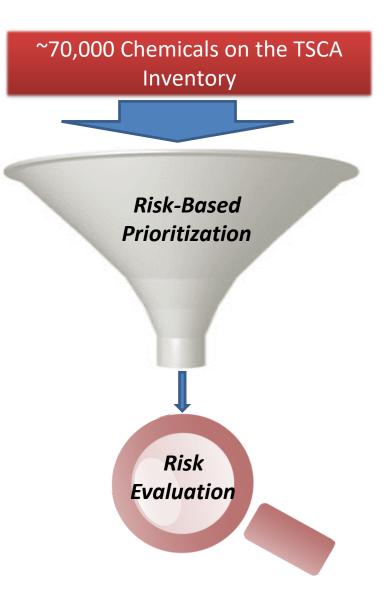


The ENTACT Story: Using US EPA Resources to Evaluate and Enhance Non-target Workflows

Jon Sobus¹, Elin Ulrich¹, Jarod Grossman², Alex Chao², Seth Newton¹, Antony Williams¹, Ann Richard¹, Chris Grulke¹, Andrew McEachran², Randolph Singh², Hussein Al-Ghoul²

> ¹ Center for Computational Toxicology and Exposure ² ORAU/ORISE Participant

Office of Research and Development

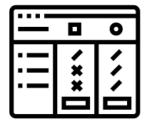

Presentation Outline

Research drivers for NTA/NTS
 ENTACT genesis & study design
 Progress to date (at EPA)
 Progress to date (outside EPA)
 Ongoing & future work

High-Throughput Risk Characterization

- Many industrial & commercial chemicals are covered by the Toxic Substances Control Act (TSCA), which is administered by EPA.
- TSCA updated in June 2016 to allow *risk-based* evaluation of existing and new chemicals.
- Characterization of risk requires exposure and hazard data.
- EPA's Office of Research and Development (ORD) is developing new approach methodologies (NAMs) for rapid risk characterization.
- NTA is a promising NAM, but requires careful evaluation and implementation

NTA State-of-the-Science


	Science of the Total Environment 670 (2019) 814–825	
ELSEVIER	Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv	Environme Science & Techi
	tential endocrine active high resolution mass spectrometry res in Minnesota lakewater	Is Nontargeted S Ronald A. Hites*9
	der ^a , Les D. Warren ^b , Emily Green ^a , Craig Butt ^c , Gordana Ivosev ^d , Richard L. Kiesling ^e , iss ^b , Christopher P. Higgins ^{a,*}	School of Public and Environme
 ^a Colorado School of Mines, Goi ^b St. Cloud State University, St. ^c Sciex, Boston, MA, USA ^d Sciex, Toronto, Canada ^e U.S. Geological Survey, Mound 	Cloud, MN, USA	Karl J. Jobst* Department of Chemistry and C
		"No obrala

"The novelty of nontarget analysis, particularly its current lack of implementation by regulatory agencies, has prevented the establishment of streamlined quality assurance and quality control (QA/QC) procedures."

"No single analytical technique is suitable for the analysis of all compounds, and successful nontargeted screening will require the development of multiplatform approaches, facilitated and validated through interlaboratory collaborations."

Key Research Needs

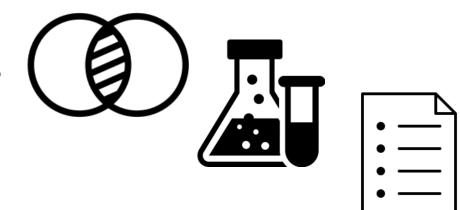
Anal Bioanal Chem (2015) 407:6237–6255 DOI 10.1007/s00216-015-8681-7

REVIEW

Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis

Emma L. Schymanski¹ · Heinz P. Singer¹ · Jaroslav Slobodnik² · Ildiko M. Ipolyi² · Peter Oswald² · Martin Krauss³ · Tobias Schulze³ · Peter Haglund⁴ · Thomas Letzel⁵ · Sylvia Grosse⁵ · Nikolaos S. Thomaidis⁶ · Anna Bletsou⁶ · Christian Zwiener⁷ · María Ibáñez⁸ · Tania Portolés⁸ · Ronald de Boer⁹ · Malcolm J. Reid¹⁰ · Matthias Onghena¹¹ · Uwe Kunkel¹² · Wolfgang Schulz¹³ · Amélie Guillon¹⁴ · Naïke Noyon¹⁴ · Gaëla Leroy¹⁵ · Philippe Bados¹⁶ · Sara Bogialli¹⁷ · Draženka Stipaničev¹⁸ · Pawel Rostkowski¹⁹ · Juliane Hollender^{1,20}

- 18 Institutes
- 12 Countries


- Workflows & Methods:

1 river water extract

- Analytical \rightarrow well harmonized
- Data processing \rightarrow not harmonized

Clearly expressed needs for:

- 1) More tightly defined interlaboratory comparisons
- 2) The use of spiked samples
- 3) The shared use of comprehensive suspect lists

EPA/ORD Takes a Leadership Role

science in ACTION

www.epa.gov/research

EPA'S NON-TARGETED ANALYSIS COLLABORATIVE TRIAL (ENTACT)

Environmental Protection Agency (EPA) 2018

The U.S. Environmental Protection Agency (EPA) hosted a workshop focused on EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). ENTACT was designed to assess the characteristics and performance of cutting-edge non-targeted analysis (NTA) methods using a set of highly controlled synthetic mixtures and reference samples. This workshop brought together ENTACT participants, NTA experts, and key stakeholders to discuss findings from ENTACT, as well as next steps for the NTA research community.

Ħ	August	13-15,	2018	

EPA 2018 \mathscr{S}

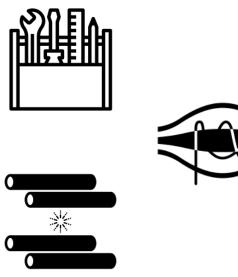
www.eventbrite.com/e/usepa-2018-non-targetedanalysis-collaborativeresearch-trial-entactworkshop-tickets-34838702497

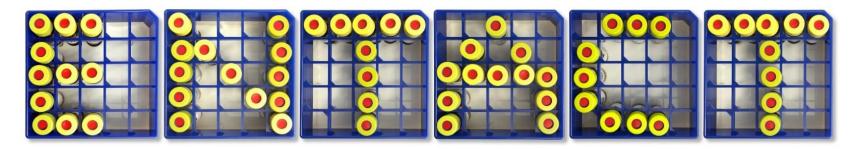
Durham, NC, USA \odot

EPA's ENTACT Study Breaks New Ground with **Non-Targeted Research**

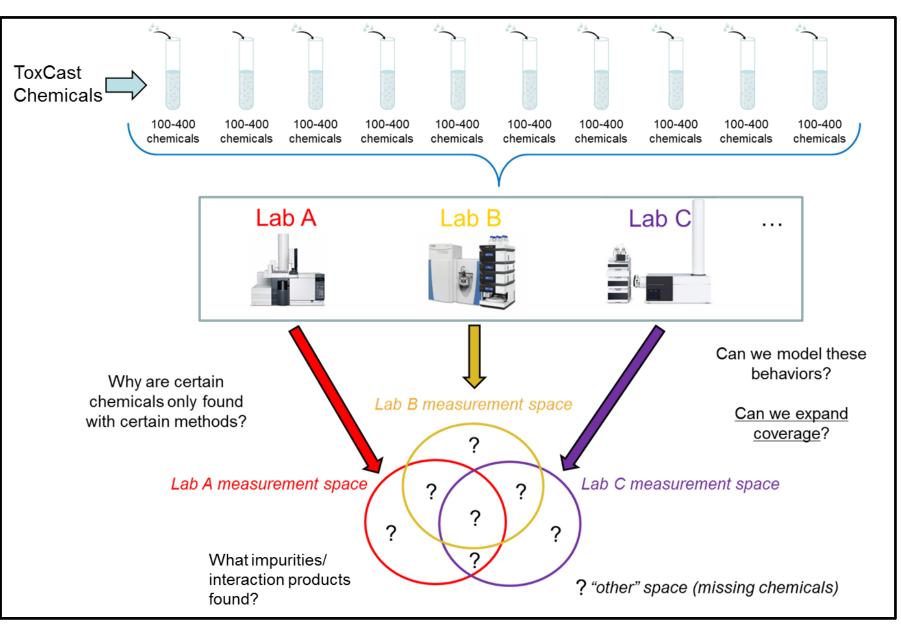
Published July 30, 2018

EPA scientists are leading a multi-phase project to evaluate the ability of non-targeted analysis laboratory methods to consistently and correctly identify unknown chemicals in samples. EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) was formed in late 2015 and includes nearly 30 academic, government, and industry groups. Non-targeted analysis involves analyzing water, soil and other types of samples to identify unknown chemicals that may be present, without having a preconceived idea of what chemicals may be in the samples.

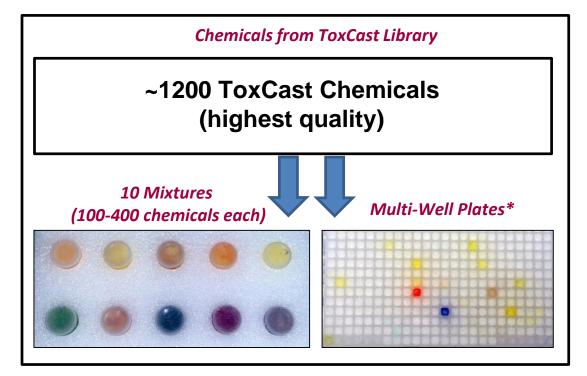

"One of our main goals is to figure out what scientists are doing with nontargeted analysis as a group at large, particularly which chemicals we correctly identify and why," says Elin Ulrich, an EPA scientist who co-leads ENTACT with EPA's Jon Sobus.



Science Questions for Research Community


- How variable are tools and results from lab to lab?
- Are some methods/tools better than others?
- How does sample complexity affect performance?
- What chemical space does a given method cover?
- How sensitive are specific instruments/methods?

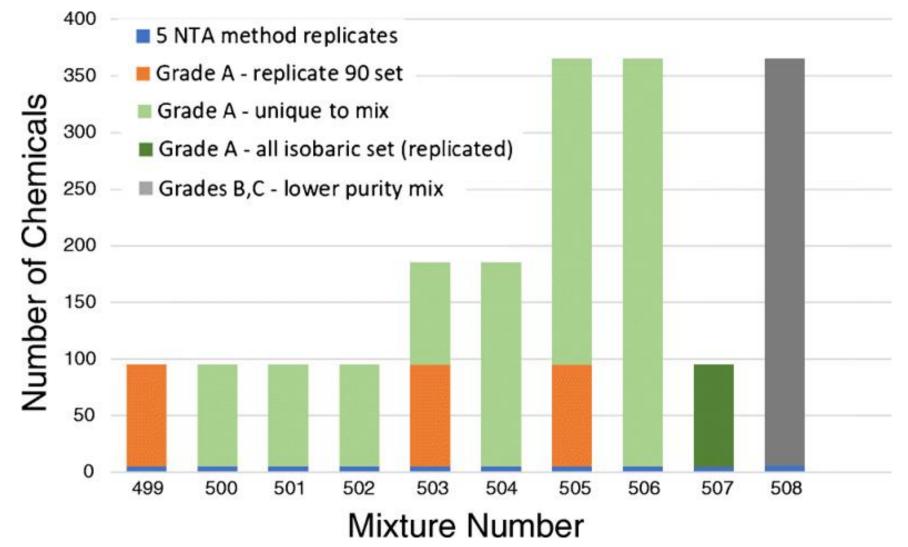
EPA's Non-Targeted Analysis Collaborative Trial

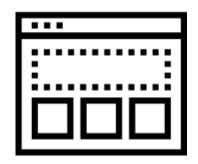

Original ENTACT Concept

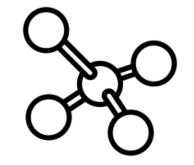
~25 Collaborators & 5 Contractors*:

- 1st: Blinded analysis
 - 2nd: Unveiling of chemicals
 - 3rd: Unblinded evaluation

Reference & Fortified House Dust

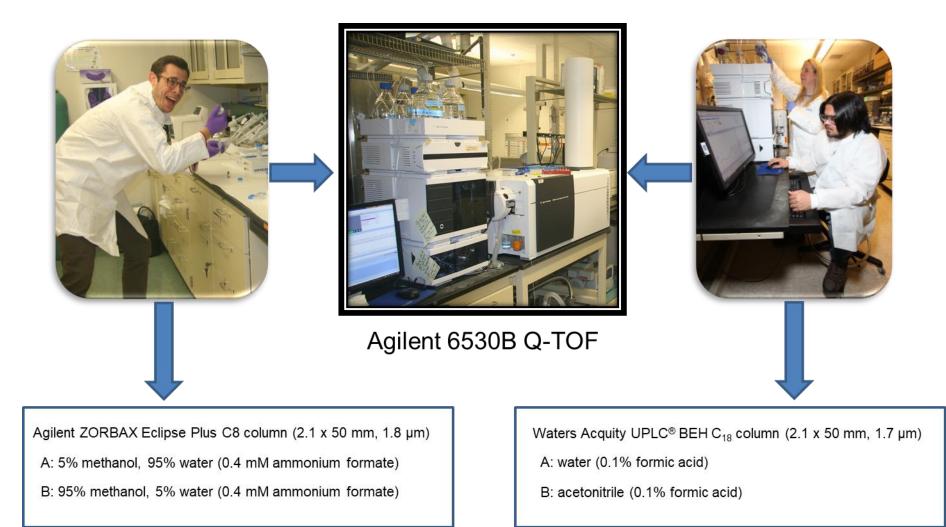

Reference & Fortified Human Serum

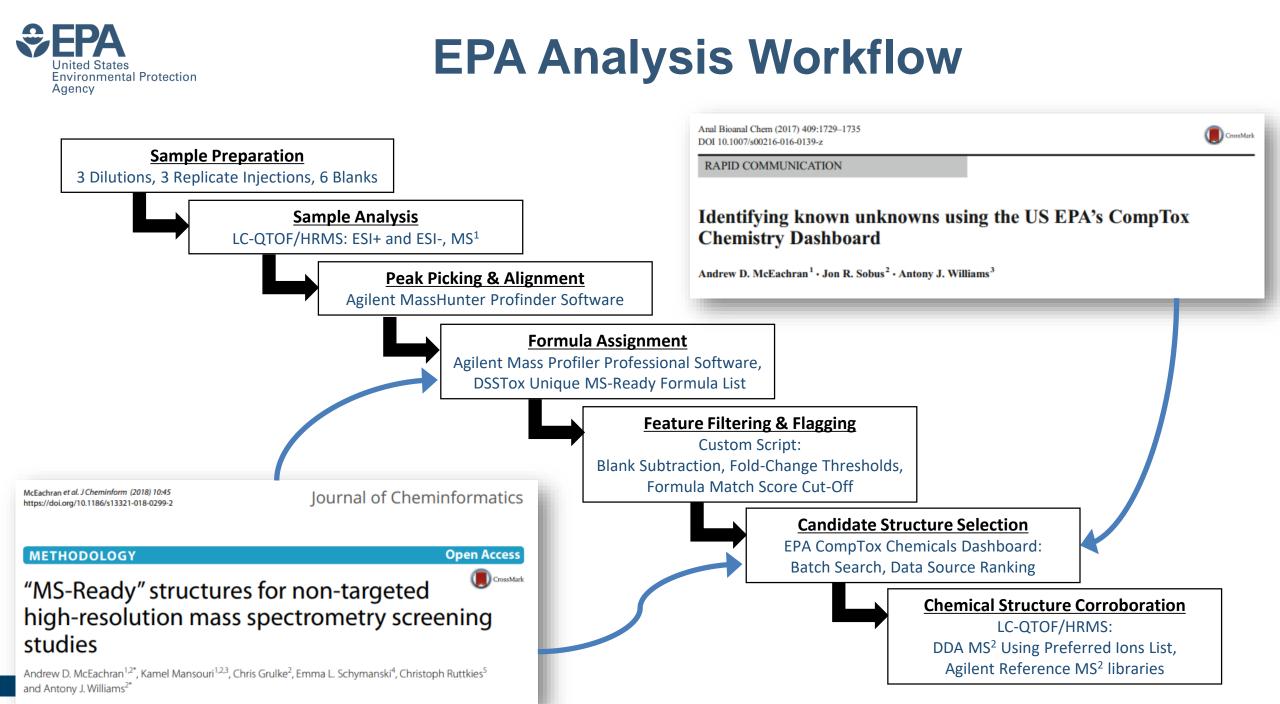

Design of ENTACT Mixtures



Resources Provided to Participants

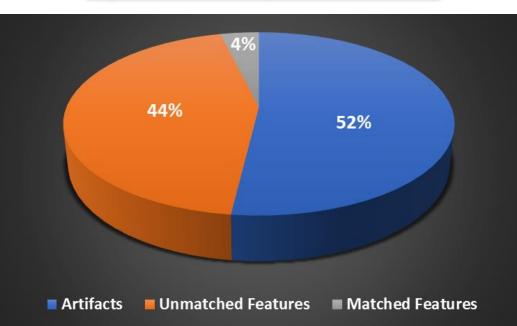
- SOPs for sample handling, analysis, and data submission
- Procedures used for sample preparation
- + Up to 16 samples with eventual (unblinded) chemical mappings
- MS-Ready DSSTox list (671,852 unique) with .mol files
- MS-Ready ToxCast list (4,248 unique) with .mol files
- Method and Data reporting templates
- FTP site, accounts, and instructions

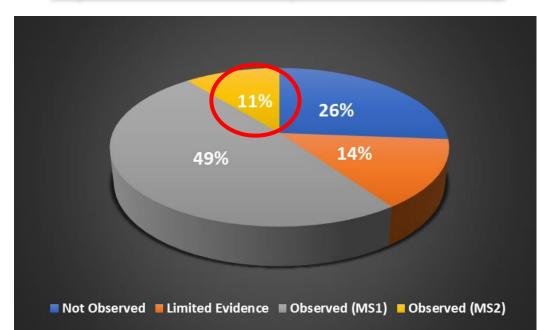




EPA Methods for ENTACT Mixtures

10 ENTACT Mixtures


3 ENTACT Mixtures



EPA Initial Results

By Feature (total = 26K)

By Substance (total = 1,269)

< 5% of Observed Features Matched to a Spiked Substance ~ 75% of Spiked Substances were Observed

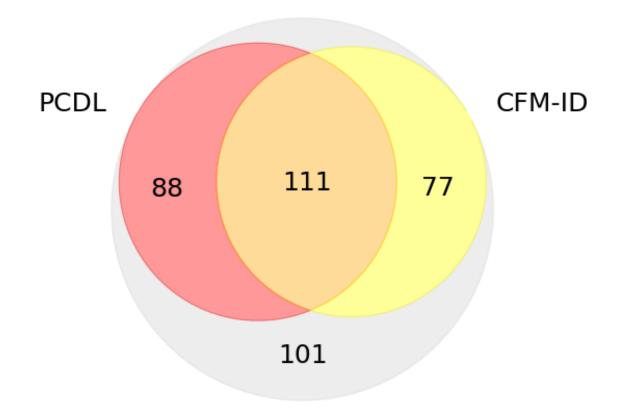
Only 48% of ENTACT substances were in reference MS² library

Generation of in silico Spectra

Linking *in silico* MS/MS spectra with

chemistry data to improve identification

CFM-ID v2.0

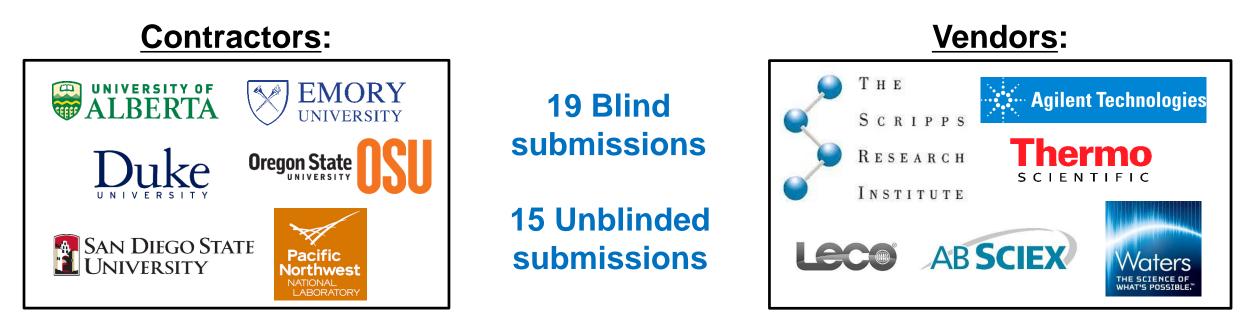

Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification

Authors Authors and aff	filiations		of unknowns Andrew D. McEachran ^M , Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris					
Felicity Allen 🗠 , Russ Greiner, David Wishart	1		bus & Antony J. Williams ⊠	ansue, Hussein Al-Ghoul, Chris				
	Machine Learning	Fragmentation Prediction Model						
<u>Training Set</u> : Metlin MS2 spectra and structures			DSSTox MS-Ready Structures (~765,000)	DSSTox MS2 spectra (10, 20, 40v)				

McEachran, Andrew D., et al. *Scientific data* 6.1 (2019): 1-9 Allen, Felicity, et al. *Metabolomics* 11.1 (2015): 98-110.

Reference vs. in silico Library Coverage

MS2 Library	% of "Pass" Compounds Identified			
Agilent PCDL	53%			
CFM-ID Top Hit	50%			
PCDL and/or CFM-ID Top Hit	73%			

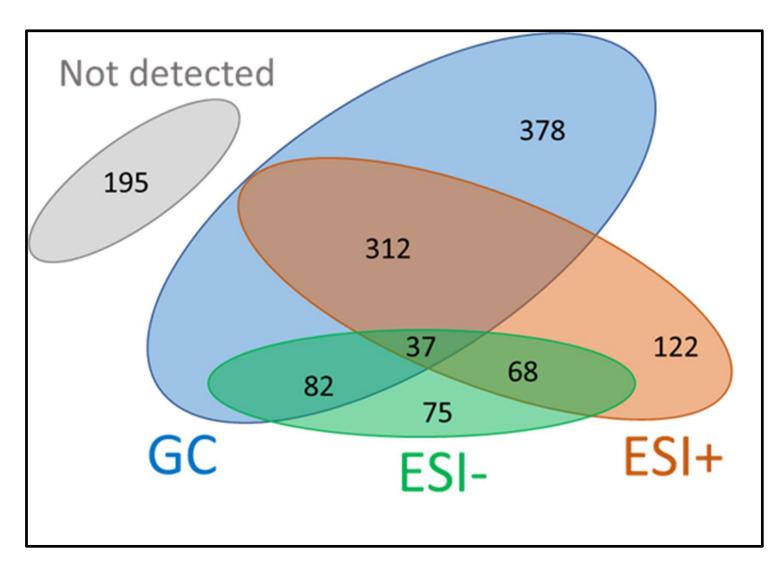

"Pass" Compounds

PCDL \rightarrow Agilent reference MS² library

"Pass" compounds (n=377) \rightarrow ENTACT chemicals observed with MS² data

Who Else is Working on ENTACT?

General Participants:



Comparing Reported Features (n=16 labs)

					ToxCast	Mixtures					For	tified Matr	ices	
	1	2	3	4	5	6	7	8	9	10	Dust	Serum	Band	
Act.	95	95	95	95	185	185	365	365	95	365	365	95	185	
Lab 1	128	148	166	187	292	269	318	470	177	410	NR	NR	NR	_
2	142	154	102	129	250	242	401	399	105	452	NR	NR	NR	
3	48	40	48	59	110	101	97	130	37	109	NR	NR	NR	
4	301	130	375	341	408	404	719	687	198	327	NR	NR	NR	= under reported
5	65	66	74	72	105	118	193	215	54	162	NR	NR	NR	
6	587	552	596	554	798	846	1327	1274	509	1176	NR	NR	NR	noor octual
7	93	114	116	106	182	201	360	374	73	330	236	92	124	= near actual
8	337	372	303	365	321	363	466	505	510	463	259	222	313	
9	135	130	125	154	188	195	284	295	100	153	270	54	101	= over reported
10	70	57	64	66	105	115	176	125	35	159	NR	NR	NR	
11a	595	486	571	630	746	669	899	910	588	792	1009	614	NR	
11b	66	170	51	41	272	116	214	101	163	404	861	145	557	NR = not reported
12	51	37	35	39	74	59	124	109	42	105	124	52	76	
13	137	65	45	74	68	234	413	408	120	317	389	178	88	
14	215	249	212	249	207	275	245	254	140	253	NR	NR	NR	
15	1298	1258	1304	1209	1651	1641	2520	2538	1202	2193	NR	NR	NR	
16	153	217	221	199	254	321	523	651	496	396	NR	NR	NR	_

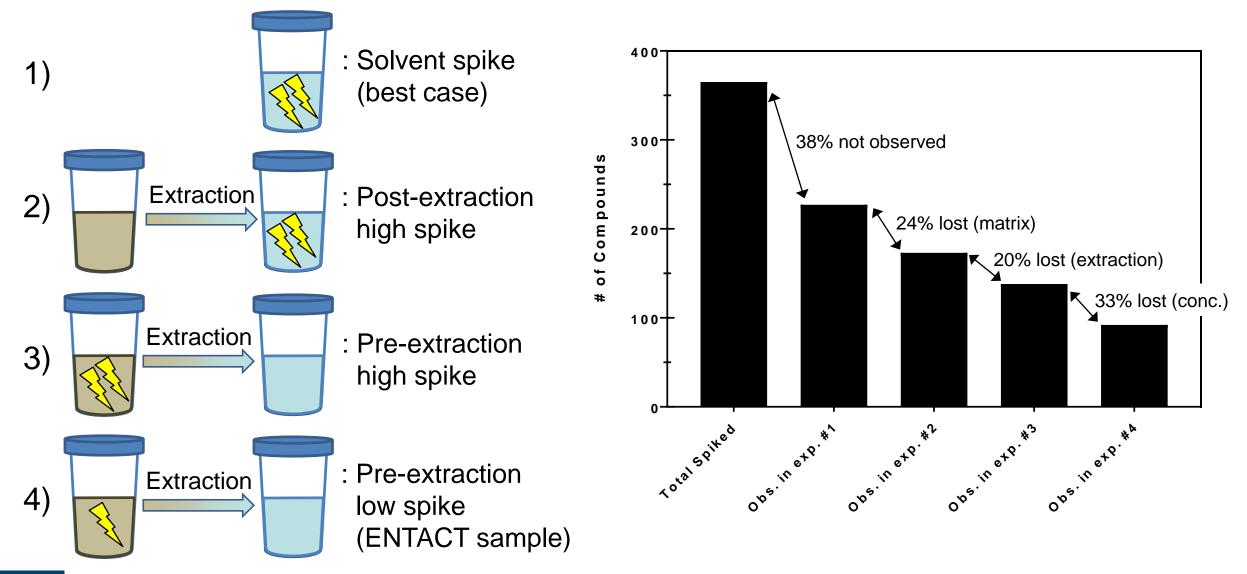
¹⁷ Ulrich et al. 2019. https://doi.org/10.1007/s00216-018-1435-6

EPA United States Invironmental Protection Comparing Identified Compounds (n=3 labs)

Agency

18

1,269 Spiked Substances

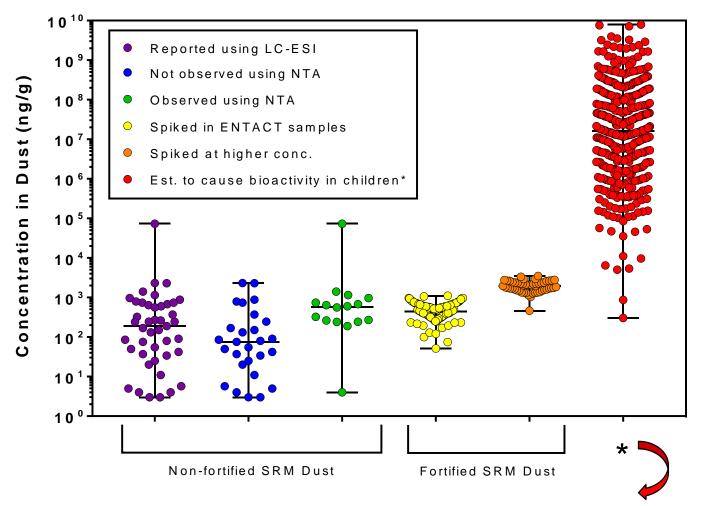

GC = gas chromatography

ESI- = neg. electrospray ionization (liquid chromatography)

ESI+ = pos. electrospray ionization (liquid chromatography)

Experiments with SRM Dust

Newton et al. [in preparation]



Experiments with SRM Dust

Results for Unfortified SRM Dust

Chemical Class	All Reported Compounds	Reported Using LC-ESI	Observed Using NTA
PAHs	69	0	0
PCBs	44	0	0
PFAS	31	31	12
BFRs	30	3	0
OCPs	15	0	0
OPEs	12	9	4
Phthalates	7	0	2
Total	208	43	18

* "..the dose that would be needed in the most-sensitive 5% of the population to produce a steady-state plasma concentration equal to [the 10th] percentile of the ToxCast AC50 distribution across assays for the given chemical."

Publications to date

Analytical and Bioanalytical Chemistry (2019) 411:853-866 https://doi.org/10.1007/s00216-018-1435-6

RESEARCH PAPER

CrossMark

EPA's non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings

Elin M. Ulrich¹ · Jon R. Sobus¹ · Christopher M. Grulke² · Ann M. Richard² · Seth R. Newton¹ · Mark J. Strynar¹ · Kamel Mansouri^{3,4} · Antony J. Williams²

Received: 30 July 2018 / Revised: 14 September 2018 / Accepted: 17 October 2018 / Published online: 6 December 2018 © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Comprehensive, Non-Target Characterisation of Blinded Environmental Exposome Standards Using GCxGC and High Resolution Time-of-Flight Mass Spectrometry

by Lorne Fell^{*}, Todd Richards and Joe Binkley LECO, Saint Joseph, Michigan, USA *Corresponding Author: lorne_fell@leco.com Analytical and Bioanalytical Chemistry (2019) 411:835-851 https://doi.org/10.1007/s00216-018-1526-4

RESEARCH PAPER

Using prepared mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) method performance

Jon R. Sobus¹ · Jarod N. Grossman^{2,3} · Alex Chao² · Randolph Singh⁴ · Antony J. Williams⁵ · Christopher M. Grulke⁵ · Ann M. Richard⁵ · Seth R. Newton¹ · Andrew D. McEachran⁴ · Elin M. Ulrich¹

Received: 19 September 2018 / Revised: 14 November 2018 / Accepted: 27 November 2018 / Published online: 5 January 2019 © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Evaluation of *In Silico* Multifeature Libraries for Providing Evidence for the Presence of Small Molecules in Synthetic Blinded Samples

Jamie R. Nuñez,[†] Sean M. Colby,[†] Dennis G. Thomas,[†][©] Malak M. Tfaily,^{†,⊥} Nikola Tolic,[†][©] Elin M. Ulrich,[‡][©] Jon R. Sobus,[‡] Thomas O. Metz,^{*,†}[©] Justin G. Teeguarden,^{*,†,§} and Ryan S. Renslow^{*,†}[©]

[†]Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States [‡]U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, North Carolina 27711, United States

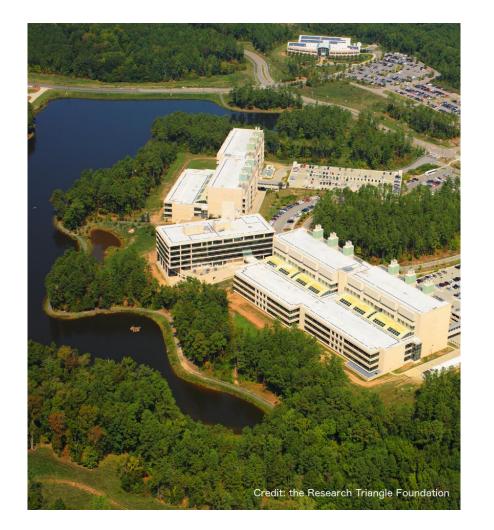
[§]Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States [⊥]Department of Environmental Science, University of Arizona, Tucson 85712, United States

Summary of ENTACT Findings

- NTA methods are suitable for detecting <u>many</u> ToxCast chemicals
- False positives can greatly outweigh true positives
 - False Pos / True Pos ~ 10×
 - Work needed on feature credentialing
- True Positives: ≤75%
 - Will miss some chemicals that are present in samples
 - Why? Which ones? Always?
- Multiple methods required for broad characterization
 - No "one size fits all" method
 - Subtle method changes affect measurable chemical space
- Concentration, media, and extraction techniques will affect performance
- Goal reached when we can make these statements:
 - "When a compound is observed, we're confident it's really there!"
 - "When a compound isn't observed, we're confident it's not there!"

Ongoing and Future Work

- Full cross-lab performance evaluation
 - Primary focus \rightarrow true positives, false negatives, confidence levels
 - Secondary focus \rightarrow unexpected true positives
- Database development
 - Enable user queries, additional analyses, model development
- Global summary report
 - Provide guidance and acceptance criteria for NTA studies


The benefits of ENTACT will be proportional to the level of effort!

Contributing Researchers

This work was supported, in part, by ORD's Pathfinder Innovation Program (PIP) and an ORD EMVL award

EPA ORD

Hussein Al-Ghoul* Alex Chao* Jarod Grossman* Kristin Isaacs Sarah Laughlin* Charles Lowe James McCord Jeff Minucci Seth Newton **Katherine Phillips** Tom Purucker Randolph Singh* Mark Strynar Elin Ulrich

= ORISE/ORAU

EPA ORD (cont.)

Chris Grulke Kamel Mansouri* Andrew McEachran* Ann Richard John Wambaugh Antony Williams

Agilent

Jarod Grossman Andrew McEachran

GDIT

Ilya Balabin **Tom Transue** Tommy Cathey

Questions?

sobus.jon@epa.gov

The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

