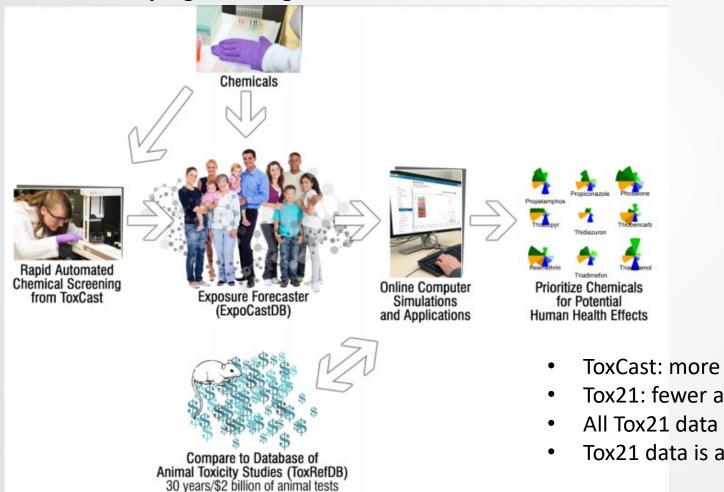


An Update on Public Tools for Prediction of Endocrine Hazard and Risk

Katie Paul Friedman

November 4, 2019

Presentation to SETAC North America 40th Annual Meeting


Paul-friedman.katie@epa.gov

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

EPA's ToxCast program at a glance

SEPA

Tox21 robot

- ToxCast: more assays, fewer chemicals, EPA-driven
- Tox21: fewer assays, all 1536, driven by consortium
- All Tox21 data are analyzed by multiple partners
- Tox21 data is available analyzed in the ToxCast Data Pipeline

Endocrine hazard and risk evaluation using public tools: approach outline

- Publicly available data from ToxCast is actively being applied to endocrine hazard labeling in the EU.
- Risk-based approaches that incorporate bioactivity and exposure make the best use of new approach methodologies.

This presentation will demonstrate where to find these information and suggest an approach for utilizing them in endocrine hazard and risk evaluation.

CompTox Chemicals Dashboard

Separation Home Advanced Search Batch Search Lists - Predictions Downloads Agency

Sepa

Chemicals Product/Use Categories Assay/Gene

Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChIKey

Identifier substring search

See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here

875 Thousand Chemicals

Share 🦷

Latest News

Read more news

August 9th 2019 - New release (3.0.9) in time for ACS Fall Meeting

August 14th, 2019 at 4:39:37 PM

A new version of the Dashboard has been released in time for the ACS Fall meeting. Included in this release are updates to data in the ToxVal database, an update to the in vitro database (version 3.2), and the release also addresses a number of minor bugs and includes a short list of additional functionality as described in the Release Notes here.

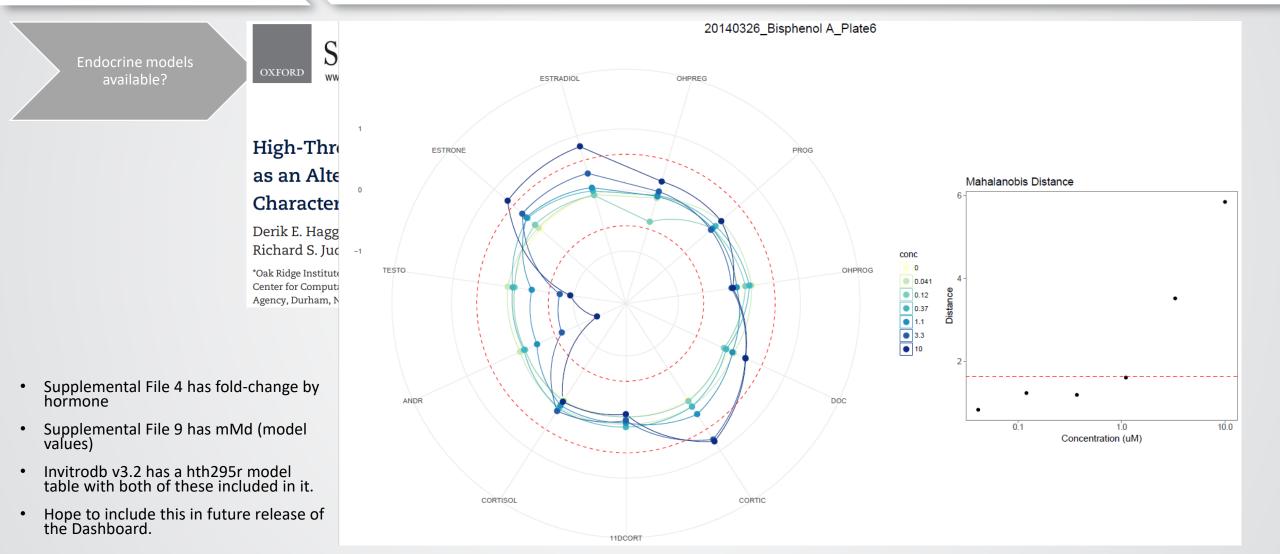
https://comptox.epa.gov/dashboard

•

SEPA

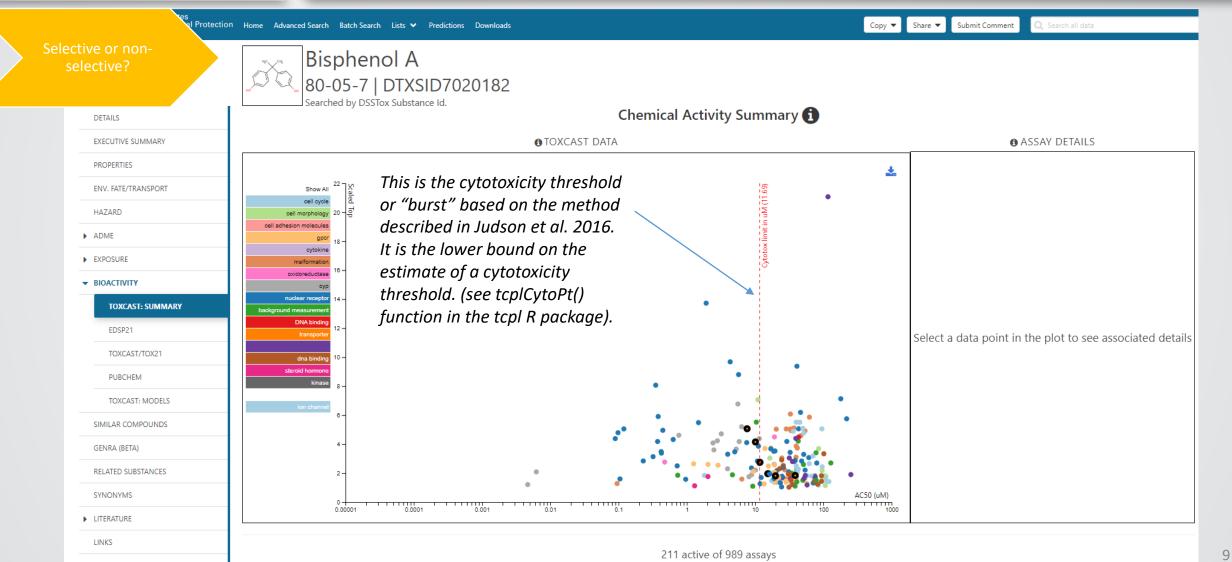
Examine physicochemical properties such as logP, vapor pressure, and MW to get a better sense of whether the chemical was suitable for the current *in vitro* assay suite

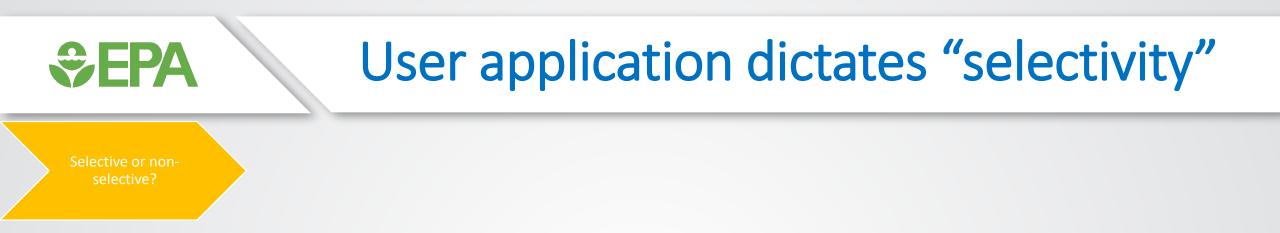
	United States Environmental Protect	tion Home Advanced Search Ba	ch Search Lists 🗸 Predictions	Downloads			Copy 🔻 Share 🔻 Sub	mit Comment Q Search all da	ta	
Analytical chemistry: was the chemical present and in the DOA for current ToxCast?	DETAILS	80-05	nenol A 5-7 DTXSID702 by DSSTox Substance Id.	20182						
	EXECUTIVE SUMMARY PROPERTIES				Summ	nary				
ToxCast negatives:	ENV. FATE/TRANSPORT	Search query								
-	HAZARD	Property	Experimental average	Predicted average	Experimental median	Predicted median	Experimental range	Predicted range	≎ Unit ¢	
what does a negative	ADME	LogP: Octanol-Water	3.32 (1)	3.29		3.43	3.32	2.40 to 3.64	-	
mean? Outside of domain of applicability?	► EXPOSURE	Melting Point	155 (7)	139	156	138	153 to 156	125 to 157	°C	
	 BIOACTIVITY 	Boiling Point	200 (1)	363		360	200	343 to 401	°C	
		Water Solubility	5.26e-4 (1)	9.62e-4		1.00e-3	5.26e-4	5.35e-4 to 1.31e-3	mol/L	
	TOXCAST: SUMMARY	Vapor Pressure	-	8.37e-7		3.43e-7	-	6.83e-8 to 2.59e-6	mmHg	
	EDSP21	Flash Point	-	190		190	-	188 to 192	°C	
	TOXCAST/TOX21	Surface Tension	-	46.0			-	46.0	dyn/cm	
	PUBCHEM	Index of Refraction	-	1.60			-	1.60	-	
	TOXCAST: MODELS	Molar Refractivity	•	68.2			-	68.2	cm^3	
		Polarizability	•	27.0			-	27.0	Å^3	
Consider some	SIMILAR COMPOUNDS	Density	•	1.17		1.17	-	1.14 to 1.20	g/cm^3	
aspects of the	GENRA (BETA)	Molar Volume	-	200			-	200	cm^3	
Lipinski's rules:	RELATED SUBSTANCES	Thermal Conductivity	-	9.66			-	9.66	mW/(m*K)	
logP -0.4 to 5.6 range;	SYNONYMS	Viscosity Henry's Law	-	9.00 1.26e-7				9.66 1.26e-7	atm-m3/mole	
MW 180-480;	► LITERATURE	LogKoa: Octanol-Air	-	8.38			-	8.38	-	
log10 Vapor Pressure	LINKS				16 reco	rds				


\$EPA

Examine QC data (if available) to see if we expect that the chemical was present for screening

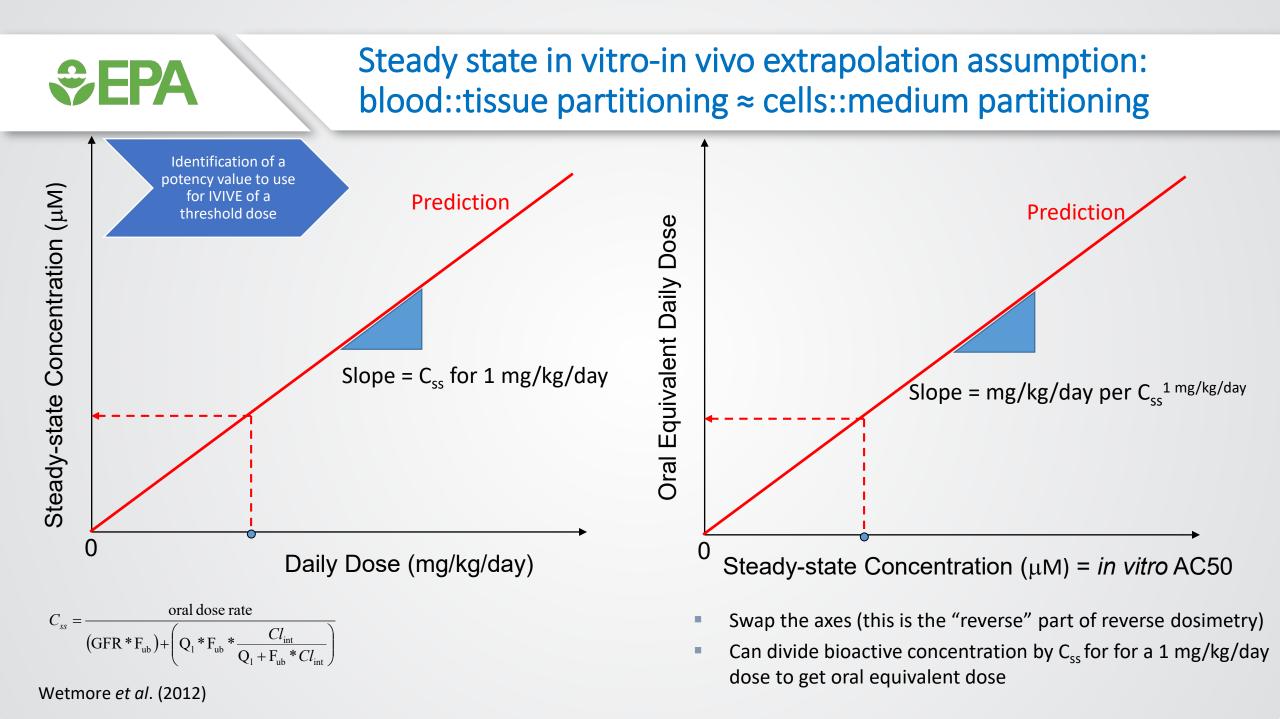
SEPA United States Environmental Prote Agency	action Home Advanced Search Batch Search Lists 🛩 Predictions Downloa	ads	Сору	Share Submit Comment	Q Search all data
	Bisphenol A 80-05-7 DTXSID702018 Searched by DSSTox Substance Id.	2			
DETAILS			ToxCast/Tox21		
EXECUTIVE SUMMARY		Crada	Description		
PROPERTIES	QC Data ID	Grade	Description		
ENV. FATE/TRANSPORT	Tox21_202992	Pass	Purity>90% and MW confirmed		
HAZARD	Tox21_400088	Pass	Purity>90% and MW confirmed		
	Selection 0 Selected	A Single Assay Can Have Multiple Char	ts 🛛 🔽 Representative Samples Only	🛓 Bioactivity Summary 🔻	Number of Charts: 0
ADME EXPOSURE	Filter assays	Sel	ect one or more assays from the lis	-	
- BIOACTIVITY	Odyssey Thera (0 (Too)		consisted bisostivity		Structure Search Search
TOXCAST: SUMMARY	Attagene (0 of 165 CellzDirect (0 of 48				
TOXCAST/TOX21	Bioseek (0 of 174 s Apredica (0 of 108 Bisphenol A				
Analytical che	emistry:	QC Gra	de	Identifiers	
was the che		то	A MW Confirmed, Purity > 90%	Tox21	Tox21_202992
present and		Т4	A MW Confirmed, Purity > 90%	NCATS	NCGC00260537-01
DOA for cu				CAS	80-05-7
ToxCast	но			PubChem	144210190


\$EPA	Models >	>> single as	says. And	d equivoca	als happen.
Endocrine model	Advanced Search Batch Search Lists ✔ Predictions Downloads			Copy 💌 Share 💌 Submit Com	nment Q Search all data
available?	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.				
DETAILS EXECUTIVE SUMMARY			: Models del Predictions		
PROPERTIES	📩 Download ToxCast Model Predictions 🔻		>0 1 = nos	sitive; 0.001-0.1 =	= equivocal
ENV. FATE/TRANSPORT	Model	Receptor	Agonist	Antagonist	Binding
HAZARD	1 ToxCast Pathway Model (AUC)	Androgen	0.00	0.345	-
► ADME	ToxCast Pathway Model (AUC)	Estrogen	0.450	0.00	-
► EXPOSURE	COMPARA (Consensus)	Androgen	Inactive	Active	Active
- BIOACTIVITY	CERAPP Potency Level (From Literature)	Estrogen	Active (Weak)	-	Active (Weak)
TOXCAST: SUMMARY	CERAPP Potency Level (Consensus)	Estrogen	Active (Weak)	Active (Strong)	Active (Weak)
EDSP21					
TOXCAST/TOX21	CERAPP = consensus ER QSAR (from 17 groups)			
	·	• • • •			
PUBCHEM	COMPARA = consensus AR QSA	ĸ			
TOXCAST: MODELS	ToxCast Pathway Model AUC EF	R = full ER model (18	assays)		
SIMILAR COMPOUNDS	ToxCast Pathway Model AUC AI	R = full AR model (11	assavs)		
GENRA (BETA)			2 4334 y 37		


HT-H295R model for steroidogenesis

SEPA

Bioactivity summary in the Dashboard


- AC50 < burst?
- AC50 0.5log₁₀ distance from burst?
- AC50 < parallel viability assays?
- How else to filter ToxCast data: 3+ caution flags & hit-percent
- Other related ideas:
 - What other assays appear active in a similar concentration range?
 - Is there consistent support for MOA(s), or is it nonspecific activity?

A note on ToxCast versioning

• Data change: curve-fitting, addition of new data

SFPA

- Models change: improvements, more data, etc.
- The CompTox Chemicals Dashboard release from August 9, 2019 is now using ToxCast invitrodb version 3.2: <u>https://doi.org/10.23645/epacomptox.6062623.v4</u>
- All ToxCast data and endocrine models (CERAPP, COMPARA, ER, AR, steroidogenesis) can currently be accessed from within invitrodb.
- Data downloads for NCCT: <u>https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data</u>

<pre> Final Content of Content of</pre>								
Identification of a potency value to use		 Operationally, the httk R package (v 1.10.0) can be downloaded from CRAN or GitHub for reproducible generation of administered equivalent doses (AEDs) 						
for IVIVE of a threshold dose		-		he Dashboard wit ion in the httk pac	th Css and other values needed kage.			
	• AC50 or LE	C (micromolar) *	(1 mg/kg/day/C	ss (micromolar)) =	= AED prediction			
		age optionally imp data available	ements multiple	e models that can	have increasing complexity			
Separate United States Environmental Protection Home Advanced Agency	d Search Batch Search Lists ♥ Predictions Downloads			Copy 🔻 Share 👻 Su	ubmit Comment 🔍 Search all data			
	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.	IVIVE	E		Search query			
ENV. FATE/TRANSPORT	\$	Measured \$	Predicted \$	Computed 🗘	Unit	\$		
In Vitro Intrinsi	sic Hepatic Clearance	19.29	-	-	uL/min/million hepatocytes			
	ound in Human Plasma	0.07	-	-				
ADME Olume of Dist	,tribution	-	-	6.69	L/kg			
				8	Days			
IVIVE O Days to Steady	y State	-	-					
EXPOSURE	·		-	29.83	hours			
EXPOSURE	ly State ly-State Plasma Concentration	- -	- -	29.83 1.98				

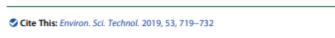
Bioactivity:exposure ratio requires exposure

Comparison to exposure predictions for a bioactivity:exposure ratio

• Currently the Dashboard shows SEEM2 (2014) values

	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.				
DETAILS	Searched by D3310X Substance Id. Exposure Predictions (mg/kg-bw/day)				
EXECUTIVE SUMMARY	🛓 Download 🔻				
PROPERTIES					
ENV. FATE/TRANSPORT	Demographic	\$	Median	95th Percentile	
	Ages 6-11		6.30e-5	5.82e-3	
HAZARD	Ages 12-19		2.68e-5	2.00e-3	
ADME	Ages 20-65		2.05e-5	1.61e-3	
EXPOSURE	Ages 65+		1.61e-5	2.18e-3	
PRODUCT & USE CATEGORIES	BMI > 30		1.69e-5	1.45e-3	
	BMI < 30		2.67e-5	2.26e-3	
CHEMICAL WEIGHT FRACTION	Repro. Age Females		1.11e-5	1.57e-3	
CHEMICAL FUNCTIONAL USE	Females		1.11e-5	9.09e-4	
TOXICS RELEASE INVENTORY	Males		3.89e-5	3.34e-3	
			2.11e-5	2.00e-3	

PRODUCTION VOLUME


Set EPA

Comparison to exposure predictions for a bioactivity:exposure ratio

Consensus modeling of chemical exposure based on pathways: ExpoCast SEEM3

- "ExpoCast SEEM3" model:
 - uses twelve different exposure predictors including both nearand far-field models;
 - covers four distinct exposure pathways: non-pesticidal dietary, consumer products, far-field pesticide, and far-field industrial.
 - In SEEM3 each exposure predictor is scaled and centered such that chemicals without a value for a predictor relevant to its exposure pathways are assigned the average value.

Article

pubs.acs.org/est

Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways

Caroline L. Ring,^{†,§,∞} Jon A. Arnot,^{∥,⊥,#} Deborah H. Bennett,[∇][®] Peter P. Egeghy,[‡] Peter Fantke,[○] Lei Huang,[◆][®] Kristin K. Isaacs,[‡][®] Olivier Jolliet,[◆][®] Katherine A. Phillips,[‡][®] Paul S. Price,[‡][®] Hyeong-Moo Shin,[¶][®] John N. Westgate,^{∥,°} R. Woodrow Setzer,[†] and John F. Wambaugh*^{*,†}[®] **EPA**

Screening level assessment example: combine NAMs for exposure, in vitro bioactivity, and toxicokinetics

- Conducted by Accelerating the Pace • of Chemical Risk Assessment (APCRA)
 - "international cooperative collaboration of government agencies convened to address barriers and opportunities for the use of new approach methodologies (NAMs) in chemical risk assessment" (Paul Friedman et al., accepted)

Agency for

and Research

Science, Technology

(APCRA partners for these two case studies)

CEPA Acknowledgments

- Thank you for listening.
- Thank you: Tony Williams, John Wambaugh, and Richard Judson.
- Please reach out to us if you need support or explanations for a specific case, or if you find issues.
- Paul-friedman.katie@epa.gov

EPA's Center for Computational Toxicology and Exposure