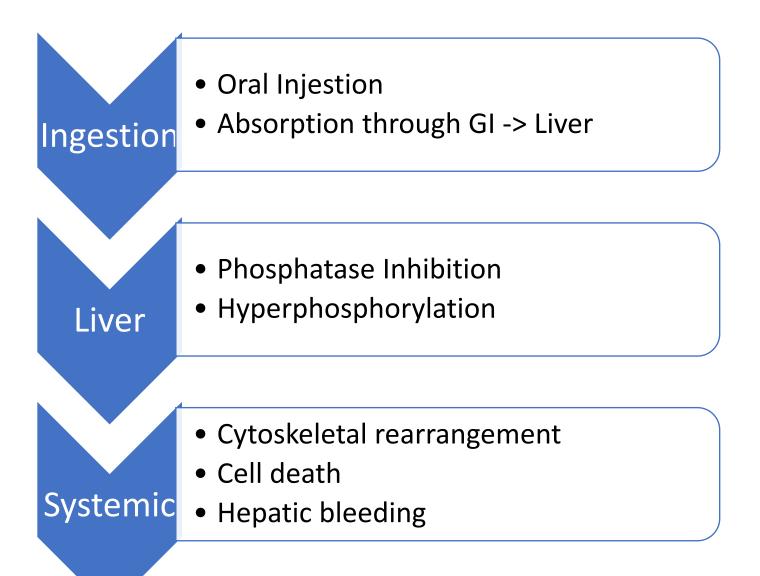

## Global transcriptomic profiling of microcystin-LR or -RR treated hepatocytes (HepaRG)

Adam Biales


### Microcystin congeners

- 100s of congeners
- Differentiated by structure
- Occur in mixtures
- MC-LR best characterized
- MC-RR commonly found w/ -LR



### Prototypical Toxicity Pathway

- MC congeners poorly characterized
  - No mechanistic data
  - Potential for unidentified mechanisms
- MC-LR > -RR toxicity
  - MC-LR  $\approx$  -RR in PP inhibition
  - Toxicokinetics
  - Molecular targets?



# Molecular characterization of MC targets

Gene transcription

- Underlies cellular processes
- Likely to be impacted via phosphatase inhibition
- Generation of hypothesis



### Design and Overview

|         |       |                  |                | Batch N |    |   |         |
|---------|-------|------------------|----------------|---------|----|---|---------|
| Group   | Total | Up-<br>regulated | Down-regulated | 1       | 2  | 3 | N total |
| LR10    | 339   | 230              | 109            | 7       | 6  | 6 | 19      |
| LR100   | 171   | 116              | 55             | 10      | 6  | 6 | 22      |
| LR1000  | 2098  | 1740             | 358            | 6       | 6  | 6 | 18      |
| RR10    | 12    | 11               | 1              | 7       | 6  | 0 | 13      |
| RR100   | 1255  | 1130             | 125            | 10      | 6  | 6 | 22      |
| RR1000  | 1279  | 1138             | 141            | 6       | 6  | 6 | 18      |
| Solvent |       |                  |                | 18      | 12 | 6 | 36      |

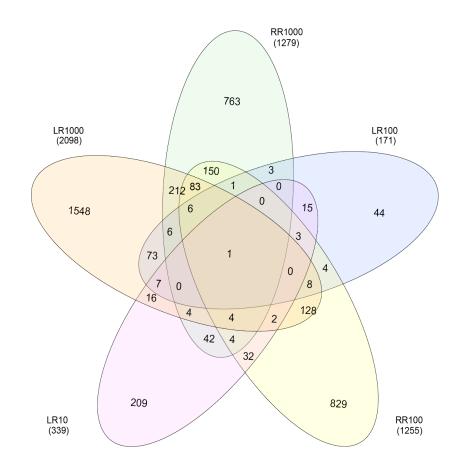


| Treatment | хтт      |
|-----------|----------|
| LR10      | 0.0592   |
| LR100     | 7.24e-05 |
| LR1000    | 9.48e-12 |
| RR10      | 0.3178   |
| RR100     | 0.7634   |
| RR1000    | 0.4227   |

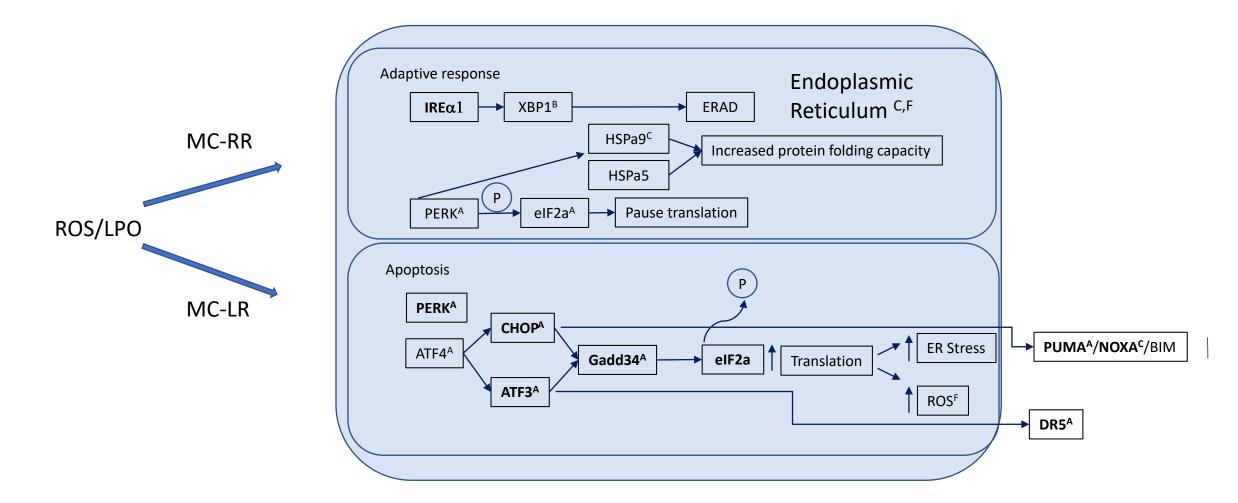
### Consistency of DEGs and enrichment

| LR1000   |      | LR100  |      |
|----------|------|--------|------|
| FOS      | 15.5 | FOS    | 2.64 |
| ATF3     | 8.22 | ATF3   | 1.98 |
| FOSB     | 6.31 | FOSB   | 1.85 |
| IER2     | 4.08 | IER2   | 1.57 |
| RND1     | 3.94 | GADD34 | 1.56 |
| GDNF     | 3.69 | CREB5  | 1.45 |
| NFKBIZ   | 3.08 | KLF6   | 1.37 |
| GADD34   | 3.00 | NOXA   | 1.34 |
| JUN      | 2.68 | DUSP1  | 1.31 |
| SLC25A25 | 2.45 | DUSP8  | 1.30 |

#### LR1000:LR100 (59% overlap)


- bZIP TFs
- FOS family of proteins
- TNF-a signaling pathway

#### LR1000:RR1000 (25% overlap)

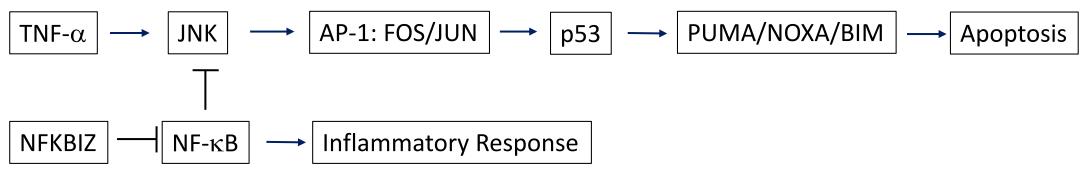

- Aldehyde Dehydrogenase family
- 7/8 members in common

#### RR1000:RR100 (20% overlap)

- Complement
- Extracellular exosome
- acetylation



### Endoplasmic Reticulum Stress Response




### Other common identified targets/processes

- Lipotoxicity
  - ALDH family up-regulated in MC-LR & RR
  - ROS
- Extracellular Exosomes
  - Highly enriched in MC-RR
  - Less so in MC-LR
  - Off-loading misfolded proteins?
  - Extracellular signaling sensitization

### MC-LR specific

- AP-1 constituents
  - Among the most consistently and highly expressed
  - FOS, JUN, ATF
  - TNF-a/JNK signaling



Protein Phosphatases – PP1 and 2

### MC-RR Specific Response

- Enrichment of complement genes
  - Immunity and defence
  - Liver damage Apoptosis
- Diversity of protein phosphatases
  - Little overlap with MC-LR

### Conclusions

- Consistent response
  - w/in study and across
- Oxidative Stress is a key driver of MC toxicity
- ER-stress is important
- MC-LR and –RR differ
  - Toxicity
  - PP targets
- Toxicity confounded with congeners

### Acknowledgements

- Weichun Huang
- David Bencic
- Robert Flick
- Denise Gordon
- Armah Delacruz