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Active Screener can reduce required 
screening by 50% on most projects with 

more than 1,000 references
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4. Exclusion Reason Keyword Highlighting



Existing Datasets

Each reference in the libraries was 
annotated with one of four 
statuses:

Excluded 65,553
Not Acceptable 3,028
Acceptable 19,181
Unreviewed 1,138

Total: 88,900

Exclusion Reason



Existing Datasets

Exclusion Reason Refs Percentage
HUMAN HEALTH 19609 30.41%
CHEM METHODS 16745 25.97%
NO TOXICANT 8074 12.52%
FATE 5184 8.04%
BACTERIA 2961 4.59%
REVIEW 2251 3.49%
SURVEY 1696 2.63%
MIXTURE 1101 1.71%
NON-ENGLISH 1003 1.56%
ABSTRACT 939 1.46%
IN VITRO 805 1.25%
OTHER 701 1.09%
…….. …….. ……..
BIOLOGICAL TOXICANT 105 0.16%

64,480

•Excluded articles also were 
associated with a reason for 
exclusion. 

•The top 20 reasons make up 
over 95% of the data.  The 
remaining terms were combined 
as an "Other" category.  



Howard and Ruder, 2018

ULMFit Classifier (Howard and Ruder, 2018)

Deep Learning



Adding Attention to ULMFit



Results: Acceptable / Not 
Acceptable
Evaluated whether machine learning can be 
used to classify documents as Acceptable vs 
Not Acceptable / Excluded and found that:

– Using Active Screener can save users 
50% of screening effort for many 
datasets.

– Augmenting standard model with 
pretrained model via transfer learning 
provides additional benefits (mean 
improvement of 6.5% WSS over the 
standard Active Screener prioritization 
model, but several datasets had 
significantly larger gains). 



Results: Exclusion Reason
Label Total Refs % Refs Accuracy Recall Precision F1
CHEM METHODS 7022 27.53% 89.77% 74.09% 77.47% 75.74%
HUMAN HEALTH 4752 18.63% 86.43% 69.70% 61.95% 65.60%
FATE 2875 11.27% 95.56% 69.86% 61.39% 65.35%
REVIEW 1800 7.06% 94.23% 60.78% 62.85% 61.80%
BACTERIA 1359 5.33% 95.58% 54.64% 35.69% 43.18%
NON-ENGLISH 940 3.68% 97.53% 68.33% 74.38% 71.23%
SURVEY 914 3.58% 95.89% 49.80% 59.15% 54.08%
MIXTURE 809 3.17% 97.12% 61.54% 55.03% 58.10%
IN VITRO 805 3.16% 95.73% 47.37% 54.55% 50.70%
ABSTRACT 791 3.10% 98.06% 61.19% 54.67% 57.75%
REFS CHECKED 697 2.73% 97.51% 68.84% 57.93% 62.91%
NO SOURCE 370 1.45% 96.25% 57.84% 64.46% 60.97%
NO CONC 336 1.32% 97.89% 51.49% 46.43% 48.83%
MODELING 284 1.11% 98.78% 63.64% 30.43% 41.18%
NO EFFECT 253 0.99% 97.93% 6.86% 17.95% 9.93%
METHODS 249 0.98% 99.47% 60.00% 68.57% 64.00%
FOOD 220 0.86% 99.03% 35.71% 38.46% 37.04%
PUBL AS 157 0.62% 99.25% 37.84% 41.18% 39.44%
NO DURATION 142 0.56% 99.49% 50.00% 60.00% 54.55%
YEAST 111 0.44% 99.55% 70.59% 83.72% 76.60%
OTHER 625 2.44% 95.76% 10.73% 27.85% 15.49%



Adding Attention (IMDB Example)

Positive Review Negative Review



Summary

 Standard Active Screener application saves users 50% screening 
time

 EcoTox Active Screener uses Deep Learning to:

o Save an additional 6.5+% screening time

o Accurately predict exclusion reasons

o Explain its predictions using attention-highlighting

 Models will continue to improve with more data, and several 
methodological enhancements are planned



Next Steps

Phase II of the project…

– Aim 2.1: Additional refinements to machine learning models that can be 
used to automatically identify, with high precision, those references that can be 
deemed non-acceptable/non-applicable for the EcoTox database, and to 
categorize excluded references according to a selection from a list of pre-
defined rationales.

– Aim 2.2: Modify Active Screener to operationalize the above models and 
to better serve EcoTox data curation pipeline. 

– Aim 2.3: Publish results in a suitable journal or conference.

– Aim 2.4: Investigate feasibility of developing models to extract the 
approximately 4,000 Effects Groups and Measurement Codes from full-text 
documents.



More info about Sciome and 
Active Screener at our 

website:

www.sciome.com
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