

Development and Use of a High Content Imaging-Based Phenotypic Profiling Assay for Bioactivity Screening of Environmental Chemicals

Johanna Nyffeler¹, Clinton Willis¹, Joshua A. Harrill¹,

USEPA National Center for Computational Toxicology (NCCT)

Session I: HCS-HTS Successes and Learnings Society for Biomolecular Imaging and Informatics (SBI²) Annual Meeting, Boston, MA September 18th, 2019

Disclaimer

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency, nor does mention of trade names or products represent endorsement for use.

Outline

Background

- What is NCCT?
- What does NCCT Do?
- USEPA Computational Toxicology Blueprint

• High-Throughput Phenotypic Profiling (HTPP)

- Technology Overview \rightarrow Cell Painting
- Image Analysis
- Computational Workflows

Potential Applications for Chemical Safety Assessment

- Bioactivity to Exposure Ratio (BER) Analysis
- Profile Similarity for Chemical Read-Across
- Conclusions

Who is NCCT?

Mission Statement:

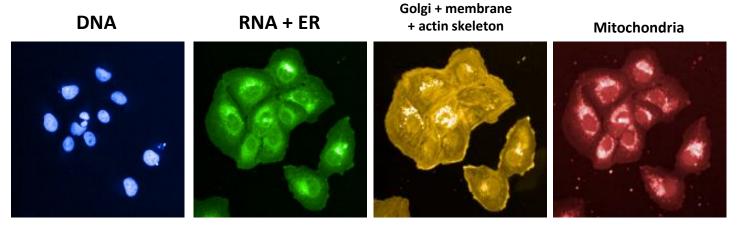
A research organization tasked with advancing the science of toxicity testing through the **development and/or application of novel experimental and computational approaches** for <u>rapidly</u> characterizing the physiochemical properties, biological activity, exposure potential and potential human health risks associated with chemicals.

Computational Toxicology Research Areas

NCCT research programs focus on developing the **tools**, **approaches and data** needed to accelerate the pace of chemical risk assessment and foster incorporation of non-traditional toxicity testing data into regulatory decision-making processes.

ToxCast: Use of targeted high-throughput screening (HTS) assays to expose living cells or isolated proteins to chemicals and assess bioactivity and potential toxic effects.

	# of assays	# of chemicals	Types of chemicals
Phase 1 (2007 – 2009)	500	300	Mostly pesticides
Phase 2 (2009 – 2013)	700	2,000	Industrial, consumer product, food use, "green"

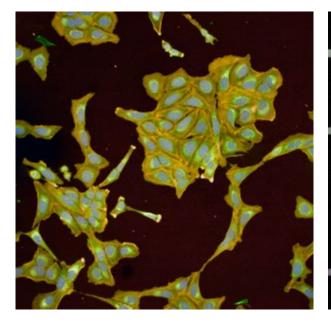

- Mostly targeted assays (*chemical* $X \rightarrow protein Y$)
- Incomplete coverage of biological space.
- New Approach for Hazard Evaluation: Employ broad-based (i.e. non-targeted) profiling assays that cast the broadest net possible for capturing potential hazards associated with chemical treatment and may be used to group chemicals based on similarity in bioactivity profiles.

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322

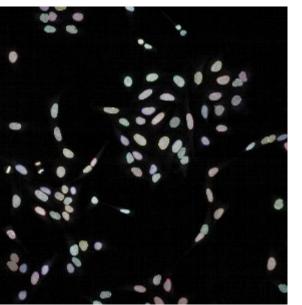
Cell Painting

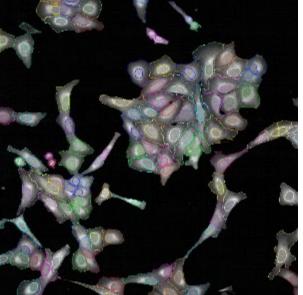
- Cell Painting is a HCS profiling method that measures a large variety of phenotypic features in fluoroprobe labeled cells *in vitro*.
- No requirement for *a priori* knowledge of molecular targets.
- Uses:
 - Functional genomics
 - Drug discovery
 - Compound efficacy and toxicity screening
 - Mechanism-of-action identification
 - Chemical grouping
- Hypothesis: Cell Painting may be an efficient and cost-effective method for evaluating the bioactivity of environmental chemicals.

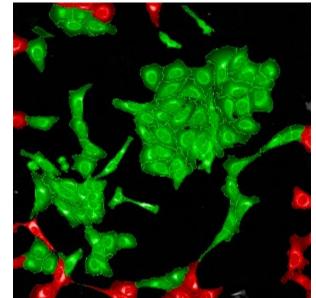
Marker	Cellular	Labeling Chamistry	Labeling	Opera Phenix		
IVIAIKEI	Component	Labeling Chemistry	Phase	Ex.	Em.	
Hoechst 33342	Nucleus	Bisbenzamide probe that binds to dsDNA		405	480	
Concanavalin A – AlexaFluor 488	Endoplasmic reticulum	Lectin that selectively binds to α-mannopyranosyl and α-glucopyranosyl residues enriched in rough endoplasmic reticulum		435	550	
SYTO 14 nucleic acid stain	Nucleoli	Cyanine probe that binds to ssRNA	Fixed	435	550	
Wheat germ agglutinin (WGA) – AlexaFluor 555	Golgi Apparatus and Plasma Membrane	Lectin that selectively binds to sialic acid and N-acetylglucosaminyl residues enriched in the trans-Golgi network and plasma membrane		570	630	
Phalloidin –AlexaFluor 568	F-actin (cytoskeleton)	Phallotoxin (bicyclic heptapeptide) that binds filamentous actin				
MitoTracker Deep Red	Mitochondria	Accumulates in active mitochondria	Live	650	760	

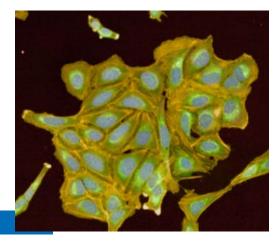


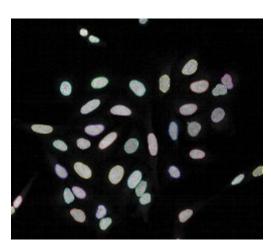
Objectives

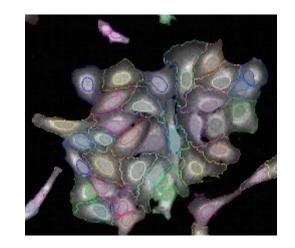

- 1. Adapt the Cell Painting assay (Bray et al. 2016) for use with microfluidics and imaging instruments available at NCCT.
- 2. Develop computational workflows for phenotypic feature extraction, data normalization, concentrationresponse modeling and generation of phenotypic response profiles.
- 3. Evaluate assay performance by replicating published results (Gustafsdottir et al. 2013).
- 4. Perform concentration-response screening of a set of environmental chemicals selected from USEPA ToxCast collection.
- 5. Demonstrate data usability in down-stream applications of potential interest to chemical safety assessment practitioners:
 - 1. In vitro-to-in vivo (IVIVE) and bioactivity-exposure ratio (BER) analysis
 - 2. Chemical read across using phenotypic profile similarity


Image Analysis Workflow → Image Segmentation

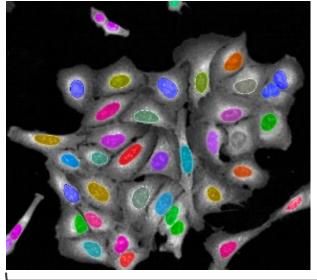

1. find nuclei

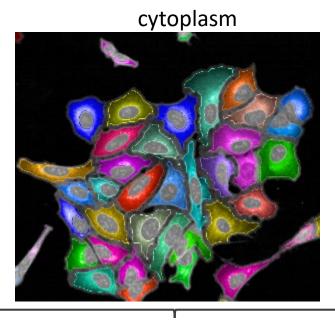


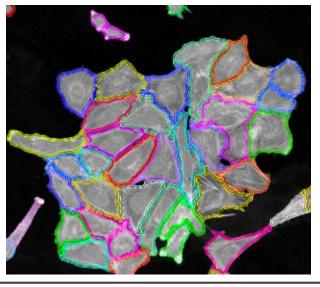

2. find cell outline



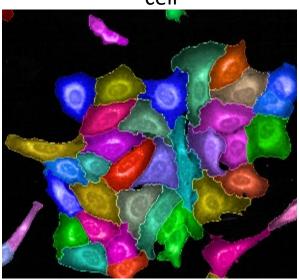
3. reject border objects

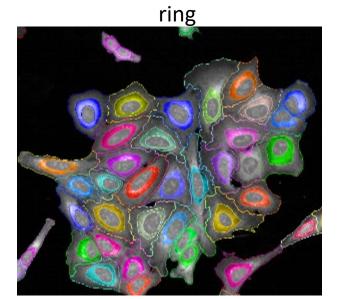





Define Cellular Compartments

nuclei



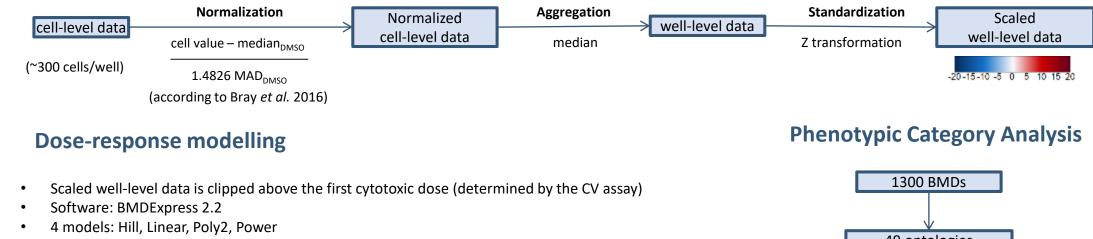


membrane

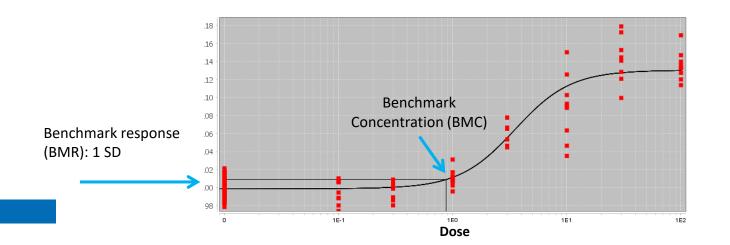
cell

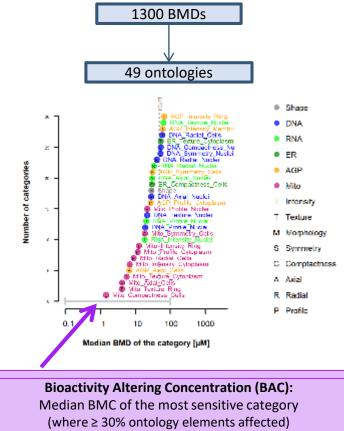
Phenotypic Feature Extraction

	NUCLEUS	RING 5 COM CYTOP	partments LASM MEMBRANE	CELL						
5 Channels (organelles) RNA ER AGP MITO	Radial distribution	Axial	Symmetry	Intensity Positic		0 2 2	1300 featu			
DIA	Compactness	ି ଜ	Shape	WY AND		Profile	Position [7]	Basic morph- ology [5]	Symmetry [80]	
						DNA			Nuclei	
						RNA			Nuclei	
					e	ER			Cell	
					Channel	AGP			Cell	

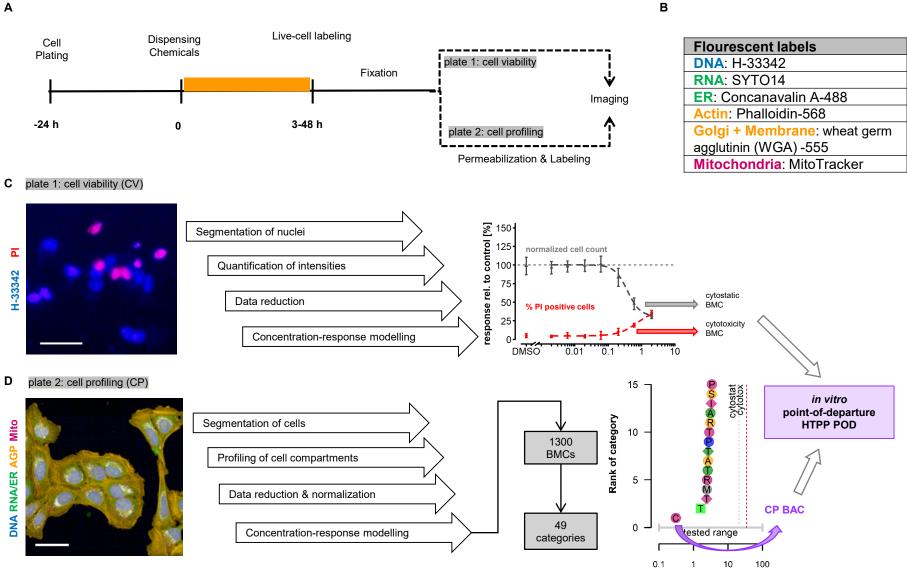

ures / cell

					Modu	le				
Profile	Position	Basic		SCA	RP morphol	ogy		Intensity	Texture	
	[7]	morph- ology [5]	Symmetry [80]	Compactness [40]	Axial [20]	Radial [28]	Profile [20-30]	[9]	[14]	
DNA			Nuclei	Nuclei	Nuclei	Nuclei Cell	Nuclei Cytoplasm	Nuclei	Nuclei	
RNA			Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	
ER			Cell	Cell	Cell	Cell	Cytoplasm	Ring Cytoplasm	Ring Cytoplasm	
AGP			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm Membrane	Ring Cytoplasm Membrane	
Mito			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm	Ring Cytoplasm	
Not associated with a channel	Nuclei Cell	Nuclei Cell								


With illustrations from Perkin Elmer



Analysis of phenotypic features


- Best model selection:
 1. nested χ² to select the better polynomial (Linear vs Poly2)
 2. best AIC (Hill, Power, Poly)
- BMCs above the tested range are reported as NA
 BMCs below the tested range are assigned log₁₀(min dose)-0.5

HTPP Assay Overview

Median BMC [µM]

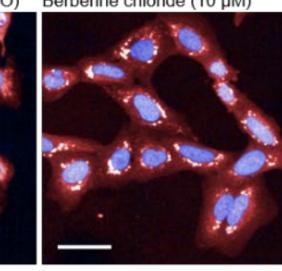
Pilot Study Design

Parameter	Multiplier	Notes			
Cell Type(s)	1	U-2 OS			
Culture Condition	1	DMEM + 10% HI-FBS ^a			
Chemicals	16	 14 phenotypic reference chemicals, 2 negative controls 48 hours Cell Painting HCI Cell Viability & Apoptosis 			
Time Points:	1				
Assay Formats:	2				
Concentrations:	8	3.5 log ₁₀ units; semi log ₁₀ spacing			
Biological Replicates:	3	Independent cultures			

Reference Chemical Set

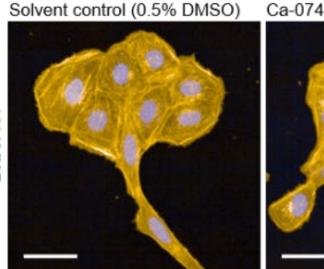
- Reference chemicals (n=14) with narrative descriptions of observed phenotypes were identified from Gustafdottir et al. 2013.
- Candidate negative control chemicals (n=2) with no anticipated affect on cell phenotype were included in the reference set.

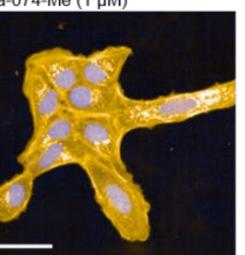
Compound Name	Chemical Use	Expected Phenotype
Amperozide	Atypical antipsychotic	Toroid nuclei
Berberine Chloride	Mitochondria complex I inhibitor	Redistribution of mitochondria
Ca-074-Me	Cathepsin B inhibitor	Bright, abundant golgi staining
Etoposide	Chemotherapeutic	Large, flat nucleoli
Fenbendazole	Anthelmintic	Giant, multi-nucleated cells
Fluphenazine	Typical antipsychotic	Enhanced golgi staining and some cells with fused nucleoli
Latrunculin B	Actin cytoskeleton disruptor	Actin breaks
Metoclopramide	D ₂ dompaine receptor antagonist	Enhanced golgi staining and some cells with fused nucleoli
NPPD	Chloride channel blocker	Redistribution of ER to one side of the nucleus
Oxibendazole	Anthelmintic	Large, multi-nucleated cells with fused nucleoli
Rapamycin	Macrolide antibiotic / antifungal	Reduced nucleolar size
β-dihydrorotenone ^a	Mitochondria complex I inhibitor	Mitochondrial stressor
Saccharin	Artificial Sweetener	Negative Control
Sorbitol	Artificial Sweetener	Negative Control
Taxol	Microtubule Stabilizer	Large, multi-nucleated cells with fused nucleoli
Tetrandrine	Calcium channel blocker	Abundant ER

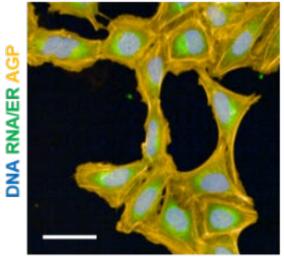


А

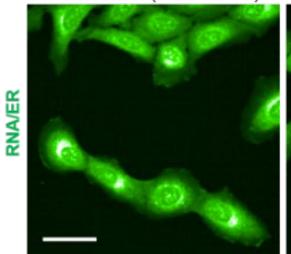
Reference Chemical Phenotypes (1)

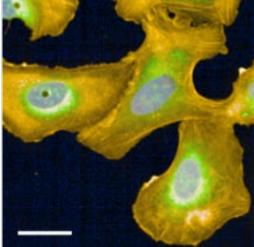

DNA Mitochondris

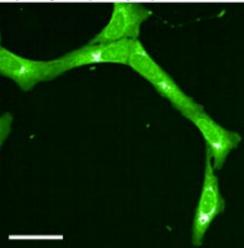

Solvent control (0.5% DMSO) Berberine chloride (10 µM)


Ca-074-Me (1 µM)

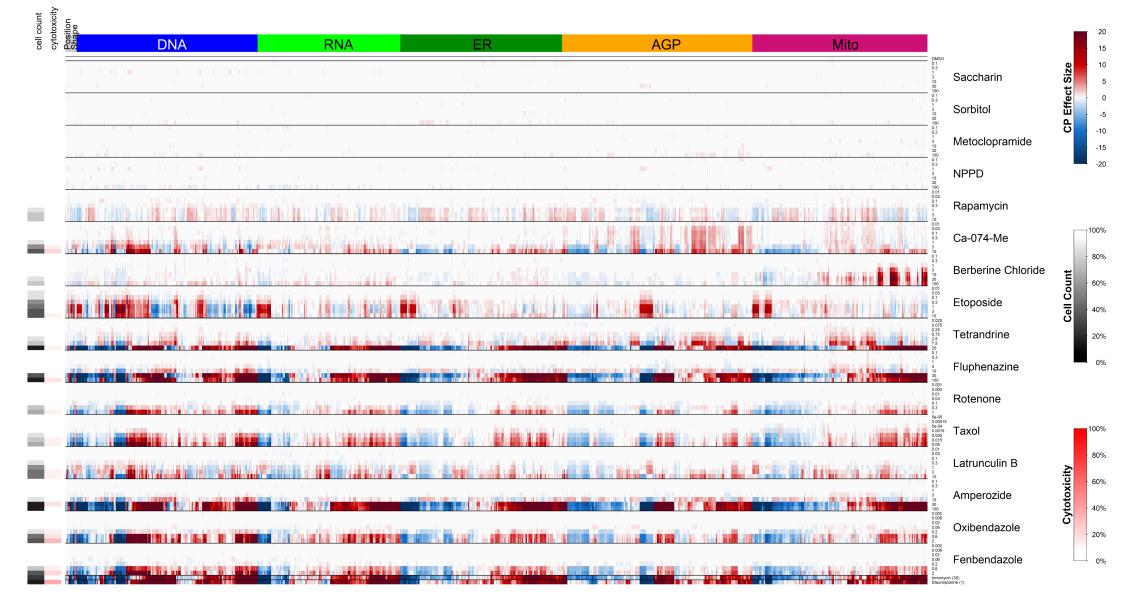
DNA AGP



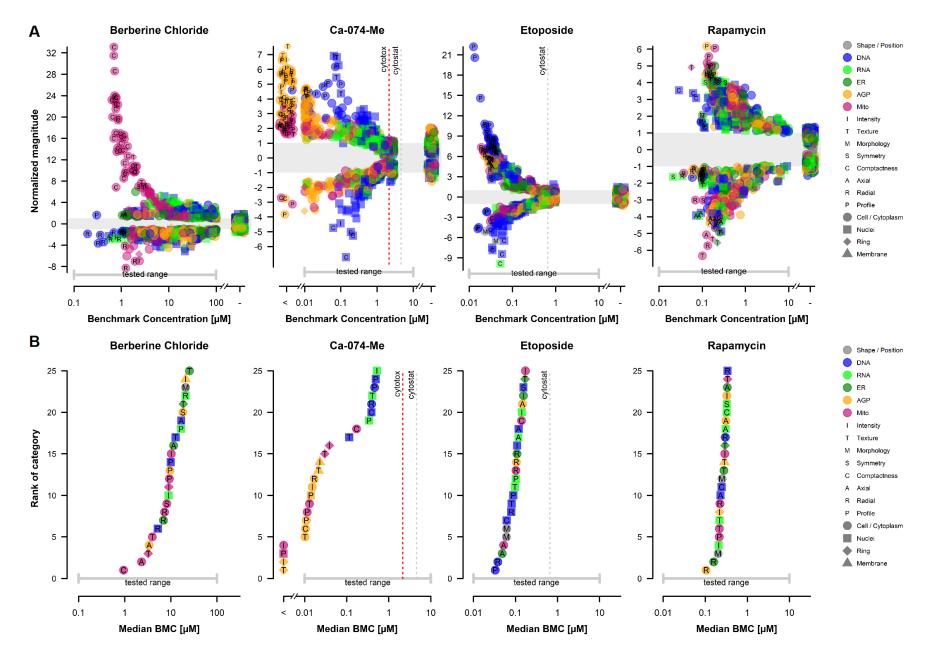

Solvent control (0.5% DMSO)


Solvent control (0.5% DMSO)

Etoposide (3 µM)



Rapamycin (100 µM)



Reference Chemical Phenotypes (2)

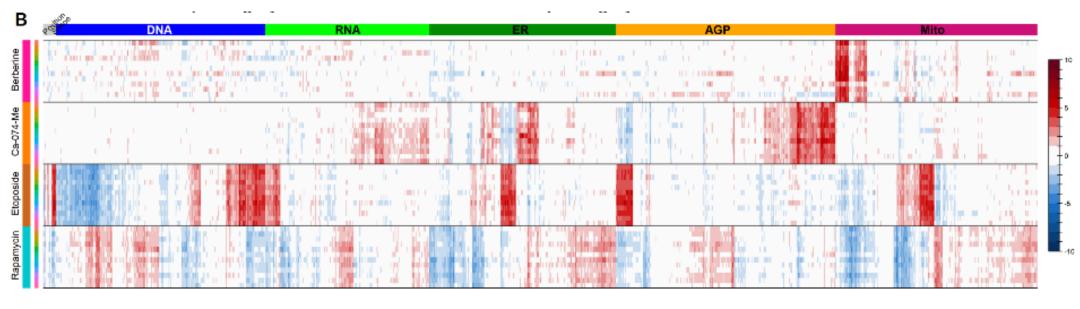
Reference Chemical Phenotypes (3)

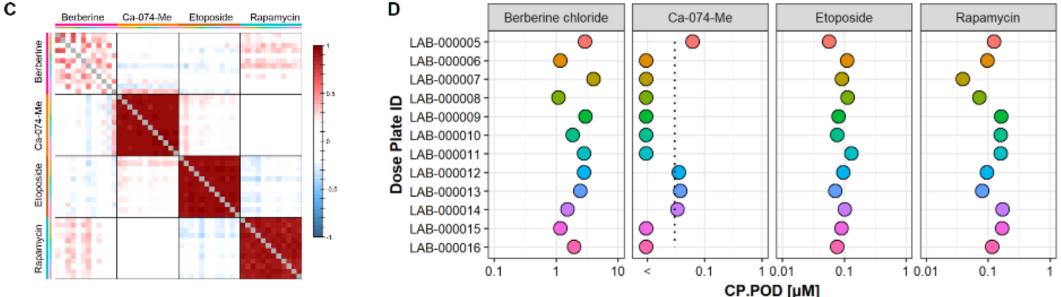
U-2 OS APCRA Screen Experimental Design

Parameter	Multiplier	Notes
Cell Type(s)	1	U-2 OS
Culture Condition	1	DMEM + 10% HI-FBS
Chemicals	462	APCRA Case Study Chemicals + Duplicates Unilever CRADA Consensus Chemicals HTTr Pilot Chemicals
Time Points:	1	24 hours
Assay Formats:	2	Cell Painting Cell Viability
Concentrations:	8	3.5 log ₁₀ units; semi log ₁₀ spacing
Biological Replicates:	4	Independent cultures

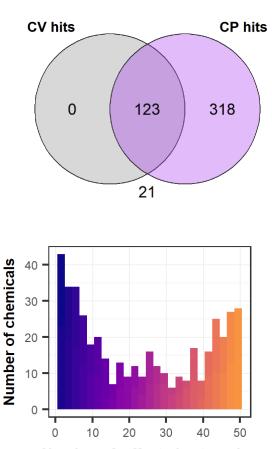
Kavlock et al. (2018) Chem. Res. Tox; 31(5): 287-290

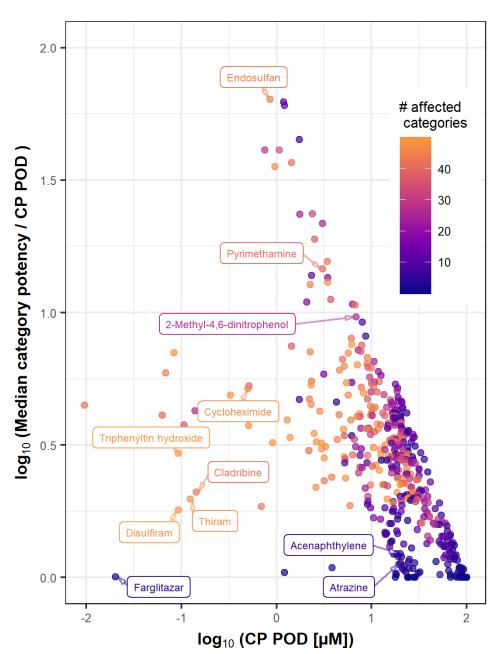
- International collaboration of regulatory scientists focused on developing case studies for evaluating the use of New Approach Methodologies (NAMs) in chemical risk assessment.
- ECHA Workshop (2017) case study focuses on **deriving quantitative estimates of risk based on** NAM-derived potency information and computational exposure estimates

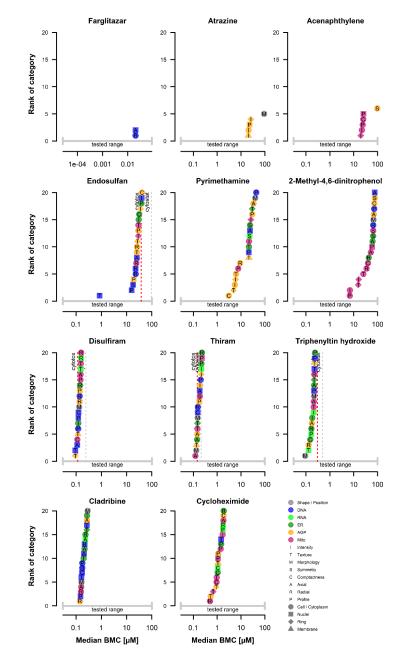

U-2 OS APCRA Screen: Dose Plate Design


	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24					
Α	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	Α	В	С	DMSO	Lal		Reference	Dhonoturio Observations	Test Concentrations
В	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	А	В	С	DMSO	La	bei	Chemicals:	Phenotypic Observations	rest concentrations
с	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	А	В	С	DMSO		_			
D	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	А	В	С	DMSO		\	Berberine	Specific mitochondrial effects	0.03 – 10 uM
E	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	А	В	С	DMSO	· ·	`	Chloride		0.05 10 0101
F	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	Α	В	С	DMSO				Cell hypertrophy control that	
G	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Α	В	С	DMSO			Ftoposido		0.03 - 10 uM
н	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	Α	В	С	DMSO		>	Etoposide	produces effects in every	0.03 - 10 0101
1	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	D	STS	DMSO	DMSO				channel / organelle	
L	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	D	STS	DMSO	DMSO				Effects on AGP channel at sub-	
к	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	D	STS	DMSO	DMSO	(-	Ca-074-Me	cytotoxic doses	0.03 -10 uM
L	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	D	STS	DMSO	DMSO				Effects on DNA and DNA	
м	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	D	STS	DMSO	DMSO	0)	Rapamycin	Effects on RNA and DNA	0.03 - 10 uM
N	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	D	STS	DMSO	DMSO			1 7 -	channels	
0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	D	STS	DMSO	DMSO	ST	S	Staurosporine	Cytotoxicity Control	0.01 -3 uM
Р	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	D	STS	DMSO	DMSO				-,	

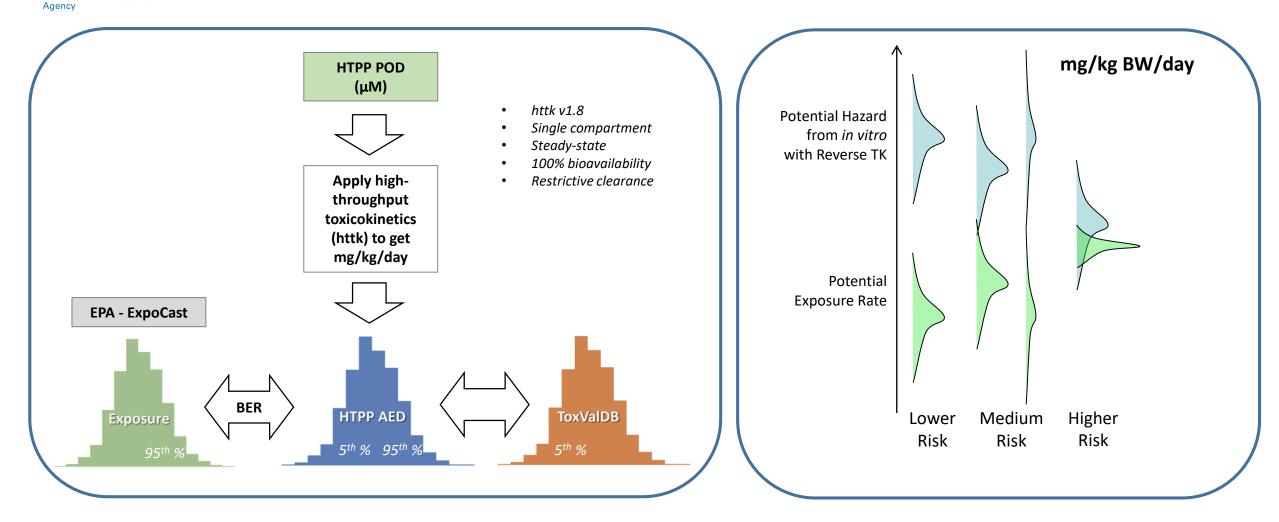
	c2018	-10-14	c2018-	-10-15	c2018	-10-16	c2018	-10-17	c2018	-12-11
Dose Plate ID	СР	CV	СР	CV	СР	CV	СР	CV	СР	CV
LAB-000005	TC00000189	TC00000201	TC00000213	TC00000225	TC00000237	TC00000249	TC00000261	TC00000273		
LAB-000006	TC00000190	TC00000202	TC00000214	TC00000226	TC00000238	TC00000250	TC00000262	TC00000274		
LAB-000007	TC00000191	TC00000203	TC00000215	TC00000227	TC00000239	TC00000251	TC00000263	TC00000275		
LAB-000008	TC00000192	TC00000204	TC00000216	TC00000228	TC00000240	TC00000252	TC00000264	TC00000276		
LAB-000009	TC00000193	TC00000205	TC00000217	TC00000229	TC00000241	TC00000253	TC00000265	TC00000277		
LAB-000010	TC00000194	TC00000206	TC00000218	TC00000230	TC00000242	TC00000254	TC00000266	TC00000278		
LAB-000011	TC00000195	TC00000207	TC00000219	TC00000231	TC00000243	TC00000255	TC00000267	TC00000279		
LAB-000012	TC00000196	TC00000208	TC00000220	TC00000232	TC00000244	TC00000256	TC00000268	TC0000280		
LAB-000013	TC00000197	TC00000209	TC00000221	TC00000233	TC00000245	TC00000257	TC00000269	TC0000281	TC00000294	TC00000298
LAB-000014	TC00000198	TC00000210	TC00000222	TC00000234	TC00000246	TC00000258	TC00000270	TC00000282	TC00000295	TC00000299
LAB-000015	TC00000199	TC00000211	TC00000223	TC00000235	TC00000247	TC00000259	TC00000271	TC0000283	TC00000296	TC00000300
LAB-000016	TC00000200	TC00000212	TC00000224	TC00000236	TC00000248	TC00000260	TC00000272	TC0000284	TC00000297	TC00000301
= Plates in gray	failed QC and h	ad to be re-run								


U-2 OS APCRA Screen: Assay Reproducibility

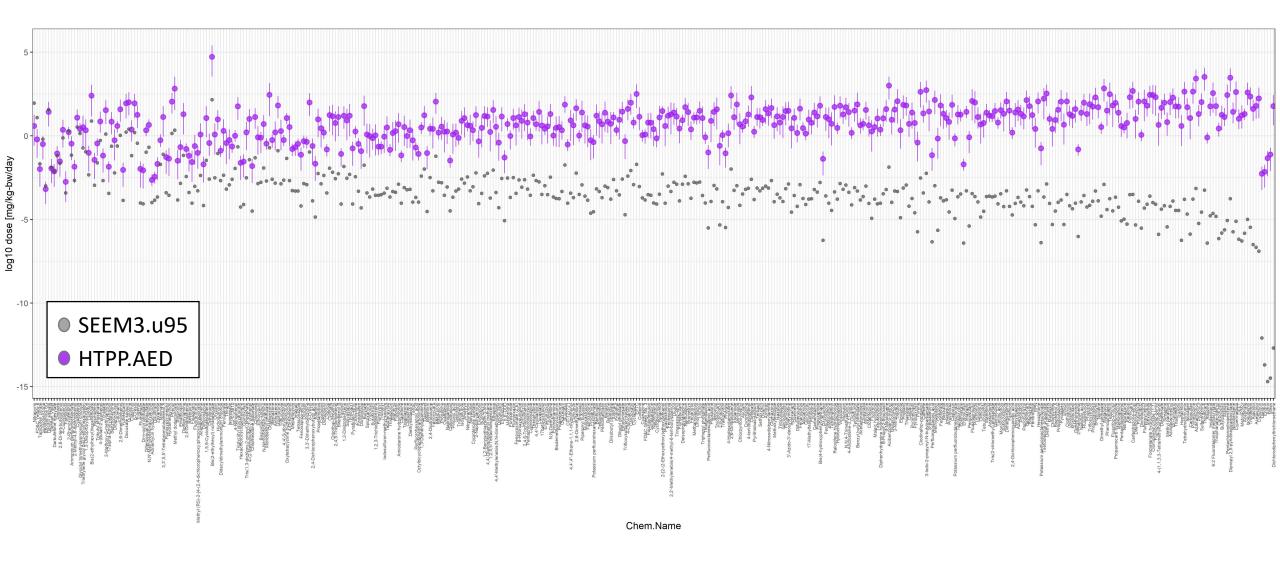




U-2 OS APCRA Screen: Results



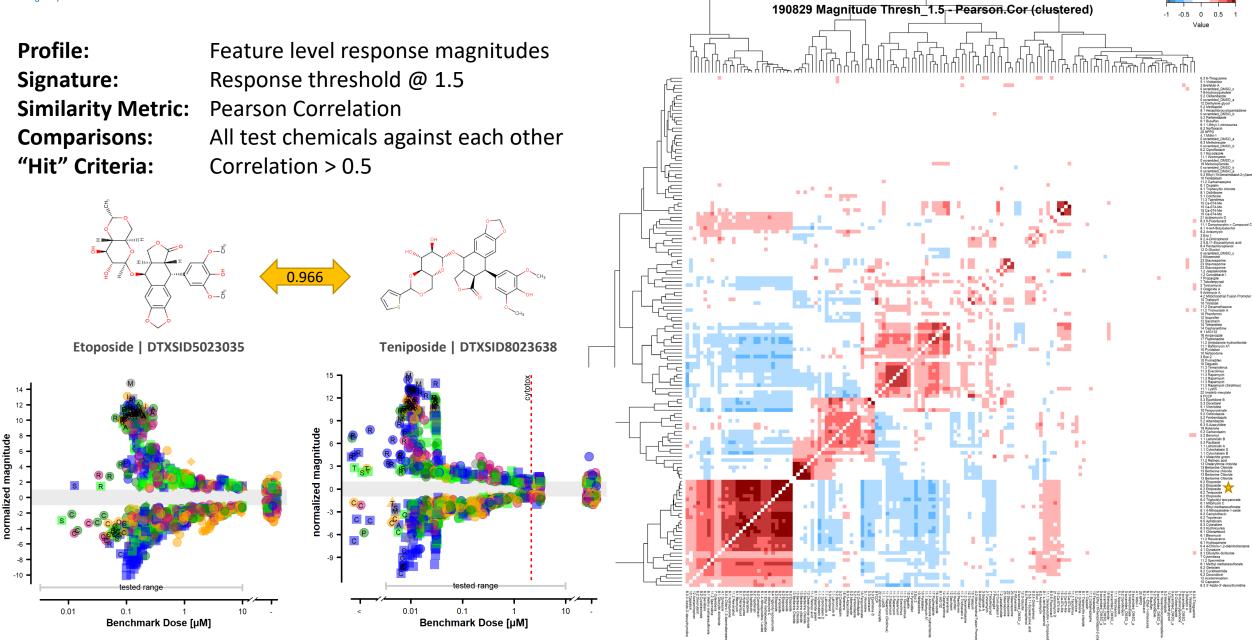
Number of affected categories


EPA United States Environmental Protection *In Vitro*-in-*In Vivo* Extrapolation (IVIVE) & Bioactivity Exposure Ratios (BER)

High-throughput toxicokinetic (httk) modeling: Conversion of *in vitro* bioactivity to *in vivo* steady state concentration (C_{ss}) **Reverse dosimetry:** Conversion of predicted C_{ss} to an administered equivalent dose (AED)

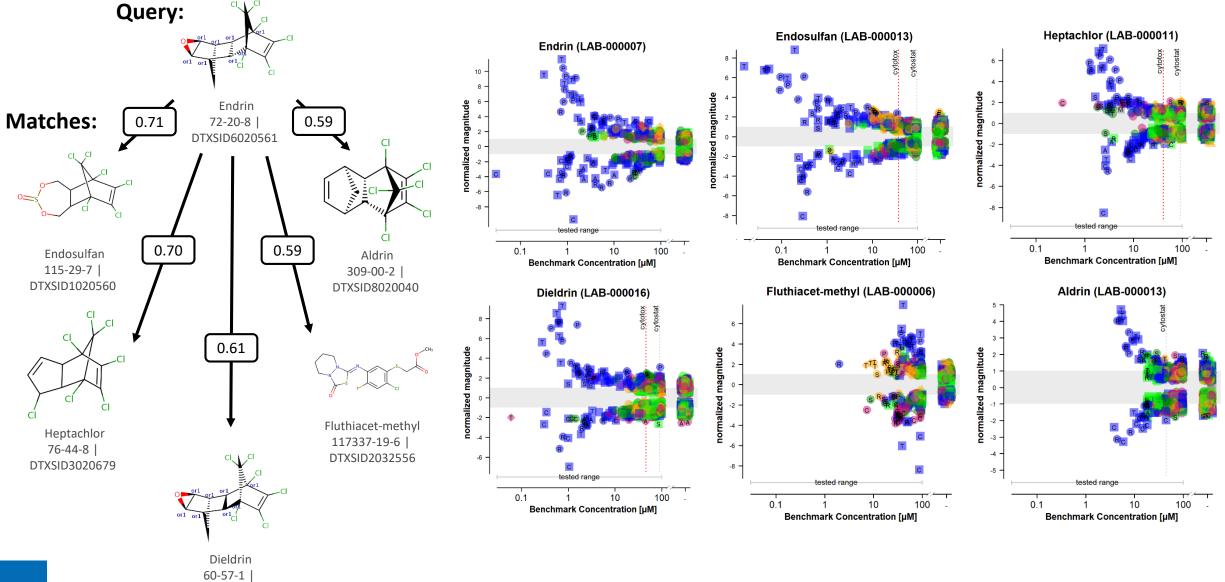
BER Results

• Chemicals with small BER ratio would be of higher priority that chemicals with a large BER ratio.


Read Across Pilot, Experimental Design

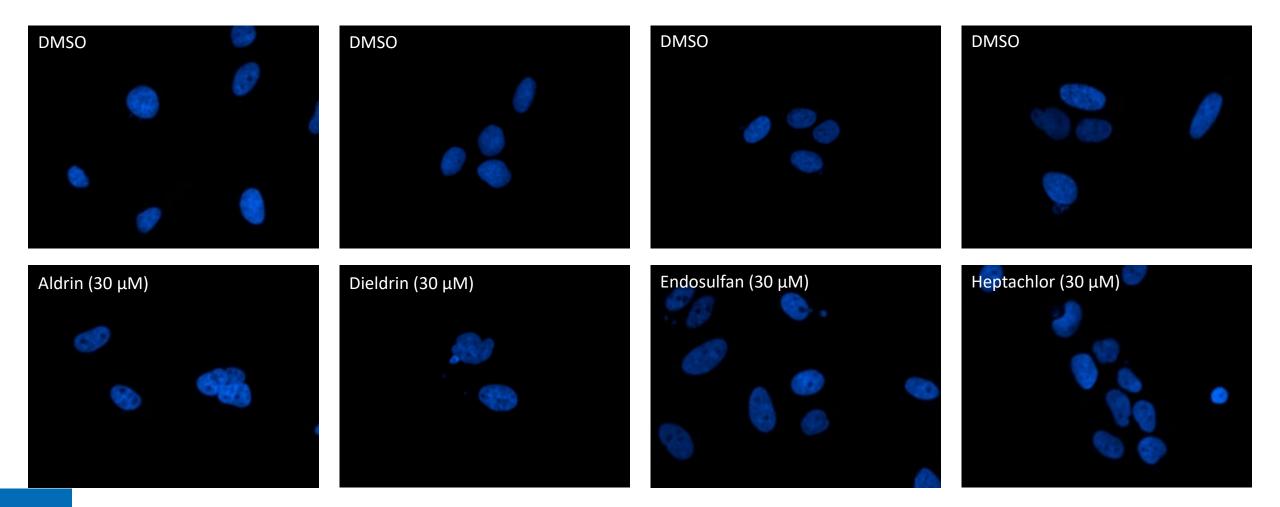
Parameter	Multiplier	Notes				
Cell Type(s)	1	U-2 OS				
Culture Condition	1	DMEM + 10% HI-FBS				
Chemicals	120	Pharmacological Tool Compounds Model Toxicants Structure Series				
Time Points:	1	24 hours				
Assay Formats:	2	Cell Painting Cell Viability				
Concentrations:	8	3.5 log ₁₀ units; semi log ₁₀ spacing				
Biological Replicates:	4	Independent cultures				

Actin cytoskeleton modulators	DNA toxicants: alkylators	Mito. Respiratory complex inhibitor
Actin stabilizers	DNA toxicants: topoisomerase	Autophagy inhibitor
ER modulator	DNA toxicants: antimetabolites	Autophagy activator
Golgi modulator	DNA toxicants: genotoxic	RNA polymerase inhibitor
Mitochondrial fission	Oxidative stress	Benzimidazole structure series
Microtuble modulator	Proteosome inhibitors	Rapamycin analogues
Microtuble stabilizer	Oxidative phosphorylation uncoupler	Ca-074-Me analogues

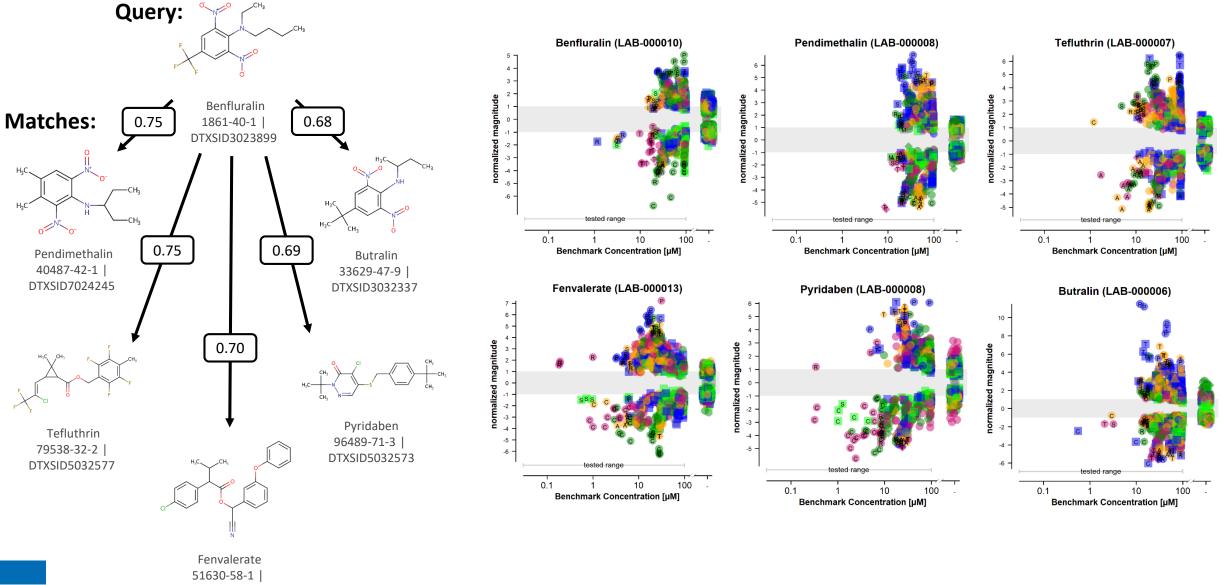


Read Across Pilot, Results (2)

Read Across Example (1)



DTXSID9020453


Organochlorine Pesticides

• Changes in nuclear texture manifest as "holes".

Read Across Example (2)

DTXSID101017940

Summary

- **Workflow:** We have established the Cell Painting assay and developed computational workflows for phenotypic feature extraction, data normalization, concentration-response modeling and generation of phenotypic response profiles.
- **Reproducibility:** Demonstrated reproducibility of potency estimates and phenotypic profiles in the Cell Painting assay using phenotypic reference chemicals.
- **Chemical Screening:** Performed concentration-response screening of a set of environmental chemicals (APCRA) and a set of pharmacological chemicals and model toxicants (RefChem120).
- **Bioactivity Exposure Ratio (BER):** HTPP data may be used in combination with IVIVE and ExpoCast estimates to identify chemicals with bioactivity thresholds in human relevant exposure ranges.
- **Chemical Read Across:** Vector-based similarity approaches were able to identify structurally-related chemicals with similar response profiles.

Acknowledgments

NCCT: Johanna Nyffeler Clinton Willis

Imran Shah Richard Judson Woody Setzer Derik Haggard Katie Paul-Friedman Rusty Thomas

National Toxicology Program: Scott Auerbach

National Center for Computational Toxicology

