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• EPA is evaluating new approach methodologies 
(NAMs) that can be used to quickly evaluate the 
human toxicity potential of chemicals with less 
reliance on animal testing. 

• Sept 10 directive by Administrator Wheeler 
calls for reducing mammalian study requests 
30% by 2025 and eliminating them by 2035.

https://www.epa.gov/research/administrator-memo-prioritizing-
efforts-reduce-animal-testing-september-10-2019
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Shifting toxicology to NAM-based approaches

3https://www.epa.gov/chemical-research/comptox-chemicals-dashboard 3

1,000,000’s concentration responses!

Translation is key: how well do these 
in vitro profiles predict adverse 

developmental outcomes? 
(predictive DART)



Problem statement: predictive DART

• Objective: increase the diversity and relevance of assays in ToxCast that can be used to 
profile chemicals for potential adverse effects on human embryonic development.

• Chemical exposure to a pregnant woman has the potential to affect her unborn child, 
leading to adverse birth outcomes and/or risks to early child development. 

• Traditional animal-based methods for assessing prenatal developmental toxicity (OECD TG 
414) expose pregnant rats and/or rabbits during organogenesis and necropsy at term. 

• Under reauthorized TSCA (2016) EPA must accelerate development of scientifically valid 
test methods to prioritize large numbers of chemicals with less reliance on animal testing.

October is National Children’s Health Month
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Pluripotent H9 human embryonic stem cell 
metabolomics assay that “… identified the potential 

developmental toxicants in the test set with 77% 
accuracy (57% sensitivity, 100% specificity).” 

Palmer et al. 2013

devTOXqP assay: Stemina Biomarker Discovery, EPA contract EP-D-13-055
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• pluripotent human embryonic stem cells (H9 line) exposed for 3-days 
• concentration response on 334 chemicals; single concentration screen on 731 inactives
• (additional testing underway on 307 chemicals)
• data processed through the ToxCast pipeline (tcpl, level 6)
• readout is concentration that induces a critical drop in the biomarker (ORN/CYSS < 0.76)

SOURCE: Zurlinden et al. (submitted)
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ToxCast_STM workflow: ToxCast chemical library (1065 chemicals in Phase I/II)



ToxCast_STM results

SOURCE: Zurlinden et al. (manuscript in preparation)

Plate-level controls and tcpl samples 

*

*

3*BMAD

n=1158 n=581 n=580 n=2069

Positivity on 181 of 1065 (17%) ToxCast chemicals (Phase I, II)

Targeted biomarker (o/c) gives the teratogenic potential
11% loss of cell number (cv) gives general cell consequence
Median AC50 of the ToxCast cytotoxicity burst
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Carbendazim
TI = 6.12 µM, CV = no effect

dLEL rat = 20 mg/kg/day (< mLEL)
dLEL rabbit (no ToxRefDB entry)

Benomyl
TI = 3.53 µM, CV = 3.63 µM  

dLEL rat = 62.5 mg/kg/day (< mLEL)
dLEL rabbit = 180 mg/kg/day (mLEL)

Metabolic pair: Benomyl and its conversion product (Carbendazim)

Targeted biomarker (TI) Viable cell number (CV)
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Fluazifop-P-butyl
TI = 26 µM, CV = 40.8 µM

dLEL rat = 5 mg/kg/day (< mLEL)
dLEL rabbit = 50 mg/kg/day (mLEL)

Fluazifop butyl
TI = not active, CV = no effect
dLEL rat = 10 mg/kg/day (< mLEL)

dLEL rabbit = 90 mg/kg/day (mLEL)

Stereoisomers: R-enantiomer (Fluazifop-P-butyl) is the active herbicide 

Targeted biomarker (TI) Viable cell number (CV)
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DevTox Performance Check

• ToxCast has 42 benchmark compounds often 
used to validate alternative DevTox platforms1.

• Accuracy = 78.6% (0.65 sens, 1.00 spec) 
consistent with pharma-trained model.

1 Genschow et al. 2002; West et al. 2010; Daston et al. 2014; 
Augustine-Rauch et al. 2016; Wise et al. 2016

How does the STM prediction do with 
ToxRefDB (v1) prenatal developmental 

toxicity studies?

SOURCE: NCCT, manuscript in preparation 10



Binary classification model: fetal endpoints (dLEL) from ToxRefDB

• Key point: BAC 78% (0.63 sensitivity, 0.91 specificity, n=127) where evidence 
for DevTox is strong, but drops as evidence weakens due to ↓sensitivity.

11

  Stringency Filter Applied to DevTox Anchor   

Condition2 Base3,4  Low3,5 Medium3,6 High3,7 BM-423 

TP 85 60 35 19 17 
FP 14 37 23 9 0 
FN 217 127 51 11 9 
TN 116 208 176 88 16 

n 432 432 285 127 42 
sensitivity 0.281 0.321 0.407 0.633 0.654 
specificity 0.892 0.849 0.884 0.907 1.000 
Rand ACC 46.5% 62.0% 74.0% 84.3% 78.6% 

PPV 0.859 0.619 0.603 0.679 1.000 
NPV 0.348 0.621 0.775 0.889 0.640 
BAC 60.3% 62.0% 68.9% 78.4% 82.0% 

MCC 0.190 0.202 0.332 0.554 0.647 

 1 

SOURCE: Zurlinden et al. (submitted)



• Functional annotations inferred from mining STM 
response against biochemical (NVS) features.

• What we can and cannot say about the applicability 
domain with regards to biochemical targets:

- sensitive: regulation of PI3K signaling, FoxO signaling 
pathway, and focal adhesion pathway.

- insensitive domain: GPCR signaling through G(q) and 
steroid hormone mediated signaling pathways.

Keystone Pathways

Can machine learning to mine the ToxCast 
portfolio pick up some of the biology that 

may be missed by the hESC biomarker?

Key Point: potent MIEs may define what 
the STM response can and cannot predict.

12



• ML with 5-fold cross-validation on train/test split;
• ~200 ToxCast features correlated with DevTox;
• STM was the top-weighted feature; 
• 3 other features tied for next-most informative.

• sets up a hierarchical rules-based decision workflow:
Rule 1: STM(+) & CREB3(-) predicts TP (86.4%)
Rule 2: CREB3/NRF2/PXR (+) overrides STM(+) as TN
Rule 3: STM(-) & PXR(+) OR NRF2(+) predicts TN (91.3%)
Rule 4: STM(-) & CREB3/NRF2/PXR(-) condition predicts TN (83.3%)

SOURCE: Todd Zurlinden (work in progress) 13



Refined binary classification model: ToxCast augmentation (+)

• Key point: Augmenting the hESC response with ToxCast data for 3 adaptive 
pathways (UPR, ARE, XME) improved positive predictive value to BAC up to 88%.

14SOURCE: Todd Zurlinden (work in progress)



hESC (predicted) vs rat WEC (observed)

5HPP-33: synthetic thalidomide analog

• T.I. predicted   9.5 µM
• AC50 observed 21.2 µM (embryo viability)

TNP-470: synthetic fumagillin analog

• T.I. predicted  0.01 µM
• AC50 observed  0.04 µM (dysmorphogenesis)

SOURCE: Ellis-Hutchings et al. (2017) Reprod Toxicol; Siali et al. (2019) Curr Opin Toxicol

RNAseq: exposure-based potential for DevTox at 4h 
correlated with changes in common for pathways regulating 
splicesome-RNA metabolism and proteasome-ubiqutination.

Slide 15
15
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BIOCHEMICAL

• NVS (380)

REPORTER

• ATG (161)

• Tox21 (252)

CELLULAR

• ACEA (5)

• APR (103)

• hESC (2)

CELL-CELL

• BSK (96)

• mESC (2)

EMBRYOLOGY

• OCM

• ABM

Recursive partitioning (v2): mining in vitro bioactivity profiles of 1000 
features in ToxCast/Tox21 HTS assays to assess the value of the STM 
dataset for predicting human developmental toxicity (in progress). 

Bring in the embryology to better 
understand mechanisms and 

translate NAMs



Anatomical homeostasis in a self-regulating ‘Virtual Embryo’

SOURCE: Andersen, Newman and Otter 
(2006) Am. Assoc. Artif. Intel.

• EA for self-regulation (fitness measure) -
simulation executes randomly paired agents 
(parent cells) that generate daughter cells 
mutated in their rules.

• You only need to specify the goal of the 
computation; EA searches rule-space using 
‘survival of the fittest’ (good solutions 
propagate, poor solutions discarded).
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• nature-inspired agents (cells) and rules (behaviors) are set into motion as a self-organizing 
virtual system, using an open-source modeling environment (CompuCell3d.org). 

• soft-computing uses ‘fuzzy logic’ to simulate forces or properties governing cell fate and 
behavior where rules are inexact or knowledge incomplete (computational intelligence). 

• can change course in response to a particular situation or stimulus, such as genetic errors 
or biomolecular lesions introduced from real world data (dynamic translation). 

• probabilistic rendering of where, when and how a particular condition might lead to an 
adverse developmental outcome (cybermorphs). 

Agent-Based Models (ABMs)

Slide 18
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• Morphogenesis is fundamentally complex; the hallmark 
resides in the ability of cells to interact with one another.

• Genetic signals setup spatial information that cells then 
translate into a coordinated biological response.

• Just as ‘the Cell’ is the basic unit of biology, so too should it 
be the computational unit (‘Agent’) for modeling the embryo.

Translating cellular lesions into quantitative phenotypes
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https://www.thescientist.com/magazine/issue/ai-
tackles-biology-33-5

May, 2019

Computational Intelligence

Slide 20
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https://www.the-scientist.com/magazine/issue/ai-tackles-biology-33-5


Somite development

SOURCE: Dias et al. (2014) Science

Hes1-EGFP time-lapse (3h)
Masamizu et al. 2006 

Differential cell adhesion
•clock genes do not oscillate
•somites form simultaneously

21

• FGF8 wavefront restores 
sequentiality

• oscillatory clock improves 
regularity



Translating genetic control circuits into phenotypes with C.I.

Control Network

• biological wiring diagram maps cell-cell signaling
• we code the signal-response for individual cell types
• and enable ‘steppables’ of individual cell behavior in CompuCell3d.org
• executing the simulation triggers signal-response behaviors
• can quantitatively monitor emergent properties
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FGF4 FGF10

SHH GREM-1

BMP4 BMP7SHH

FGF8

FGF8

GREM-1

BMP4

FGF10

BMP7

FGF4
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Slide 24

Introducing cellular lesions into the swarm …

• SI addresses collective behavior of a complex self-

organizing system emerging from local interactions. 

• Agents work together in closed-loop systems (e.g., 

flocks, schools, colonies, swarms) → phenotype. 

• Subtle details in the simulation can greatly influence 

the outcome (checkpoints?).

24



25
SOURCE: Zurlinden, Kate Saili (2018) – NCCT, unpublished

VEGF-A gradient: NPCs in subventricular zone

endothelial tip cell
endothelial stalk cell
microglial cell

Microglial-Endothelial network

Brain angiogenesis 
Tata et al. (2015) Mechanism Devel
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Executing a simulated dose-response

0.03 µM

0.3 µM

2.0 µM

6.0 µM

Critical concentration of Mancozeb on brain angiogenesiis:
• predicted from in silico model ~0.5 µM (Zurlinden, NCCT)
• observed in 3D organotypic culture model of the hNVU ~0.3 µM (Daly, UWisc)
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Sexual dimorphism: genital tubercle development

androgen SHH field FGF10 field no androgen

Genital tubercle (GT)                                                Control Network (mouse)

ABM simulation for sexual dimorphism (mouse GD13.5 – 17.5)

SOURCE: Leung et al. (2016)  Reproductive Toxicology 27



Androgen virulization: closure rates @4000 MCS 𝑎𝑛𝑑𝑟𝑜𝑔𝑒𝑛 𝑠𝑢𝑝𝑝𝑙𝑦

Closure indices (simulated, n=10)
LEFT: androgen insufficiency 

RIGHT: delayed virulization
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Palatal fusion

SOURCE: Hutson et al. (2017) Chem Res Toxicol 29



SOURCE: Hutson et al. (2017) Chem Res Toxicol

Reviewer Comment: “Crucial
mechanisms occurring during
palate fusion, especially opposing
palatal shelf adhesion, are not
considered in the model. In fact,
the main reason why Tgf-b3 KO
mice have cleft palate is a failure of
opposing MEE adhesion, leading to
separation of palatal shelves after
their initial contact. Even in those
strains in which palatal shelves
adhere partially, I have never seen
a MES as the one shown in Fig. 5.”

Our Response: TGF-b3 knockout mouse 
palates transduced with ALK vectors in 
vitro. (from Dudas et al. 2004).

Smart model …
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Messin’ with the switch: two scenarios for bistable dynamics

Narrow 
hysteresis: 

less resilient 
but reversible

Broad 
hysteresis: 

more resilient 
but irreversible
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ToxCast dataset: 39 ↑EGF-signaling; some also ↓TGF-beta signaling 

ChemicalName

EGFR_up     

(uM AC50)

TGFb1_down   

(uM AC50)

STM          

(uM TI)

ToxRefDB    

(low)

Carbaryl 0.07 1000.00 2.92 POS

Captafol 1.02 3.76 0.35 POS

Fipronil 1.18 1000.00 66.01 POS

Fluazinam 2.39 2.48 10.75 POS

Thiram 4.45 6.95 8.26 POS

Linuron 10.91 1000.00 30.94 POS

Maneb 0.01 1000.00 NEG POS

Propoxur 1.67 1000.00 NEG POS

Captan 4.59 7.15 NEG POS

Bendiocarb 8.75 1000.00 NEG POS

Raloxifene hydrochloride 12.40 15.94 NEG POS

Tri-allate 19.19 x NEG POS

Triflumizole 32.71 19.88 NEG POS

Butachlor 32.71 17.85 NEG POS

Rotenone 0.82 1000.00 0.05 NEG

Zoxamide 14.22 17.37 16.13 NEG

Diuron 16.51 1000.00 68.06 NEG

Forchlorfenuron 0.02 1000.00 NEG NEG

Azamethiphos 0.89 1000.00 NEG NEG

Methylene bis(thiocyanate) 1.14 5.93 NEG NEG

2-(Thiocyanomethylthio)benzothiazole 2.28 6.48 NEG NEG

Methyl isothiocyanate 4.60 1000.00 NEG NEG

Bromacil 20.50 1000.00 NEG NEG

Diphenylamine 32.71 5.95 NEG NEG

TNP-470 7.78 3.97 0.02 x

PharmaGSID_48511 12.19 11.22 0.02 x

4-Pentylaniline 0.00 x NEG x

Monobutyl phthalate 0.01 1000.00 NEG x

Estrone 0.03 1000.00 NEG x

SAR102779 0.05 12.95 NEG x

Niclosamide 0.58 1000.00 NEG x

CP-457920 3.50 1000.00 NEG x

Perfluoroundecanoic acid 6.81 4.76 NEG x

1,2-Benzisothiazolin-3-one 8.22 11.91 NEG x

SB243213A 10.24 x NEG x

Phenolphthalein 16.26 x NEG x

FR167356 17.65 1000.00 NEG x

SB281832 34.72 1000.00 NEG x

p,p'-DDT 38.17 x NEG x 32
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Pathogenesis: simulating the prefusion alterations

pre-critical dose post-critical dose

EGF EGF

TGFb TGFb

34



A
ss

ay
 r

es
p

o
n

se

 EGF

 TGFb

µM concentration

fusion no fusion

OUTPUT: tipping point 
mapped to concentration 

response (4 µM)

tipping point predicted by
computational dynamics

(hysteresis switch)

Captan in ToxCast

human HTTK model 
2.39 mg/kg/day would 

achieve a steady state of 
4 µM in fetal plasma

Captan in ToxRefDB
NOAEL = 10 mg/kg/day
LOAEL  = 30 mg/kg/day

INPUT: switch dynamics

Predictive model: modeling the critical phenomenon 

35



https://www.emouseatlas.org/emap/ema/home.php

VTLS
- access to models & simulations
- VT-KB (knowledgebase)
- Literature mining
- tied to ToxCastDB
- high-performance computing

vtls.epa.gov/
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1. Several new approach methods (NAMs) are available for high-
throughput screening chemical inventories for DevTox potential.  

• STM assay in ToxCast gives an exposure-based readout of a 
chemical’s DevTox hazard potential with 84% balanced accuracy.

• Assay sensitivity predicted high for kinase signaling converging on 
FoxO signaling but weak for estrogenic (ESR1) and G(q) signaling.

2. Cell ABMs recapitulate morphogenesis cell-by-cell and 
interaction-by-interaction as an embryonic system advances in time.

• Computer models simulate key events in AOPs to render 
mechanistic predictions and critical phenomena for DevTox.

Summary and Conclusions

https://www.pinterest.com/co
urtney1882/disney-ratatouille/
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