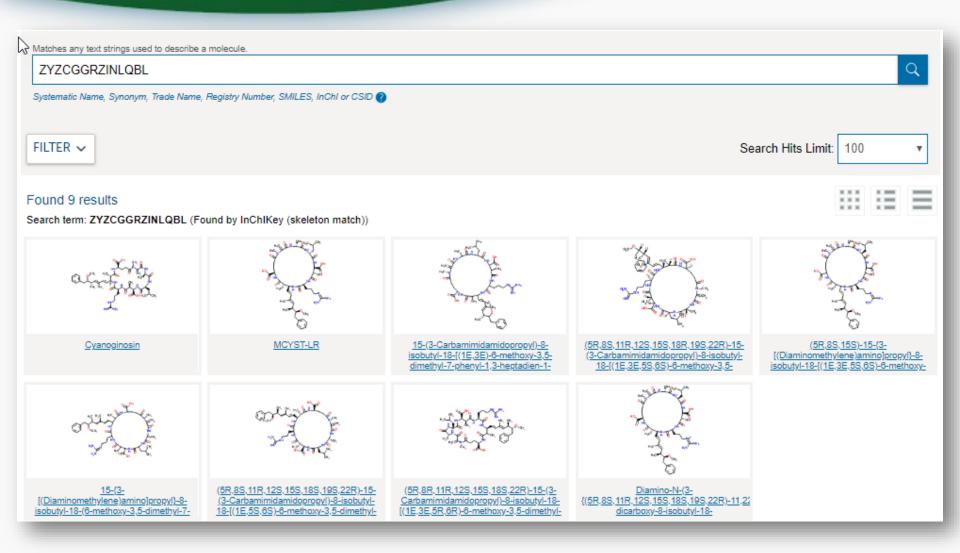
databases and approaches

⊞ Show

Machines first, humans second: on the importance Antony), of algorithmic interpretation of open chemistry data

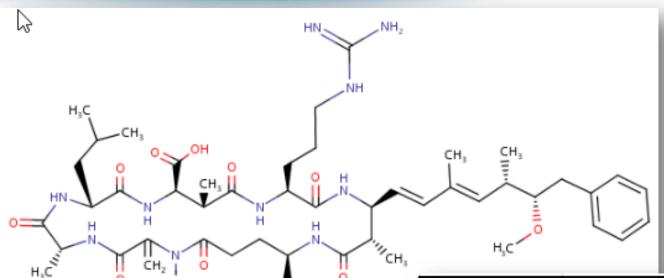
Alex M Clark M, Antony J Williams and Sean Ekins

Journal of Cheminformatics 2015 7:9


https://doi.org/10.1186/s13321-015-0057-7 © Clark et al.; licensee Springer. 2015

Received: 24 November 2014 | Accepted: 23 February 2015 | Published: 22 March 2015

and content

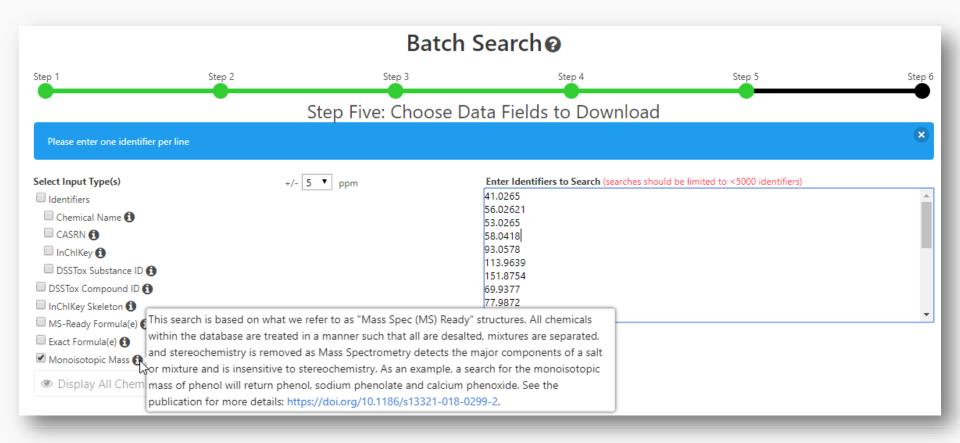

Will the correct Microcystin LR Stand Up? ChemSpider Skeleton Search

Comparing ChemSpider Structures

ChemSpiderID	Standard InChIKey Stereolayer			
WIKIPEDIA	t28-,29-,30-,31+,34-,35-,36+,37+,38-,40+			
CompTox	t28-,29-,30-,31+,34-,35-,36+,37+,38-,40+			
<u>4941647</u>	t28-,29-,30-,31+,34-,35-,36+,37+,38-,40+			
<u>393078</u>	t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+			
57618348	t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+			
<u>29342071</u>	t28-,29-,30-,31+, 34+ ,35-,36+, 37- ,38-,40+			
7987594	t28-,29?,30?,31+,34?,35-,36?,37-,38-,40?			
22900854	t28-, 29?,30+,31-,34+,35+,36-,37-, 38-, 40-			
<u>19692240</u>	NONE			
2831283	NONE			

Batch Searching mass and formula

Batch Searching


 Singleton searches are useful but we work with thousands of masses and formulae!

Typical questions

- What is the list of chemicals for the formula C_xH_yO_z
- What is the list of chemicals for a mass +/- error
- Can I get chemical lists in Excel files? In SDF files?
- Can I include properties in the download file?

Batch Searching Formula/Mass

Searching batches using MS-Ready Formula (or mass) searching

		<u> </u>	`	i i i a c	o) ocaroning	_	_	
-	4	A	В	С	D	E	F	G
		INPUT	DTXSID	CASRN		MOL FORMULA	MONOISOTOPIC MASS	
		C14H22N2O3	DTXSID2022628	29122-68-7		C14H22N2O3	266.163042576	46
	3	C14H22N2O3	DTXSID0021179	6673-35-4		C14H22N2O3		32
	4	C14H22N2O3	DTXSID4048854	841-73-6		C14H22N2O3		20
	5	C14H22N2O3	DTXSID1045407	13171-25-0		C14H24Cl2N2O3		19
	6	C14H22N2O3	DTXSID0045753	56715-13-0		C14H22N2O3		19
		C14H22N2O3	DTXSID2048531	5011-34-7		C14H22N2O3		14
	8	C14H22N2O3	DTXSID10239405			C14H22N2O3		12
		C14H22N2O3	DTXSID50200634		. , , , , , , , , , , , , , , , , , , ,	C14H22N2O3	266.163042576	7
		C14H22N2O3	DTXSID4020111	51706-40-2	,	C14H23CIN2O3		6
				51963-82-7		C14H22N2O3	266.163042576	5
				154-21-2		C18H34N2O6S		35
			DTXSID7047803	859-18-7		C18H35CIN2O6S		22
			DTXSID20849438		_	C18H35CIN2O6S		1
		C10H12N2O	DTXSID1047576	486-56-6		C10H12N2O		40
		C10H12N2O	DTXSID8075330	50-67-9		C10H12N2O		22
		C10H12N2O	DTXSID8044412	2654-57-1		C10H12N2O		18
		C10H12N2O	DTXSID80165186			C10H13CIN2O		11
		C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine			10
- 4		C10H12N2O	DTXSID10196105			C10H12N2O		9
		C10H12N2O	DTXSID90185693			C10H12N2O		7
		C10H12N2O	DTXSID40178777			C10H12N2O		7
		C10H12N2O	DTXSID80157026			C10H12N2O		6
		C10H12N2O	DTXSID30205607			C10H12N2O	176.094963014	6
		C14H18N4O3	DTXSID5023900	17804-35-2	•	C14H18N4O3		68
1		C14H18N4O3	DTXSID3023712	738-70-5		C14H18N4O3	290.137890456	51
1		C14H18N4O3	DTXSID40209671			C14H19CIN4O3	326.1145682	8
1		C14H18N4O3	DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,		290.137890456	5
1		C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
;		C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-			3
		C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)-		308.14845514	3
		C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
;	33	C14H18N4O3	DTXSID80241156	94232-28-7	L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny	C19H27N5O7		3
		C14H18N4O3	DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam	C14H18N4O3		3
:		C12H11N7	DTXSID6021373	396-01-0	Triamterene	C12H11N7		52
:	36	C12H11N7	DTXSID00204465	5587-93-9		C12H11N7	253.107593382	7
:	37	C12H11N7	DTXSID5064621	7300-26-7		C12H9N7		4
	38	C12H11N7	DTXSID00848025	90293-82-6	Sulfuric acid6-phenylpteridine-2,4,7-triamine (1/1)	C12H13N7O4S	351.074973101	1
	39	C12H11N7	DTXSID50575293	92310-83-3		C12H11N7	253.107593382	1
4	40	C8H9NO2	DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2	151.063328534	75
1	11	C8H0NU3	DTYSID6026667	13/1-20-3	Mothyl 2 aminohonzoato	C8H0NU3	151 063338534	E0.

Chemical Lists

Chemical Lists

Home	Advanced Search	Batch Search	Lists 🕶	Predictions	Downloads
			Lists of Ch	emicals Jhn	
			List of Assa	ays	

Columns ~

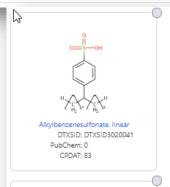
mass Copy Filtered Lists URL

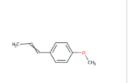
List Acronym 🕏	List Name \$	Last Updated ♦	Number of Chemicals ♥	List Description
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from Agriculture and Agri-Food Canada, Government of Canada

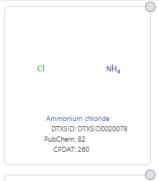
EPAHFR: Hydraulic Fracturing

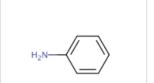
WATER|EPA; Chemicals associated with hydraulic fracturing

Q Search EPAHFR Chemicals

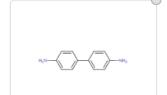

Identifier substring search

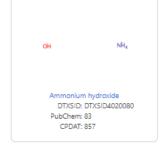

List Details

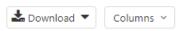

Description: Chemicals used in hydraulic fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracking Drinking Water Assessment Final Report (Dec 2016). Citation: U.S. EPA, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-16/236F, 2016. https://www.epa.gov/hfstudy


*Note that Appendix H chemical listings in Tables H-2 and H-4 were mapped to current DSSTox content, which has undergone additional curation since the publication of the original EPA HF Report (Dec 2016). In the few cases where a Chemical Name and CASRN from the original report map to distinct substances (as of Jan 2018), both were included in the current EPAHFR chemical listing for completeness; additionally, 34 previously unmapped chemicals in Table H-5 are now registered in DSSTox (all but 2 assigned CASRN) and, thus, have been added to the current EPAHFR listing.

Number of Chemicals: 1640





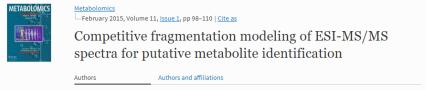




PFAS lists of Chemicals

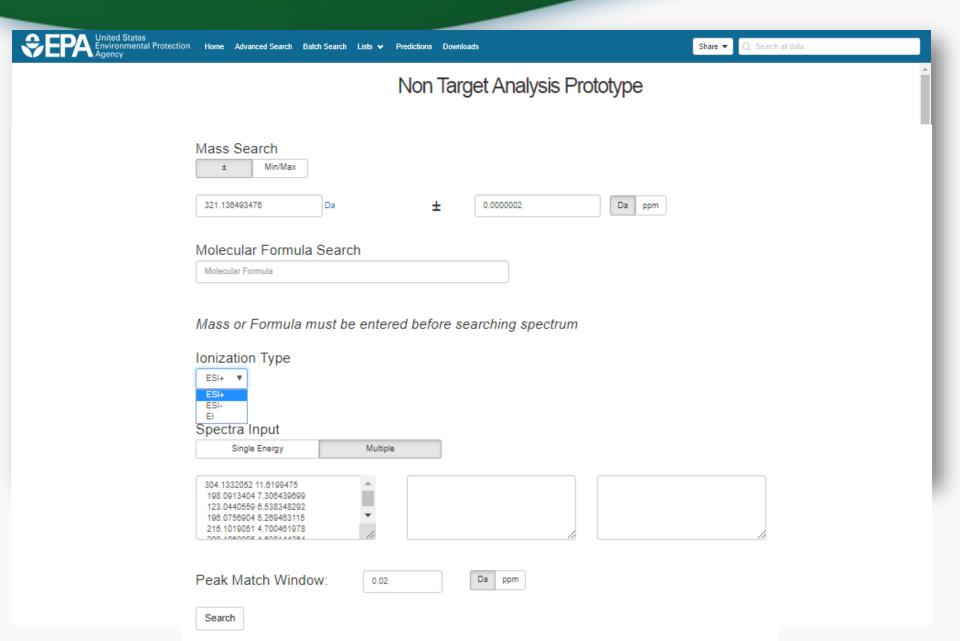
Select List

List Acronym	List Name \$	Last Updated 🕏	Number of Chemicals [‡]	List Description
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFASCAT	PFAS EPA Structure- based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.
EPAPFASRL	PFAS EPA: Cross-Agency Research List	2017-11-16	199	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly-fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.
PFASKEMI	PFAS: List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2416	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.
PFASOECD	PFAS: Listed in OECD Global Database	2018-05-16	4729	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs) listing more than 4700 new PFAS
PFASTRIER	PFAS Community- Compiled List (Trier et al., 2015)	2017-07-16	597	PFASTRIER community-compiled public listing of PFAS (Trier et al, 2015)

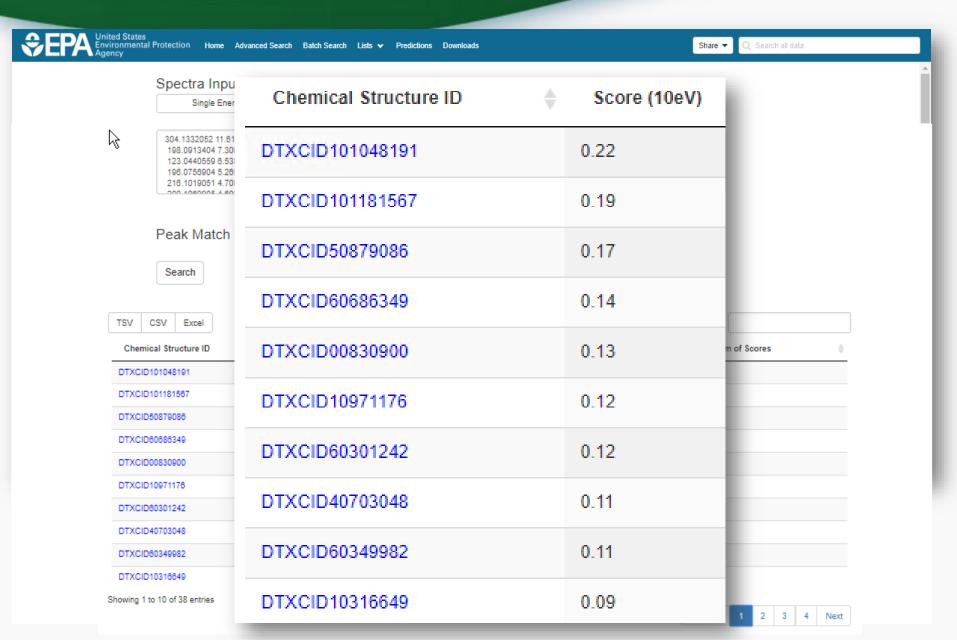

Research in Progress

Predicted Mass Spectra

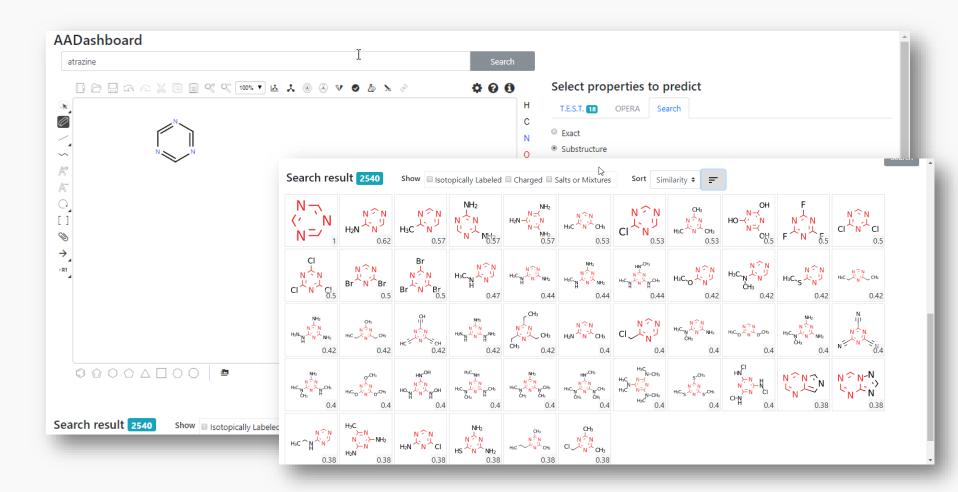
http://cfmid.wishartlab.com/


Felicity Allen , Russ Greiner, David Wishart

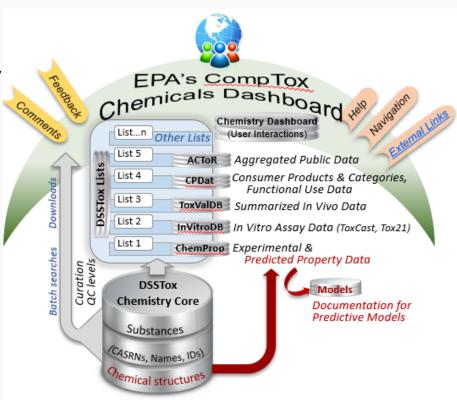
- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard


Search Expt. vs. Predicted Spectra

Search Expt. vs. Predicted Spectra


Spectral Viewer Comparison

Prototype Development



Conclusion

- Dashboard access to data for ~875,000 chemicals
- MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Dashboard and contents are one part of the solution
- New developments in progress, especially API development, will be very enabling...

Acknowledgements

- IT Development team especially Jeff Edwards and Jeremy Dunne
- Chris Grulke for the ChemReg system
- Andrew McEachran (now at Agilent)
- The curation team focused on data quality

Antony Williams

US EPA Office of Research and Development

Center for Computational Toxicology and Exposure

EMAIL: Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821