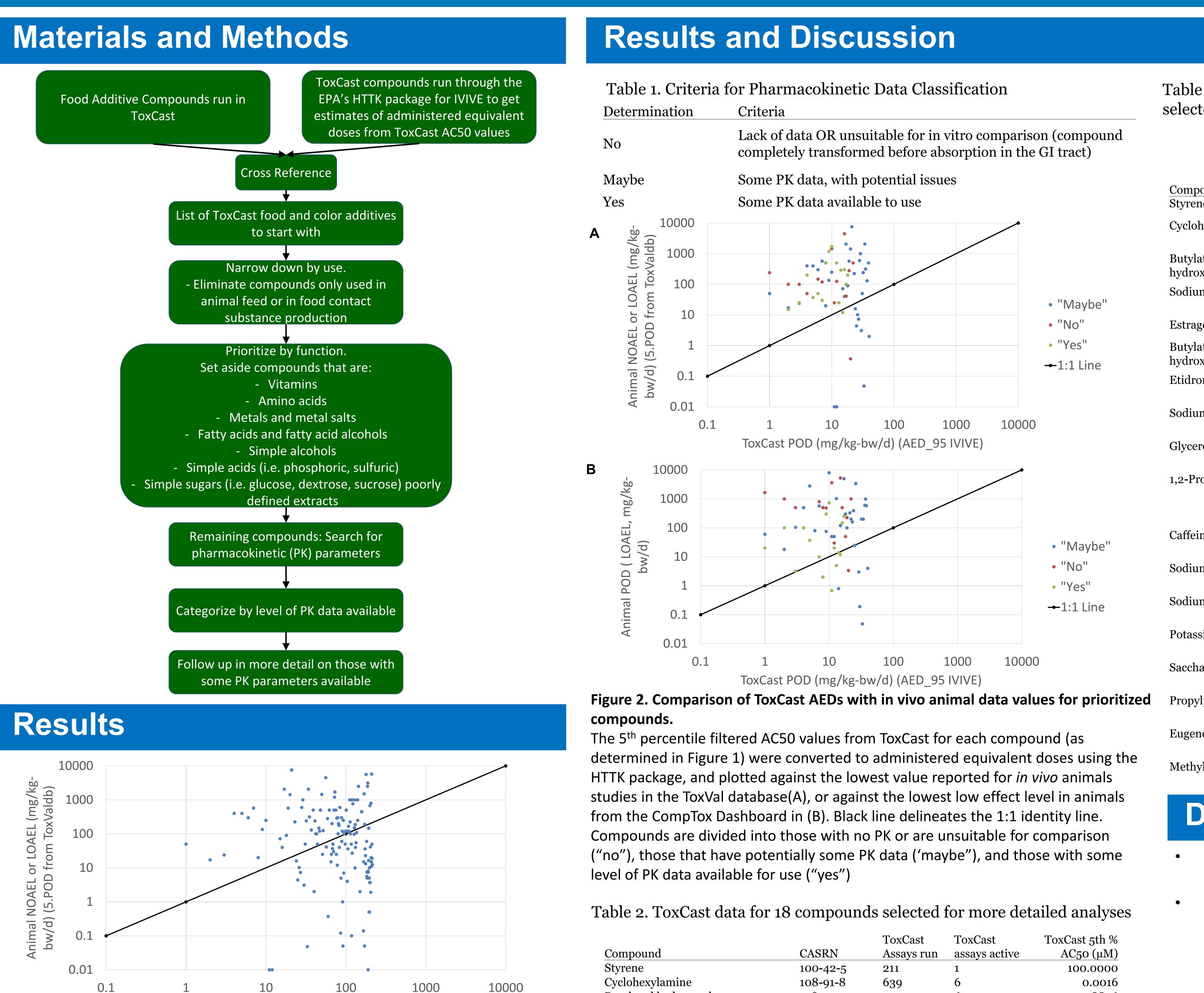
Evaluation of the utility of ToxCast HTS and high-throughput toxicokinetic data for food chemical safety risk assessment via comparison with *in vivo* animal data.

Alexandra E. Turley¹, Janet Zang¹, Katie Paul Friedman², Richard S. Judson², Suzanne C. Fitzpatrick¹ ¹Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration ²National Center for Computational Toxicology, U.S. **Environmental Protection Agency**

Abstract

New approach methodologies (NAMs) are currently being developed and evaluated for use in chemical safety risk assessment, including chemicals used in food. NAMs include in vitro high-throughput screening (HTS) assays, such as the ToxCast and Tox21 assays. The ToxCast/Tox21 assays have been run for thousands of compounds, including hundreds of compounds used in food. However, the relationship of these NAM data with traditional in vivo animal data, and the utility of NAMs for risk assessment, remain under evaluation. The goal of the present study is to evaluate the utility of ToxCast/Tox21 HTS data in food safety risk assessment. To do this, bioactive concentrations of a subset of food-use compounds in ToxCast were converted to oral equivalent doses (OEDs) via in-vitro to in-vivo extrapolation (IVIVE) using either in vitro or in silico-based toxicokinetic parameters for a subset of food-use compounds. These OEDs were then compared to doses demonstrated to cause effects in in vivo animal tests (using data compiled by EPA and FDA). Initial comparisons demonstrated great variability in the correlation between ToxCast and in vivo data, so steps are being taken to further refine the toxicokinetic information, chemical groups, and in vivo endpoints in an effort to identify additional information and conditions necessary to utilize HTS data for preliminary food safety assessment. This work does not reflect the official policy of the US EPA or the US FDA.

Introduction


- The development and implementation of NAMs in food and chemical risk assessment is an ongoing goal in toxicology.
- High-throughput screening data have been generated for a large number of compounds through the ToxCast/Tox21 project, including several food-use chemicals.
- Use of these HTS data in food chemical safety risk assessment remains under evaluation.
- Ongoing work is being done to relate concentrations in HTS assays to doses given orally in animal studies by *in vitro* to *in vivo* extrapolation (IVIVE).
- Work done by Friedman *et. al.* (2019) determined administered equivalent doses (AEDs) for 448 ToxCast compounds using the high-throughput toxicokinetics (HTTK) package for the IVIVE, and did a screening level comparison to *in vivo* animal data¹.
- The present study builds on these data, with the goal of evaluating the utility of ToxCast/Tox21 HTS data in food safety risk assessment.

Acknowledgements

The authors would like to thank Patra Volarath for her helpful discussion on this project

References

1. Friedman, K.P. Et. Al. Toxicol Sci. 2019 Sep 18

ToxCast POD (mg/kg-bw/d) (AED_95 IVIVE)

Figure 1. Comparison of ToxCast AEDs with in vivo animal data values for all initially identified compounds.

The active ToxCast assays for each compound were filtered based on curve-fitting caution flag and uncertainty information, and the AC50 values remaining were classified into percentiles for each compound. The 5th percentile AC50 value for each compound was converted to an administered equivalent dose (AED) using the HTTK package, and plotted against the lowest dose reported in *in vivo* animals studies in the ToxVal database. The black line delineates the 1:1 identity line.

	ToxCast	ToxCast	ToxCast 5th %
Compound CASE	RN Assays ru	in assays activ	$AC_{50} (\mu M)$
Styrene 100-4	42-5 211	1	100.0000
Cyclohexylamine 108-9	91-8 639	6	0.0016
Butylated hydroxytoluene 128-3	37-0 401	61	7.8826
Sodium saccharin 128-4	14-9 211	1	69.8740
Estragole 140-6	67-0 427	5	21.2958
Butylated hydroxyanisole 2501	3-16-5 211	22	17.0508
Etidronic acid 2809	-21-4 211	5	65.9696
Sodium benzoate 532-:	32-1 670	1	100.0000
Glycerol 56-8	1-5 669	17	0.0028
1,2-Propylene glycol 57-55	5-6 640	12	0.0334
Caffeine 58-04	8-2 676	53	1.4245
Sodium nitrate 7631-	-99-4 210	0	100.0000
Sodium nitrite 7632	-00-0 638	4	2.5073
Potassium nitrate 7757-	-79-1 427	7	6.5230
Saccharin 81-07	7-2 428	4	1.22E-05
Propylparaben 94-13	3-3 719	99	7.4093
Eugenol 97-53	3-0 696	28	0.1320
Methylparaben 99-70	6 -3 690	23	0.1215

Table 3. Initial values and pharmacokinetic data available for the 18 compounds selected for further analyses

pound	CASRN	Use	Initial ToxCast AED (mg/kg- bw/d)	Initial in vivo anima effect level (mg/kg- bw/d)	
ene	100-42-5	Polymer production	4.2277	7	oPBPK model
ohexylamine	108-91-8	Boiler water additive	0.0001	L	15Reported PK parameters in the literature
lated oxytoluene	128-37-0	Preservative	0.0118	3 2	25Reported PK parameters in the literature
um saccharin	128-44-9	Sweetner	2.4606	20	ooReported PK parameters in the literature
agole	140-67-0	Flavor	1.9242	2	37PBPK model, some human data
lated oxyanisole	25013-16-5	Preservative	1.1452	2	50 Reported PK parameters in the literature
ronic acid	2809-21-4	Boiler water additive, sanitizer	3.2042		30Some reported PK parameters in the literature
um benzoate	532-32-1	Preservative	1.3959	50	ooSome reported human PK parameters
erol	56-81-5	Multiple	8.47E-05	5 120	oo Reported PK parameters in the literature
Propylene glycol	57-55-6	Multiple (incl. antioxidant, flavor, stabilizer, solvent, humectant)	6.64E-04	. 170	oo Reported PK parameters in the literature
eine	58-08-2	Additive	0.1856)	o Reported PK parameters in the literature
um nitrate	7631-99-4	Preservative	0.2244	50	ooPBPK model (based on nitrate ion)
um nitrite	7632-00-0	Preservative	0.0220) 2	25PBPK model (based on nitrite ion)
ssium nitrate	7757-79-1	Preservative	0.0164	29	90 PBPK model (based on nitrate ion)
harin	81-07-2	Sweetner	3.96E-07	20	ooReported PK parameters in the literature
ylparaben	94-13-3	Preservative, antimicrobial, flavor	0.8345	5	12 Reported PK parameters in the literature
enol	97-53-0	Flavor	0.1140	30	ooReported PK parameters in the literature
nylparaben	99-76-3	Antimicrobial, flavor	0.0437	7 10	ooReported PK parameters in the literature

Discussion

On a first pass through the compounds, the ToxCast AED is often lower than the *in vivo* point of departure from animal studies, but not for all compounds.

Many compounds run in the ToxCast assays are difficult to directly compare to in vivo animal data, for a variety of reasons, including things such metabolism or reactivity of the parent compound, compound volatility, and type of compound such that the compound is a vitamin, amino acid, or other component of normal metabolism in the body, among others.

Results from these 18 prioritized chemicals can be used to help interpret the results of other chemicals in ToxCast.

Future Directions

Use PK parameters identified in the literature to refine the IVIVE AEDs (and compare)

Curate *in vivo* animal data to compare to studies used to make regulatory decisions.

This work does not reflect the official policy of the US EPA or the US FDA.