

The US-EPA CompTox Chemicals Dashboard to support Non-Targeted Analysis

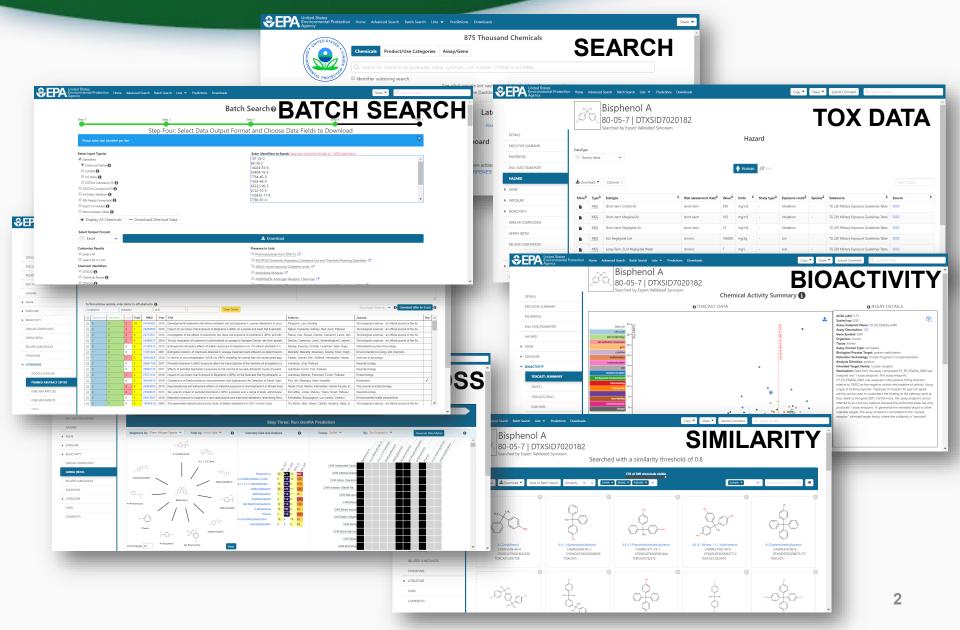
Antony Williams

Center for Computational Toxicology and Exposure, US-EPA, RTP, NC

...and an enormous cast of characters

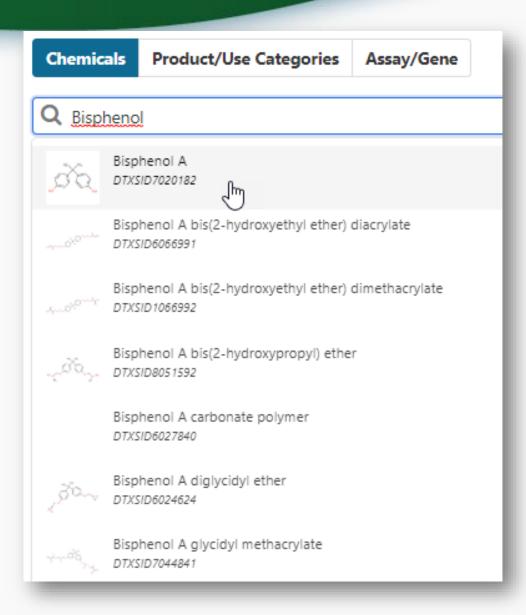
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

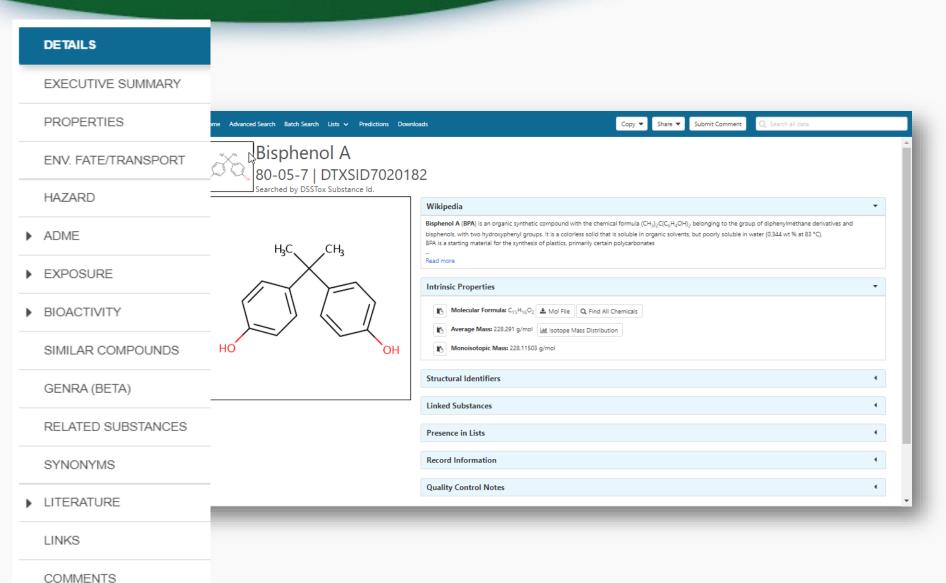
Outline

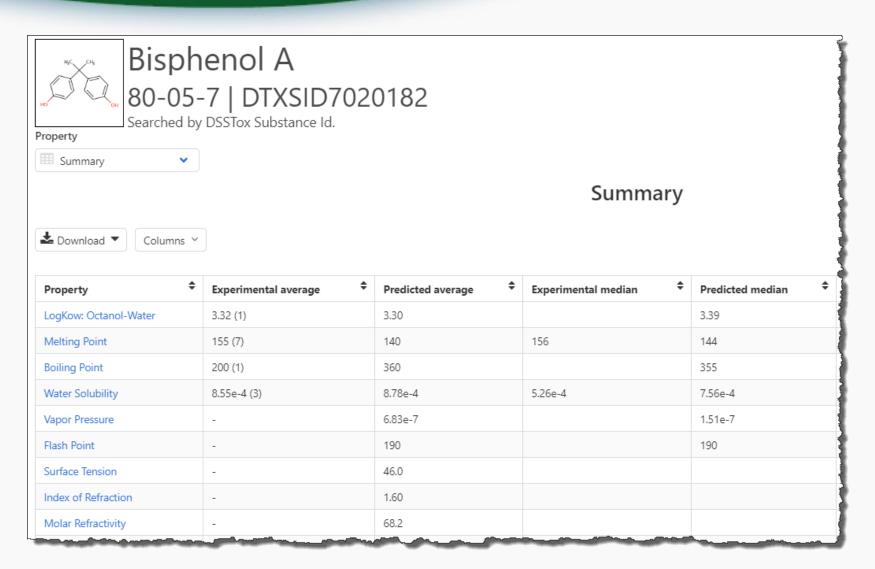


- Quick overview of the dashboard
- Specific data of interest to this audience (it's not just Computational Toxicology)
- Support for Mass Spectrometry
- Data quality in the public domain
- Work in progress prototypes
- A request for help

CompTox Chemicals Dashboard

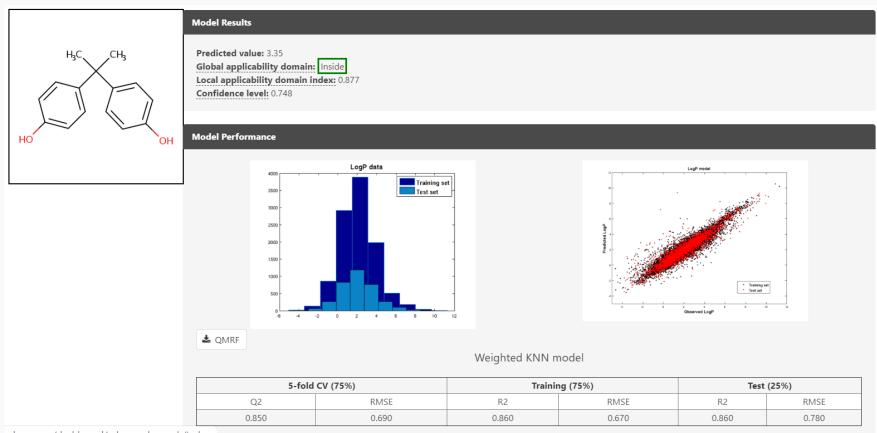

https://comptox.epa.gov/dashboard


BASIC Search


Detailed Chemical Pages

Properties, Fate and Transport

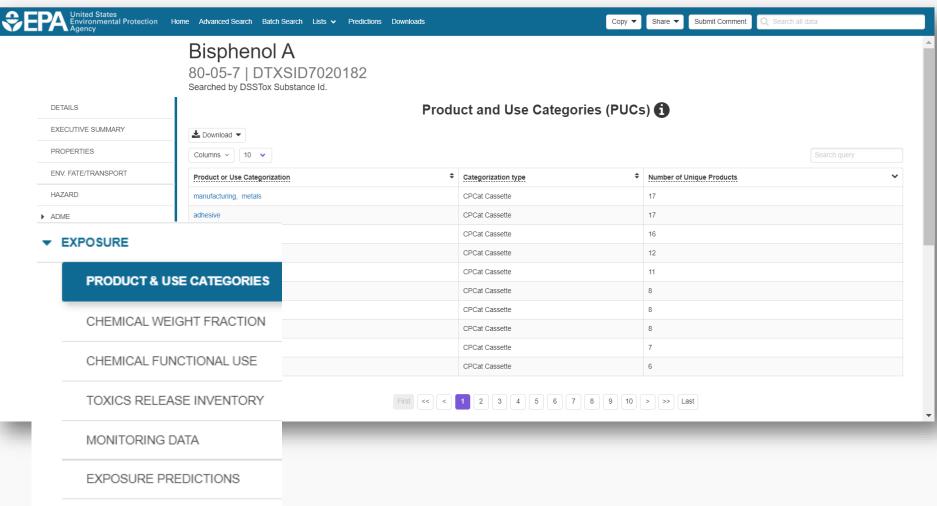
Properties, Fate and Transport e.g. Solubility



L Download Experimental Data ▼	
Source \$	Result ‡ I
PhysPropNCCT	5.26e-4
Tetko et al. J. Chem. Inf. and Comp. Sci. 41.6 (2001): 1488-1493	1.51e-3
Kovdienko, et. al. Molecular informatics 29.5 (2010): 394-406.	5.25e-4

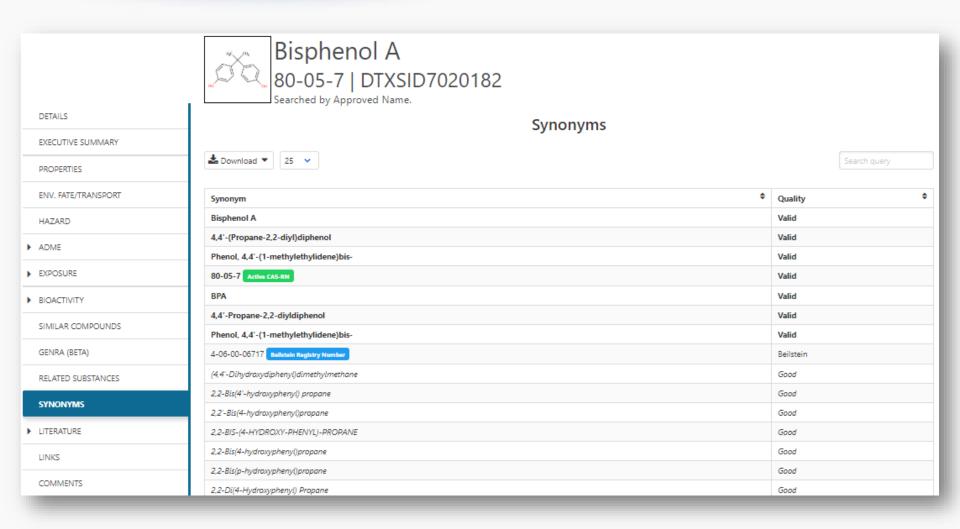
Source \$	Result \$	Calculation Details		
EPISUITE	7.56e-4	Not Available		
NICEATM	1.31e-3	Not Available		
TEST	1.24e-3	TEST Report		
OPERA	5.44e-4	OPERA Model Report [Inside AD]		
OPERA2	5.35e-4	Not Available		

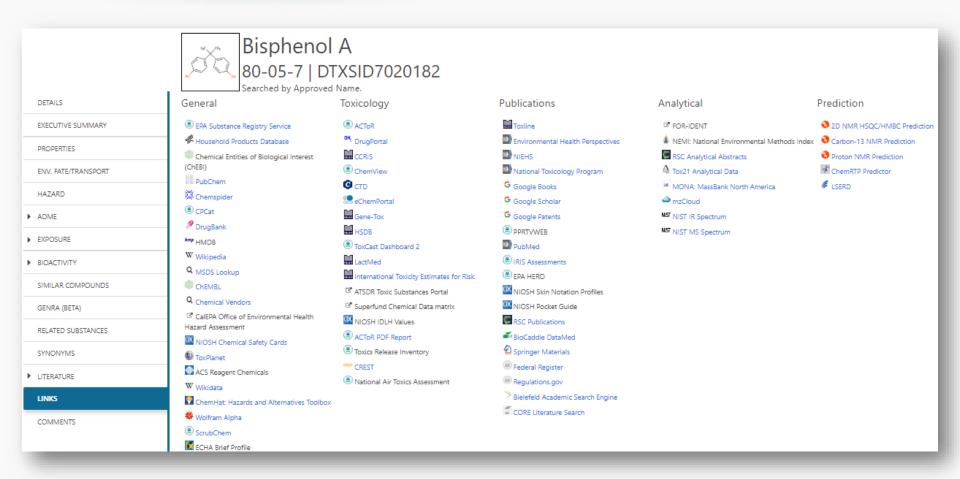
Properties, Fate and Transport e.g. logP



od.epa.gov/dashboard/advanced search/index

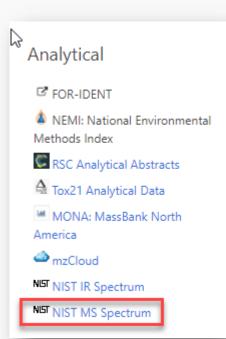
Sources of Exposure to Chemicals

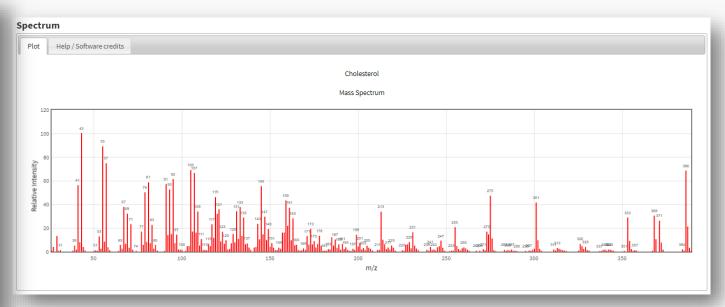

PRODUCTION VOLUME


Identifiers to Support Searches

Link Access

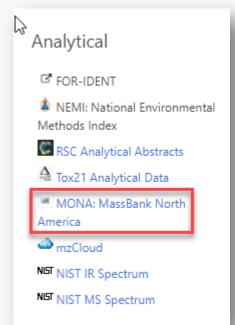
Mass Spec Links

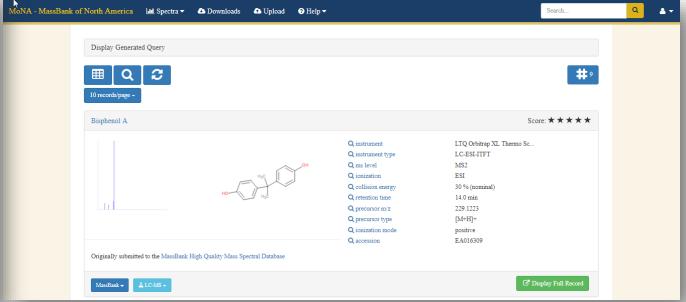



Analytical

- RSC Analytical Abstracts
- ♠ Tox21 Analytical Data
- MONA: MassBank North America
- mzCloud
- NIST IR Spectrum
- NIST MS Spectrum
- MassBank
- NEMI: National Environmental Methods Index
- NIST Antoine Constants
- IR Spectra on PubChem
- NIST Kovats Index values

NIST WebBook https://webbook.nist.gov/chemistry/





MassBank of North America https://mona.fiehnlab.ucdavis.edu

Batch Searching

Aggregate data for a list of chemicals

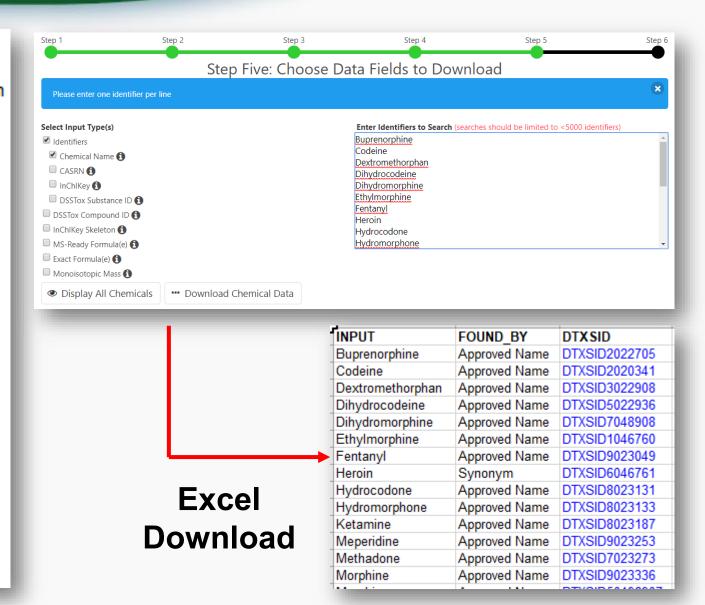
Trends in Environmental Analytical Chemistry

Volume 20, October 2018, e00059

Opioid occurrence in environmental water samples—A review

Marina Celia Campos-Mañas a, Imma Ferrer b ≥ 🖾, E.Michael Thurman b, Ana Agüera a

■ Show more


https://doi.org/10.1016/j.teac.2018.e00059

Get rights and content

Batch Search Names

Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone Ketamine Meperidine Methadone Morphine Morphinone Naloxone Naltriben 0xycodone Oxymorphone Propoxyphene Sufentanil Tramadol

Add Other Data of Interest

Chemical Identifiers

- ✓ DTXSID
- Chemical Name
- ☐ DTXCID **(**)
- ✓ CAS-RN
- ✓ InChlKey <a>f
- ☐ IUPAC Name 🚯

Structures

- ☐ Mol File 🚯
- SMILES 1
- ☐ InChI String **1**
- ✓ MS-Ready SMILES
- QSAR-Ready SMILES (1)

Intrinsic And Predicted Properties

- Molecular Formula 6
- Average Mass 6
- ✓ Monoisotopic Mass

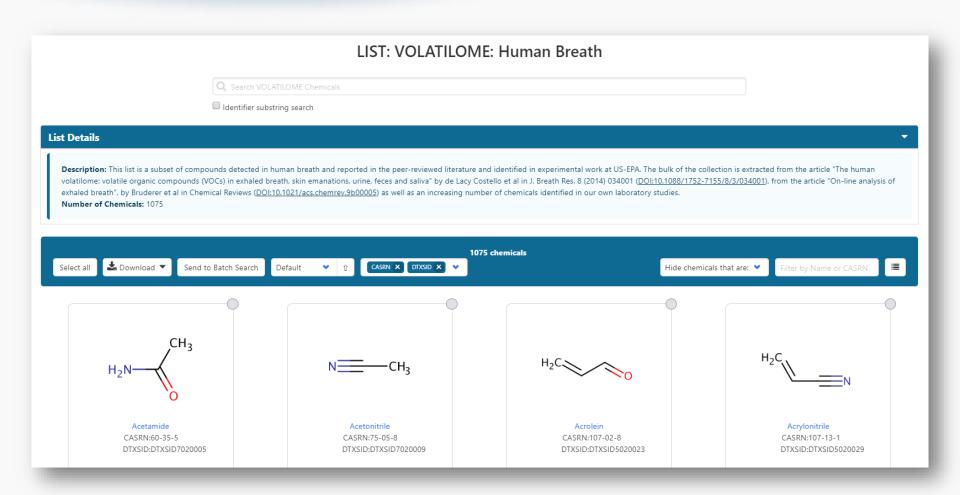
 ⑤
- TEST Model Predictions
- OPERA Model Predictions

	DTVAID	0.000			
INPUT	DTXSID	CASRN	_	MONOISOTOPIC	
Buprenorph	DTXSID202	52485-79-7	C29H41NO4	467.3035588	[H]C12CC3=C4C
Codeine	DTXSID202	76-57-3	C18H21NO3	299.1521435	[H]C12CC3=C4C
Dextrometh	DTXSID302	125-71-3	C18H25NO	271.1936144	[H]C12CC3=C(C=
Dihydrocode	DTXSID502	125-28-0	C18H23NO3	301.1677936	[H]C12CC3=C4C
Dihydromor	DTXSID704	509-60-4	C17H21NO3	287.1521435	[H]C12CC3=C4C
Ethylmorph	DTXSID104	76-58-4	C19H23NO3	313.1677936	[H]C12CC3=C4C
Fentanyl	DTXSID902	437-38-7	C22H28N2O	336.2201635	CCC(=O)N(C1CC
Heroin	DTXSID604	561-27-3	C21H23NO5	369.1576228	[H]C12CC3=C4C
Hydrocodon	DTXSID802	125-29-1	C18H21NO3	299.1521435	[H]C12CC3=C4C
Hydromorph	DTXSID802	466-99-9	C17H19NO3	285.1364935	[H]C12CC3=C4C
Ketamine	DTXSID802	6740-88-1	C13H16CINO	237.0920418	CNC1(CCCCC1=
Meperidine	DTXSID902	57-42-1	C15H21NO2	247.1572289	CCOC(=0)C1(CC
Methadone	DTXSID702	76-99-3	C21H27NO	309.2092645	CCC(=O)C(CC(C)
Morphine	DTXSID902	57-27-2	C17H19NO3	285.1364935	[H]C12CC3=C4C
Morphinone	DTXSID501	467-02-7	C17H17NO3	283.1208434	[H]C12CC3=C4C
Naloxone	DTXSID802	465-65-6	C19H21NO4	327.1470582	[H]C12CC3=C4C
Naltriben	-	-	-	-	-
Oxycodone	DTXSID502	76-42-6	C18H21NO4	315.1470582	[H]C12CC3=C4C
Oxymorpho	DTXSID502	76-41-5	C17H19NO4	301.1314081	[H]C12CC3=C4C
Propoxyphe	DTXSID102	469-62-5	C22H29NO2	339.2198292	CCC(=O)OC(CC1
Sufentanil	DTXSID602	56030-54-7	C22H30N2O2S	386.2027994	CCC(=O)N(C1=C
Tramadol	DTXSID908	27203-92-5	C16H25NO2	263.188529	COC1=CC=CC(=

Chemical Lists of Interest...

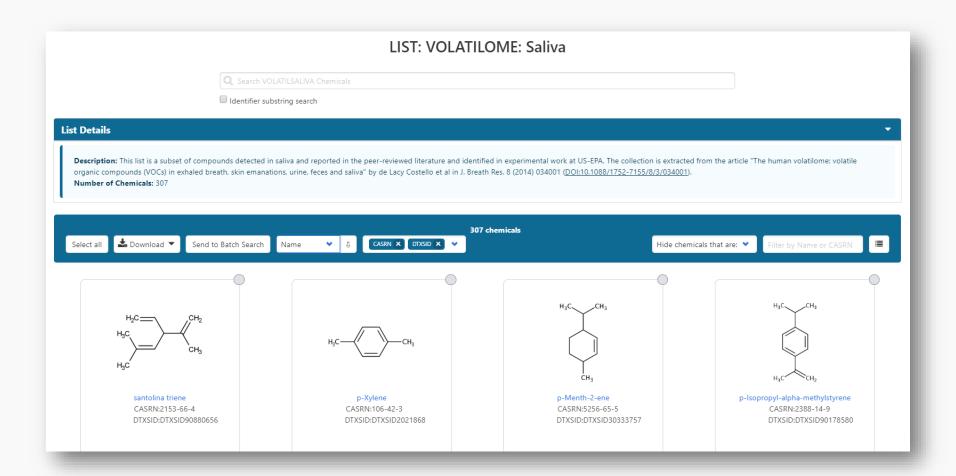
225 Chemical Lists (and growing)

Home	Advanced Search	Batch Search	Lists 🗸	Predictions	Downloads
			Lists of Ch		
			List of Assa		


Columns ~

mass Copy Filtered Lists URL

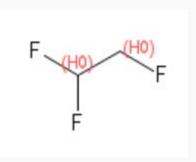
List Acronym 🕏	List Name \$	Last Updated 🕏	Number of Chemicals ♥	List Description
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from Agriculture and Agri-Food Canada, Government of Canada


"Volatilome" Human Breath

"Volatilome" Saliva

PFAS lists of Chemicals

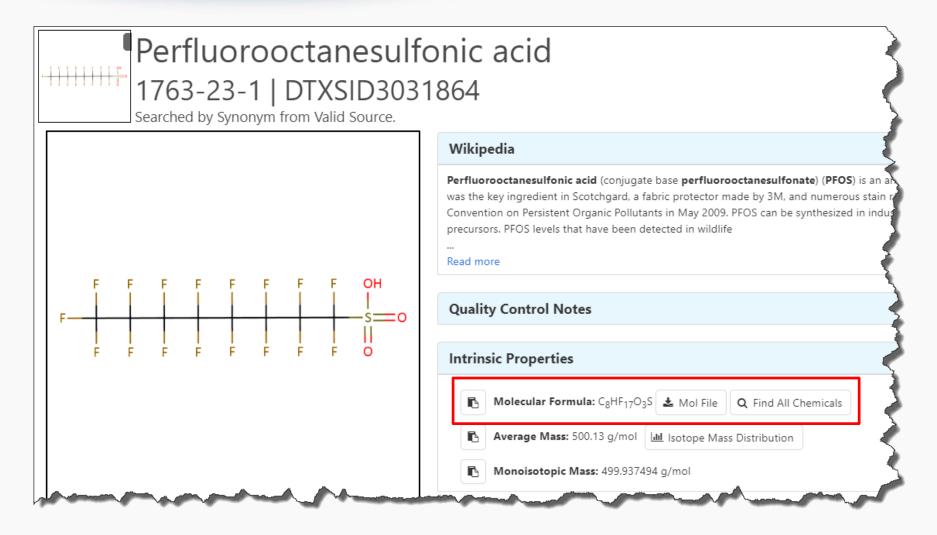
Select List



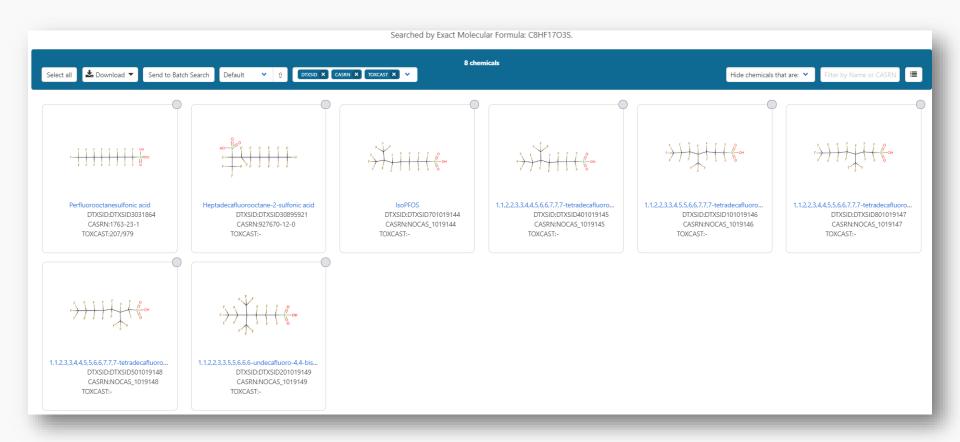
List Acronym	List Name \$	Last Updated 🕏	Number of Chemicals 🕏	List Description	
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the Nationa Toxicology Program.	
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.	
EPAPFASCAT	PFAS EPA Structure- based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.	
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.	
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.	
EPAPFASRL	PFAS EPA: Cross-Agency Research List	2017-11-16	199	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly-fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.	
PFASKEMI	PFAS: List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2416	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.	
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.	
PFASOECD	PFAS: Listed in OECD Global Database	2018-05-16	4729	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs) listing more than 4700 new PFAS	
PFASTRIER	PFAS Community- Compiled List (Trier et al., 2015)	2017-07-16	597	PFASTRIER community-compiled public listing of PFAS (Trier et al, 2015)	

Building a "reference" PFAS list

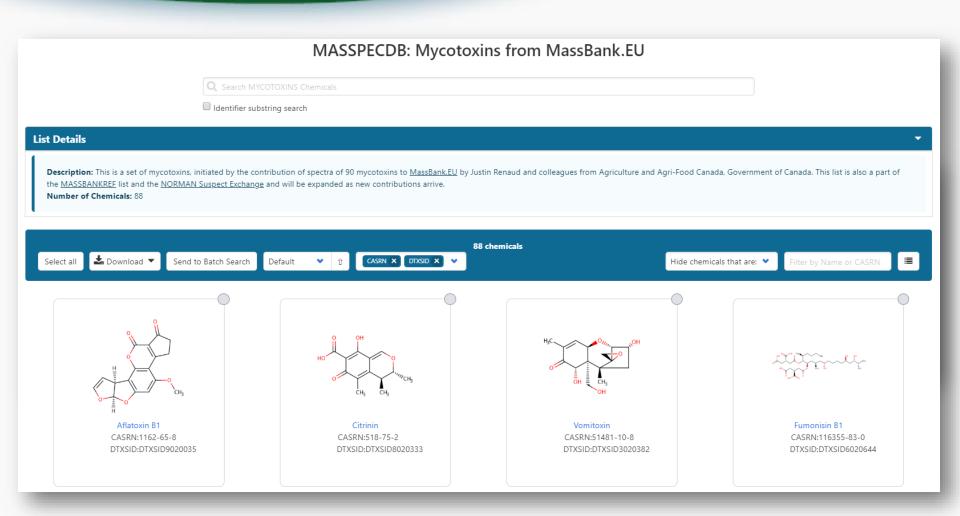
 PFAS structure list (PFASSTRUCT) is expanded from public databases, agency lists and literature

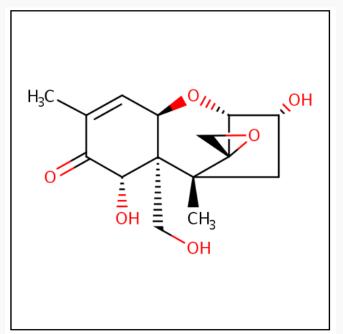


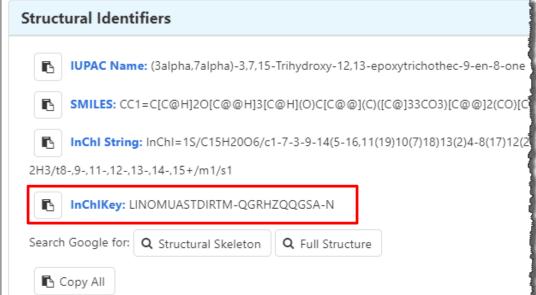
- Approaching ~7000 structures 98.8% have associated CAS Numbers
- Compare with PubChem 220,720 structures


Formula Search can find isomers

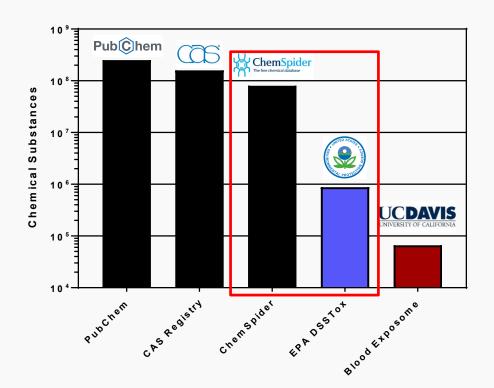

Active expansion of the PFAS list From 2 to 8 variants of PFOS


Disinfection By-Products

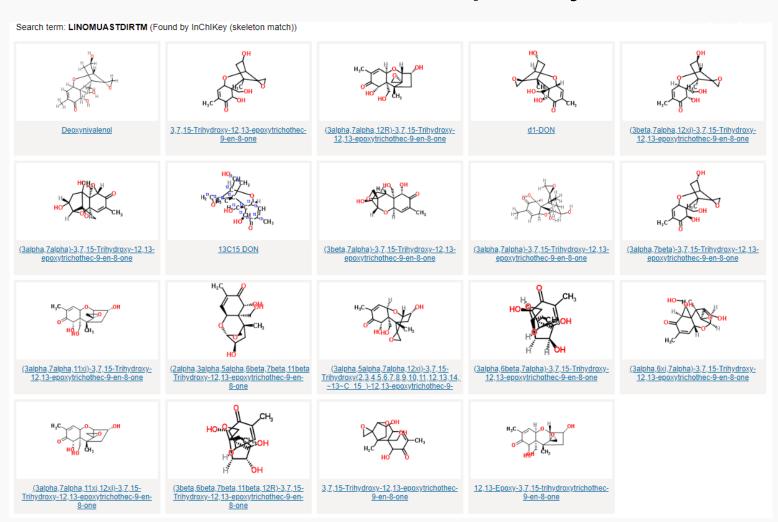

Mycotoxins



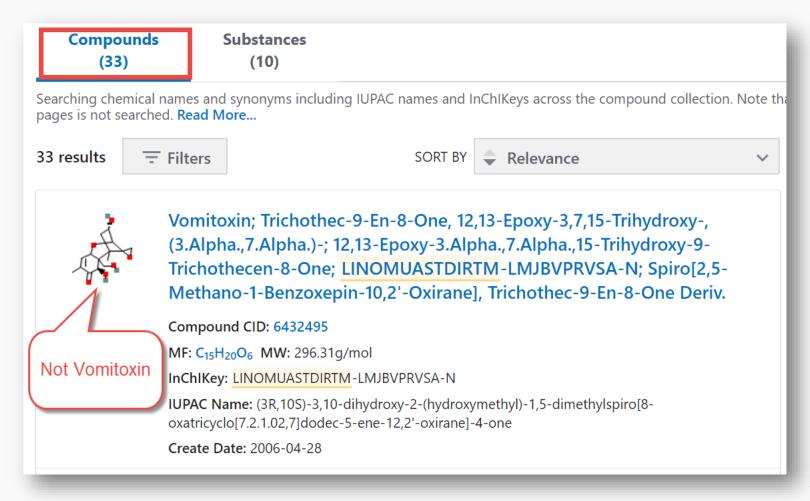
Vomitoxin



BIG databases are GREAT!


- Thanks to all of the public database efforts
- So much benefit from what's been done
- There are hundreds of them at this point...

Vomitoxin - ChemSpider


19 "Vomitoxins" – 3 isotopically labeled

Vomitoxin – PubChem

33 unique InChl Keys

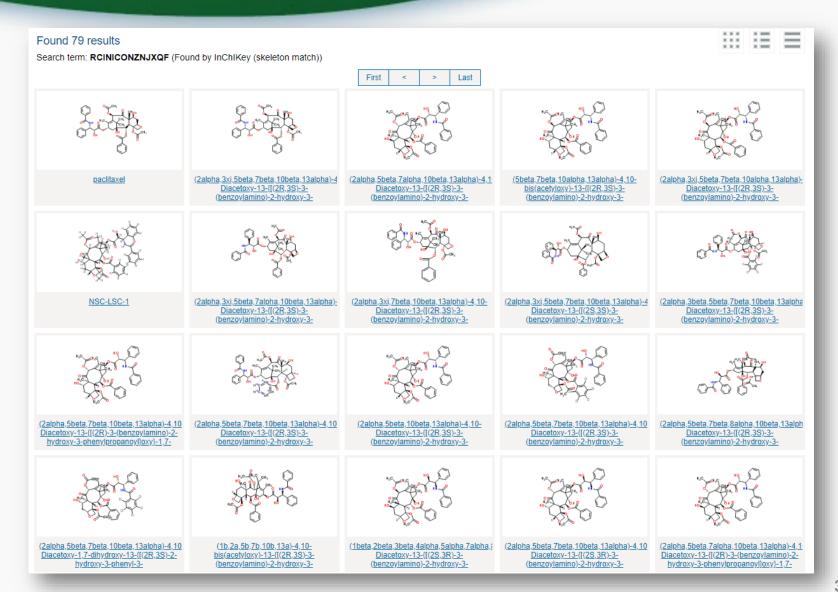
PubChem – "virtual chemistry"

 Other databases grow quickly...a lot of "virtual chemistry" and "make on demand" compounds.
 Vomitoxin has 7 ZINC stereoforms.

PUBCHEM_CID	Compound_Name	Compound_Synonym	InChlKey
98043267	(1R,2S,3R,7R,9S,10R,12S)	ZINC100006545	LINOMUASTDIRTM-DOZBXCHUSA-N
98051113	(1R,2R,3S,7S,9S,10R,12S)	ZINC100066010	LINOMUASTDIRTM-KCWNRFLPSA-N
100853641	(1R,2R,3S,7S,9S,10R,12R)	ZINC229762267	LINOMUASTDIRTM-OMTHLLQNSA-N
98043268	(1R,2S,3R,7S,9S,10R,12S)	ZINC100006546	LINOMUASTDIRTM-UBTIPYQWSA-N
95566296	(1R,2S,3R,7R,9R,10R,12S)	ZINC71789640	LINOMUASTDIRTM-WYQUPHEGSA-N
100853642	(1R,2R,3S,7R,9S,10R,12R)	ZINC229762273	LINOMUASTDIRTM-XFRIDARHSA-N
95566297	(1R,2S,3R,7S,9R,10R,12S)	ZINC71789642	LINOMUASTDIRTM-XGQZSAOASA-N

 The Dashboard database grows slowly (next release is +20k chemicals in 6 months)

ChemSpider – lots of virtuals???



 52 million chemicals from one vendor

Data Sources			
Data Source	Count	<u>Date</u> <u>Created</u>	<u>Last</u> <u>Updated</u>
Aurora Fine Chemicals	<u>51885566</u>	13/04/2009	09/01/2020
Chemspace	14283313	30/11/2016	04/12/2018
AKos	12326374	15/04/2008	09/10/2017
<u>Mcule</u>	9299739	21/01/2014	26/10/2018
Molport	8200357	09/02/2010	09/01/2020
<u>Enamine</u>	3056649	15/04/2008	15/10/2019

Taxol: 79 Results

Data Quality is important

Data quality in free web-based databases!

Review Keynote

Towards a gold standard: **ELSEVIER** quality in public domain

Drug Discovery Today

Volume 16, Issues 17-18, September 2011, Pages 747-750

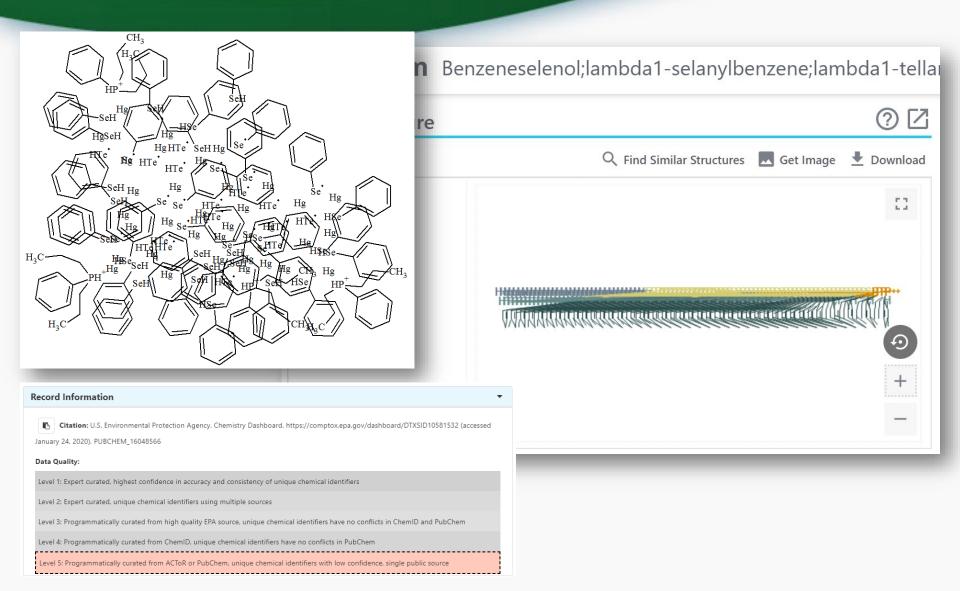
databases and approaches

⊞ Show

Machines first, humans second: on the importance Antony), of algorithmic interpretation of open chemistry data

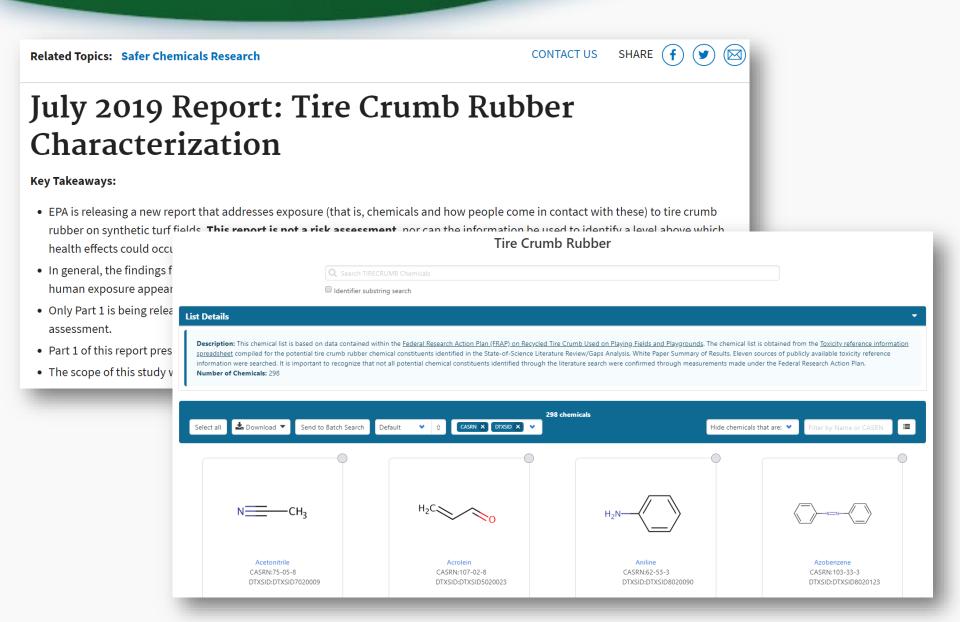
Alex M Clark M, Antony J Williams and Sean Ekins

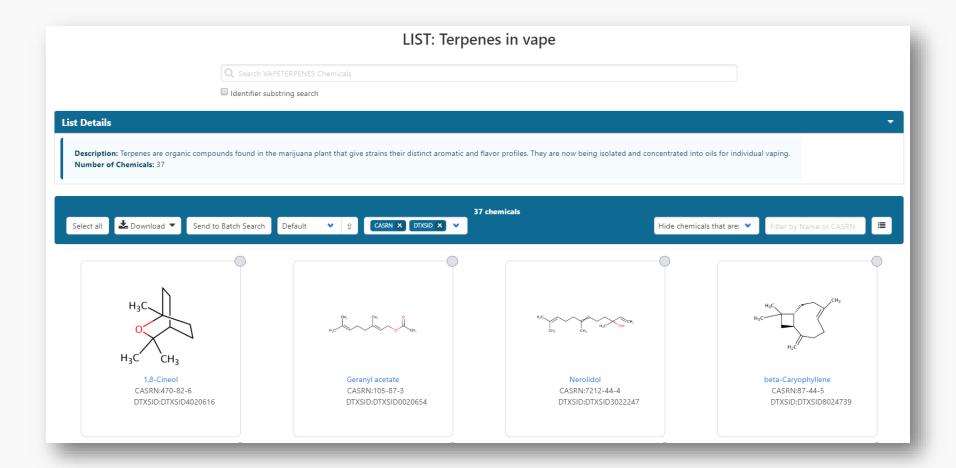
Journal of Cheminformatics 2015 7:9


https://doi.org/10.1186/s13321-015-0057-7 © Clark et al.; licensee Springer. 2015

Received: 24 November 2014 | Accepted: 23 February 2015 | Published: 22 March 2015

and content


We're still cleaning data too


Tire Crumb Rubber (298)

Terpenes in Vape (37)

Hydraulic Fracturing (1640)

EPA's Study of Hydraulic Fracturing and Its Potential Impact on Drinking Water Resources

Contact Us

Hydraulic Fracturing Study Home

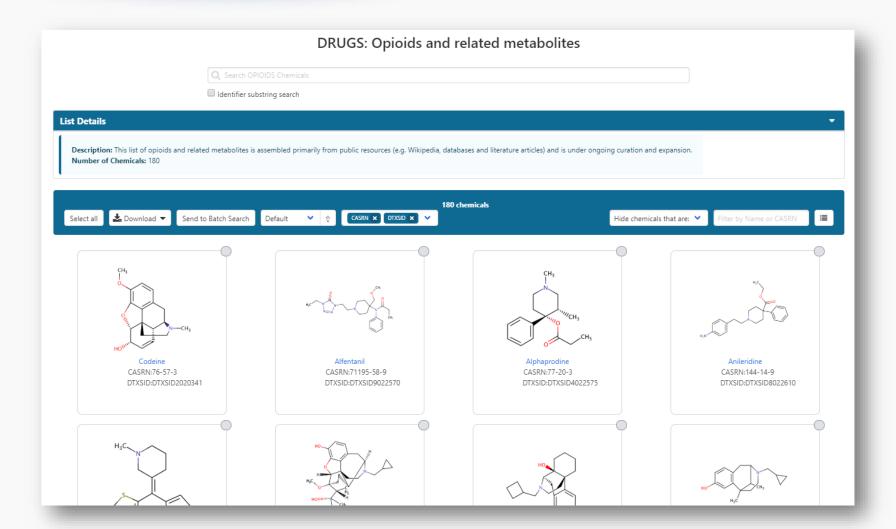
Final Assessment

EPA Published Research

Fact Sheets

Questions & Answers about the final assessment

Multi-agency collaboration on unconventional oil and gas research


EPA Hydraulic Fracturing -Agency Main Page

Hydraulic Fracturing For Oil And Gas: Impacts From The Hydraulic

WATER|EPA; Chemicals associated with hydraulic fracturing Identifier substring search List Details Description: Chemicals used in hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to the Appendix H of EPA's Hydraulic Fracturing fluids and/or identified in produced water from 2005-2013, corresponding to the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydraulic Fracturing fluids and the Appendix H of EPA's Hydra 2016). Citation: U.S. EPA, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-16/236F, 2016. https://www.epa.gov/hfstudy *Note that Appendix H chemical listings in Tables H-2 and H-4 were mapped to current DSSTox content, which has undergone additional curation since the publication of the original EPA HF Report (Dec 2016). In the few cases where a Chemical Name and CASRN from the original report map to distinct substances (as of Jan 2018), both were included in the current EPAHFR chemical listing for completeness; additionally, 34 previously unmapped chemicals in Table H-5 are now registered in DSSTox (all but 2 assigned CASRN) and, thus, have been added to the current EPAHFR listing. Number of Chemicals: 1640 Send to Batch Search Hide chemicals that are: 💙 Acrolein CASRN:107-02-8 CASRN:79-06-1 CASRN:107-13-1 CASRN:309-00-2 DTXSID:DTXSID5020023 DTXSID:DTXSID5020027 DTXSID:DTXSID5020029 DTXSID:DTXSID8020040

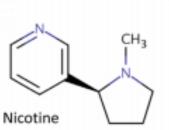
Opioids and Metabolites (160)

"MS-ready" structures

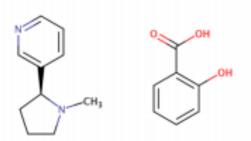
McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2 Journal of Cheminformatics

METHODOLOGY

Open Access

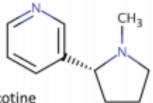

"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}


Overview of MS-Ready Structures

- All structure-based chemical substances are algorithmically processed to
 - Split multicomponent chemicals into individual structures
 - Desalt and neutralize individual structures
 - Remove stereochemical bonds from all chemicals
- MS-Ready structures are then mapped to original substances to provide a path between chemicals detected by mass spectrometry to original substances

CN1CCC[C@H]1C1=CN=CC=C1 DTXSID1020930| SNICXCGAKADSCV 54-11-5 | **162.1157**| 0.929| **72** Tox: **yes**| Expo: **yes**| Bioassay: **yes**



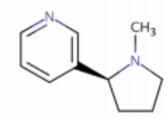
Benzoic acid, 2-hydroxy-, compd. with 3-[(2S)-1-methyl-2-pyrrolidinyl]pyridine (1:1)

OC(=0)C1=C(0)C=CC=C1.CN1CCC[C@H]1C1=CN=CC=C1

DTXSID5075319 | AIBWPBUAKCMKNS 29790-52-1 | 300.1474 | 0.929 | 6

Tox: no | Expo: yes | Bioassay: no

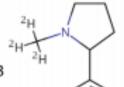
D-Nicotine


CN1CCC[C@@H]1C1=CN=CC=C1 DTXSID004635| SNICXCGAKADSCV 25162-00-9 | **162.1157**| 0.929| **20** Tox: **no**| Expo: **yes**| Bioassay: **yes**

MS-ready
DL-Nicotine

CN1CCCC1C1=CN=CC=C1
DTXSID3048154 | SNICXCGAKADSCV
22083-74-5 | **162.1157** | 0.953 | 9
Tox: **yes** | Expo: **no** | Bioassay: **yes**

LEGEND: Name, SMILES DTXSID | InChIKey 1st Block


CAS | Monoiso. Mass | logP | Sources Data on: Toxicity | Exposure | Bioassays

HCI

Nicotine hydrochloride

CI.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID602093| HDJBTCAJIMNXEW 2820-51-1 | **198.0924** | 0.929| **9** Tox: **no**| Expo: **yes**| Bioassay: **yes**

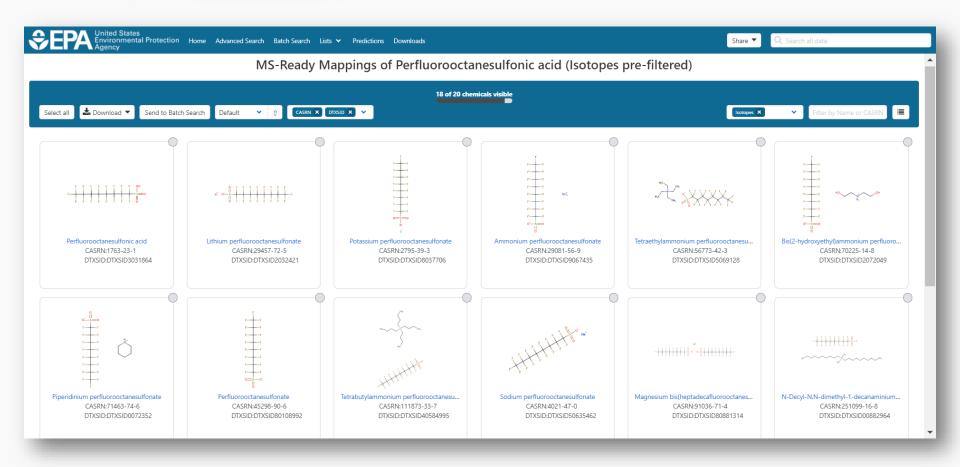
DL-Nicotine-d3

[2H]C([2H])([2H])N1CCCC1C1=CN=CC=C1 DTXSID80442666| SNICXCGAKADSCV 69980-24-1| **165.1345**| 0.929| **1**

Tox: no | Expo: no | Bioassay: no

MS-Ready Mappings from Details Page

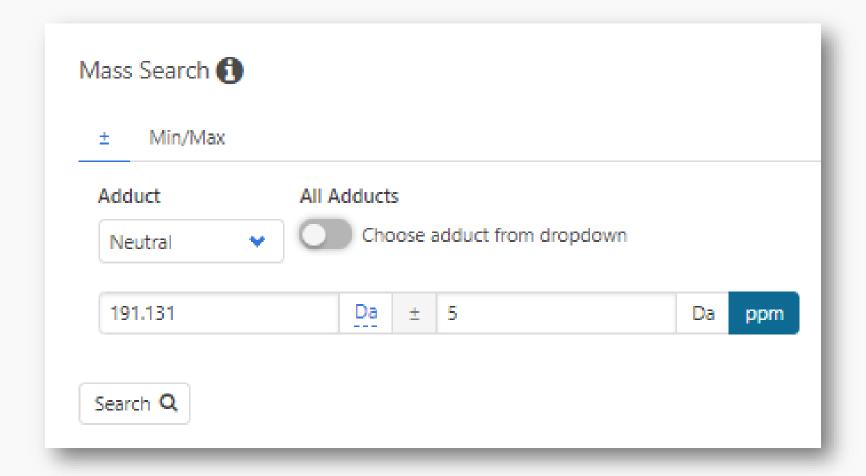
F F F F F F F OH


ed search/index

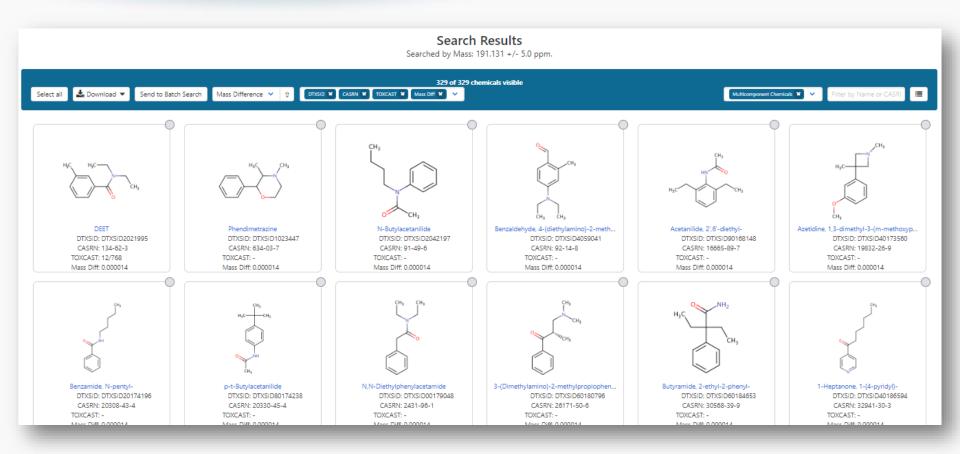
Wikipedia Perfluorooctanesulfonic acid (conjugate base perfluorooctanesulfonate) (PFOS) is an anthropogenic fluorosurfactant and global pollutant. PFOS was the key ingredient in Scotchgard, a fabric protector made by 3M, and numerous stain repellents. It was added to Annex B of the Stockholm Convention on Persistent Organic Pollutants in May 2009. PFOS can be synthesized in industrial production or result from the degradation of precursors. PFOS levels that have been detected in wildlife Read more **Quality Control Notes** Intrinsic Properties Structural Identifiers Linked Substances Same Connectivity: 4 records (based on first layer of InChl) Mixtures, Components and Neutralized Forms: 9 records (based on QSAR ready mappings and with the compound as a component of a mixture) MS-Ready Mappings: DTXCID1011864: 18 records; Similar Compounds: 83 records (based on Tanimoto coefficient > 0.8)

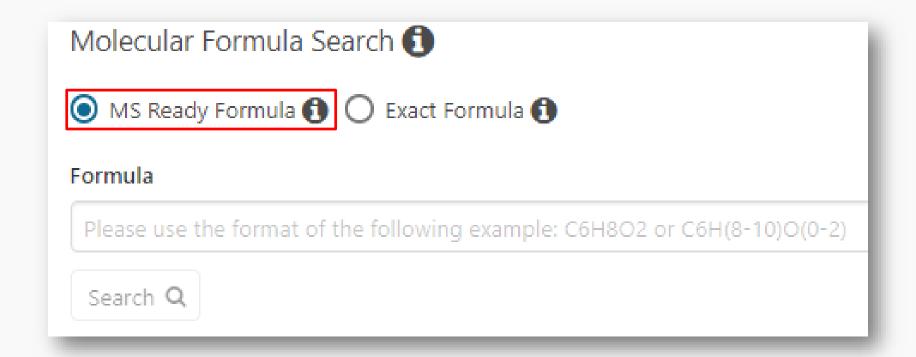
44

MS-Ready Mappings Set of 20 substances for "PFOS"

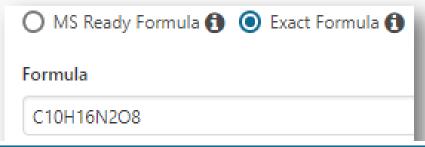


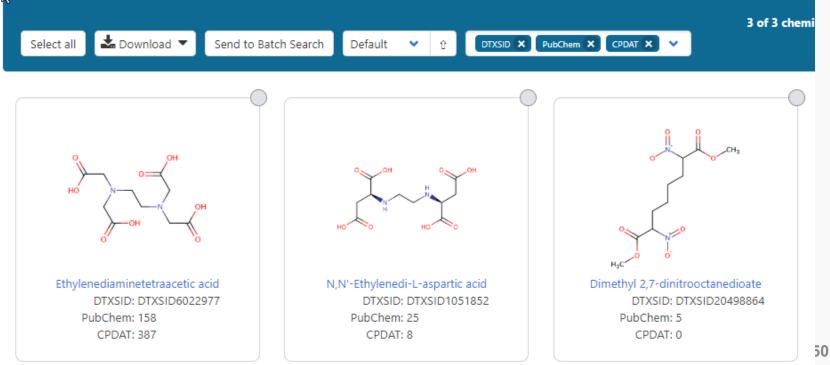
Mass and Formula Searching


Advanced Searches Mass Search


Advanced Searches Mass Search

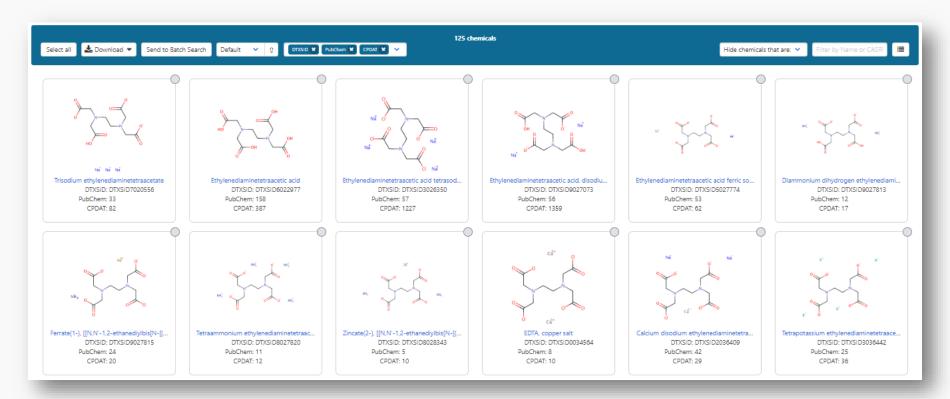
MS-Ready Structures for Formula Search





MS-Ready Mappings

EXACT Formula: C10H16N2O8: 3 Hits



MS-Ready Mappings

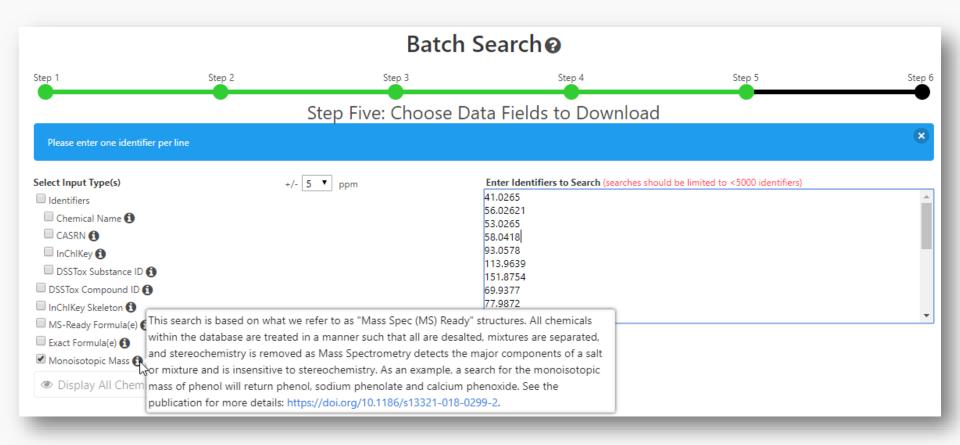
- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

MS-Ready Mappings

- 125 chemicals returned in total
 - 8 of the 125 are single component chemicals
 - 3 of the 8 are isotope-labeled
 - 3 are neutral compounds and 2 are charged
- Multiple components, stereo, isotopes and charge all collapsed and mapped through MS-Ready

Batch Searching mass and formula

Batch Searching


 Singleton searches are useful but we work with thousands of masses and formulae!

Typical questions

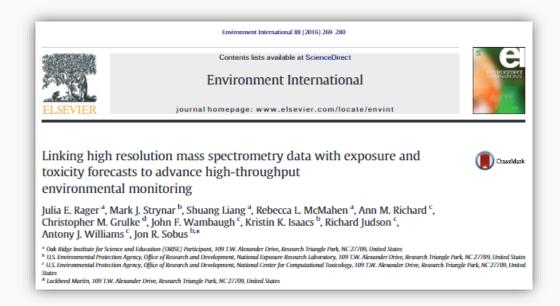
- What is the list of chemicals for the formula C_xH_yO_z
- What is the list of chemicals for a mass +/- error
- Can I get chemical lists in Excel files? In SDF files?
- Can I include properties in the download file?

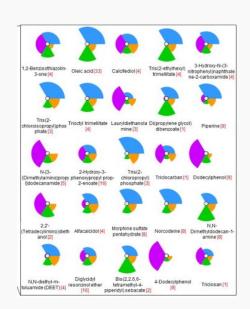
Batch Searching Formula/Mass

Searching batches using MS-Ready Formula (or mass) searching

		<u> </u>	•	i i i a c	o) ocaroning	_		
	4	A	В	С	D	E	F	G
	_	INPUT	DTXSID	CASRN		MOL FORMULA	MONOISOTOPIC MASS	
		C14H22N2O3	DTXSID2022628	29122-68-7		C14H22N2O3	266.163042576	46
		C14H22N2O3	DTXSID0021179	6673-35-4		C14H22N2O3		32
		C14H22N2O3	DTXSID4048854	841-73-6		C14H22N2O3		20
		C14H22N2O3	DTXSID1045407	13171-25-0		C14H24Cl2N2O3		19
		C14H22N2O3	DTXSID0045753	56715-13-0		C14H22N2O3		19
		C14H22N2O3	DTXSID2048531	5011-34-7		C14H22N2O3		14
		C14H22N2O3	DTXSID10239405			C14H22N2O3		12
		C14H22N2O3	DTXSID50200634		. , , , , , , , , , , , , , , , , , , ,	C14H22N2O3	266.163042576	7
		C14H22N2O3	DTXSID4020111	51706-40-2	,	C14H23CIN2O3		6
				51963-82-7		C14H22N2O3	266.163042576	5
				154-21-2		C18H34N2O6S		35
			DTXSID7047803	859-18-7		C18H35CIN2O6S		22
	_		DTXSID20849438		_	C18H35CIN2O6S		1
		C10H12N2O	DTXSID1047576	486-56-6		C10H12N2O		40
		C10H12N2O	DTXSID8075330	50-67-9		C10H12N2O		22
		C10H12N2O	DTXSID8044412	2654-57-1		C10H12N2O		18
		C10H12N2O	DTXSID80165186			C10H13CIN2O		11
		C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine			10
2		C10H12N2O	DTXSID10196105			C10H12N2O		9
		C10H12N2O	DTXSID90185693			C10H12N2O		7
		C10H12N2O	DTXSID40178777			C10H12N2O		7
		C10H12N2O	DTXSID80157026			C10H12N2O		6
2		C10H12N2O	DTXSID30205607			C10H12N2O	176.094963014	6
2		C14H18N4O3	DTXSID5023900	17804-35-2	•	C14H18N4O3		68
2		C14H18N4O3	DTXSID3023712	738-70-5		C14H18N4O3	290.137890456	51
2		C14H18N4O3	DTXSID40209671			C14H19CIN4O3	326.1145682	8
2		C14H18N4O3	DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,		290.137890456	5
2		C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
		C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-			3
		C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)-		308.14845514	3
	32	C14H18N4O3	DTXSID20241155	94232-27-6	L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
		C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny			3
		C14H18N4O3	DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam	C14H18N4O3		3
	35	C12H11N7	DTXSID6021373	396-01-0	Triamterene	C12H11N7		52
	36	C12H11N7	DTXSID00204465	5587-93-9		C12H11N7	253.107593382	7
	37	C12H11N7	DTXSID5064621	7300-26-7		C12H9N7		4
	38	C12H11N7	DTXSID00848025	90293-82-6	Sulfuric acid6-phenylpteridine-2,4,7-triamine (1/1)	C12H13N7O4S		1
:	39	C12H11N7	DTXSID50575293	92310-83-3		C12H11N7	253.107593382	1
4	40	C8H9NO2	DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2		75
	11	CSHOVIUS	DTYSID6026667	13/1 20/3	Mothyl 2 aminohonzoato	C8H0NU3	1E1 UE3338E34	6 0

Batch Search in specific lists




	INPUT	DTXSID	MASSBANKREF	NEMILIST	WRTMSD	NORMANPRI	SUSDAT
i	Buprenorph	DTXSID202:	-	_	Υ	-	Υ
	Codeine	DTXSID202	Υ	Υ	Υ	Υ	Υ
	Dextrometh	DTXSID302:	Υ	Υ	Υ	_	Υ
	Dihydrocode			-	Υ	Υ	Υ
$-\overline{N}$	Dihydromor	DTXSID704	-	_	-	-	Υ
	Ethylmorph	DTXSID104	-	_	Υ	-	Υ
_ ::	Fentanyl	DTXSID902:	Υ	_	Υ	-	Υ
M V	Heroin	DTXSID604	Υ	_	Υ	Υ	Υ
₩ N.	Hydrocodor	DTXSID802:	Υ	Υ	Υ	Υ	Υ
_ IV	Hydromorph	DTXSID802:	-	_	Υ	-	Υ
	Ketamine	DTXSID802:	Υ	_	Υ	-	Υ
₩ N-	Meperidine	DTXSID902:	Υ	_	Υ	-	Υ
	Methadone	DTXSID702:	Υ	Υ	Υ	-	Υ
₩ N	Morphine	DTXSID902:	Υ	Υ	Υ	Υ	Υ
	Morphinone	DTXSID501!	-	_	_	-	Υ
<u>~</u> №	Naloxone	DTXSID802:	-	_	Y	-	Υ
	Naltriben	-	-	_	_	-	-
	Oxycodone	DTXSID502:	Υ	Υ	Υ	Υ	Υ
$-\overline{N}$	Oxymorpho	DTXSID502:	-	_	Υ	-	Υ
	Propoxyphe	DTXSID102:	Υ	Υ	Υ	-	Υ
_ ::	Sufentanil	DTXSID602:	-	_	Υ	-	Υ
	Tramadol	DTXSID908	Υ	Υ	Υ	Υ	Υ

Benefits of bringing it all together

- The true dashboard benefit is integration
- Rank potential candidates for toxicity using available data – hazard, exposure, in vitro

Candidate ranking using metadata

C American Society for Mass Spectrometry, 2011

J. Am. Soc. Mass Spectrom. (2012) 23:179–185DOI: 10.1007/s13361-011-0265-y

RESEARCH ARTICLE

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

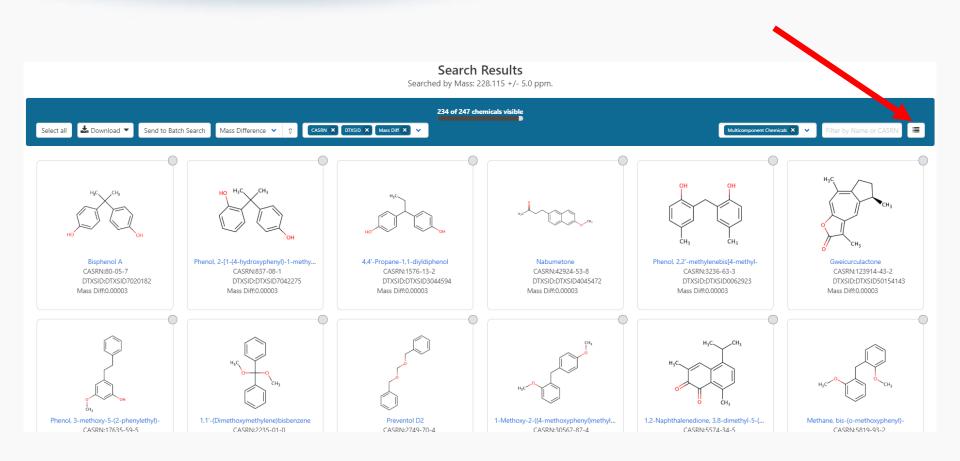
Data Source Ranking of "known unknowns"

 A mass and/or formula search is for an *unknown* chemical but it is a *known* chemical contained within a reference database

 Most likely candidate chemicals have the most associated data sources, most associated literature articles or both C14H22N2O3 266.16304

Chemical Reference Database

Sorted candidate structures


Data Streams for Ranking

- CompTox Dashboard Data Sources
- Pub©hem Data Source Count
- Publ@ed.gov Reference Count
- Toxcast in vitro bioactivity
- Presence in CPDat database
- OPERA PhysChem Properties
- Other possibilities predicted media occurrence, frequency of InChls online

Search 228.115 +/- 5.0 ppm 234 single component chemicals

Search 228.115 +/- 5.0 ppm 234 single component chemicals

CASRN	QC Level	CPDat Count	Number of Sources	PubChem Data Sources	PubMed Ref. Counts
80-05-7	Level 1	326	170	161	3850
42924-53-8	Level 2	14	45	138	342
87619-52-1	Level 5	0	2		0
87607-32-7	Level 5	0	2		0

The original ChemSpider work

Compound class	Number in class	Average rank	Number of compounds in each position rank-ordered				
			#1	#2	#3	#4	#5+
Pharmaceutical drug	72	1.4	55	9	6	2	
Industrial chemicals	42	5.5	28	6	3		5
Personal care products	8	6.1	3	1			4
Steroid hormones	7	1.0	7				
Perfluorochemicals	6	1.2	5	1			
Pesticides	12	2.3	6	2	3		1
Veterinary drugs	3	1.3	2	1			
Dyes	2	1.0	2				
Food product/natural compounds	4	3.8	2			1	1
Illicit drugs	2	2.0	1		1		
Misc. molecules	3 a	1.3	2	1			

Is a bigger database better?

chemical structures

- ChemSpider was 26 million chemicals for the original work
- Much BIGGER today
- Is bigger better??
- Are there other metadata to use for ranking?

Comparing Search Performance

Anal Bioanal Chem (2017) 409:1729–1735 DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran 1 · Jon R. Sobus 2 · Antony J. Williams 3

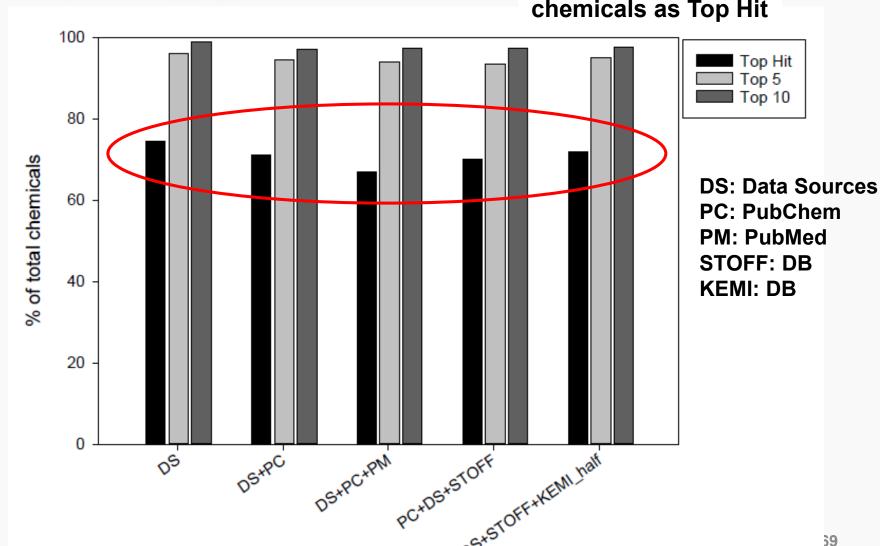
- When dashboard contained 720k chemicals
- Only 3% of ChemSpider size
- What was the comparison in performance?

SAME dataset for comparison

Compound class	Number in class	Average rank	Number of compounds in each position rank-ordered				
			#1	#2	#3	#4	#5+
Pharmaceutical drug	72	1.4	55	9	6	2	
Industrial chemicals	42	5.5	28	6	3		5
Personal care products	8	6.1	3	1			4
Ster sid homones Perfluorochemicals		SAME	7 5)A	TA.	SE	T
Pesticides	12	2.3	6	2	3		1
Veterinary drugs	3	1.3	2	1			
Dyes	2	1.0	2				
Food product/natural compounds	4	3.8	2			1	1
Illicit drugs	2	2.0	1		1		
Misc. molecules	3 ^a	1.3	2	1			

How did performance compare?

	Mass-based sear	Mass-based searching		searching
	Dashboard	ChemSpider	Dashboard	ChemSpider
Average rank position	1.3	2.2ª	1.2	1.4
Percent in #1 position	85%	70%	88%	80%


^a Average rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the average rank position is 3.5

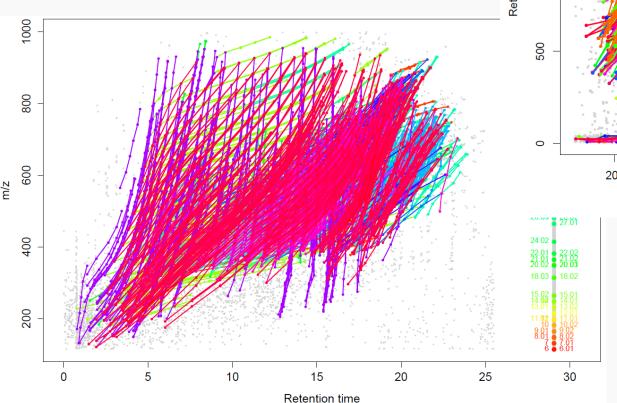
For the same 162 chemicals, Dashboard outperforms ChemSpider for both Mass and Formula Ranking

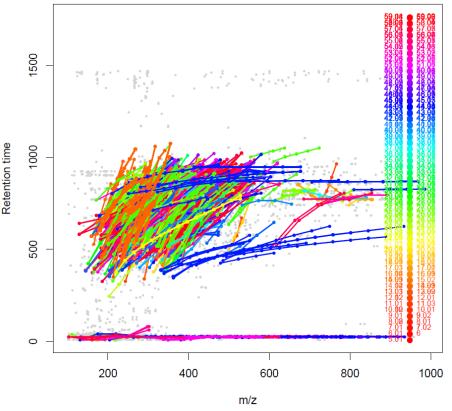
Identification ranks for 1783 chemicals using multiple data streams

Data Sources alone rank ~75% of the chemicals as Top Hit

"UVCB" Chemicals

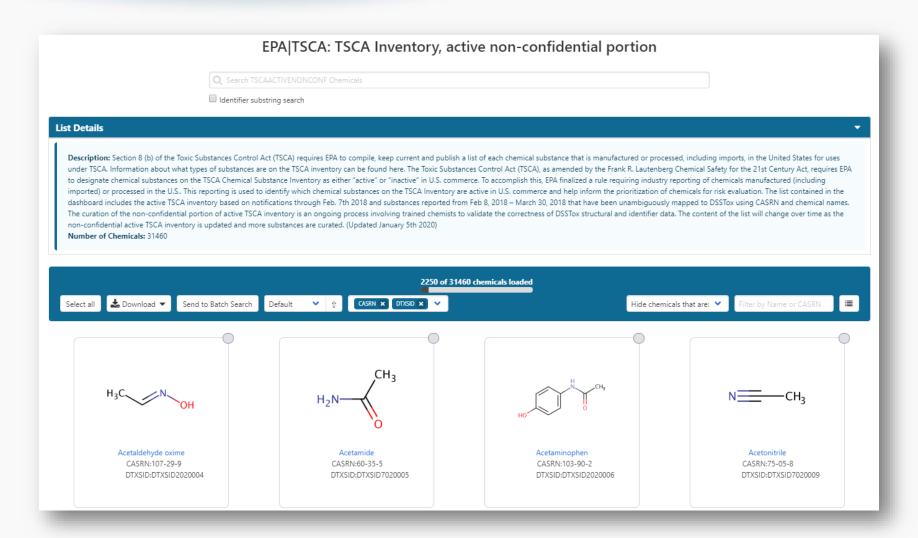
UVCB Chemicals


Chemical Substances of Unknown or Variable Composition, Complex Reaction Products and Biological Materials (UVCB Substance) on the TSCA Inventory


This paper is a compendium of information related to the broad class of chemical substances referred to as UVCBs for the Toxic Substances Control Act (TSCA) Chemical Substance Inventory. These chemical substances cannot be represented by unique structures and molecular formulas.

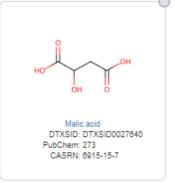
UVCBs challenge in non-target analysis

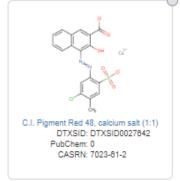
 Complex mixtures (UVCBs) are a huge and very challenging part of the unknowns in many environmental samples



Homologue screening plots from Swiss Wastewater (Schymanski *et al* 2014, left) and Novi Sad (right)

Public TSCA Inventory on Dashboard 31,460 Chemicals (1/24/2020)





Many Chemicals are "Complex" >14000 chemicals are UVCBs

0 related chemical structures with this substance

Lard, oil DTXSID: DTXSID0027690 PubChem: 0 CASRN: 8016-28-2

0 related chemical structures with this substance

Tall-oil pitch DTXSID: DTXSID0027692 PubChem: 0 CASRN: 8016-81-7

0 related chemical structures with this substance

Palm kernel oil

DTXSID: DTXSID0027694 PubChem: 0 CASRN: 8023-79-8 0 related chemical structures with this substance

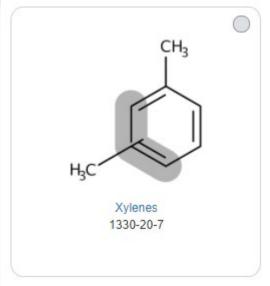
Tallow, hydrogenated

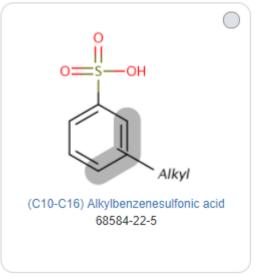
DTXSID: DTXSID0027696 PubChem: 0 CASRN: 8030-12-4 0 related chemical structures with this substance

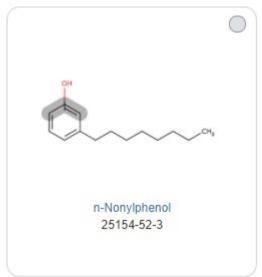
Quaternary ammonium compounds, tri...

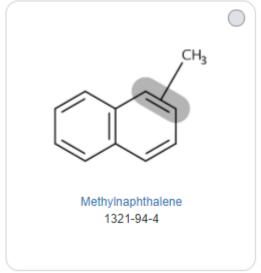
DTXSID: DTXSID0027698 PubChem: 0 CASRN: 8030-78-2 HC ON

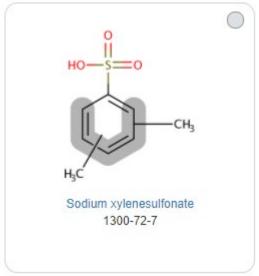
4-(2-Phenylpropan-2-yl)-N-[4-(2-phenyl... DTXSID: DTXSID0027721 PubChem: 50 CASRN: 10081-87-1 1 related chemical structure with this substance

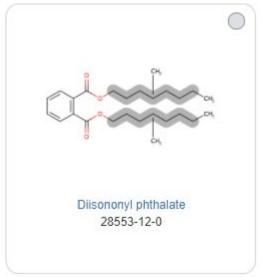

Isomethyltetrahydrophthalic anhydride

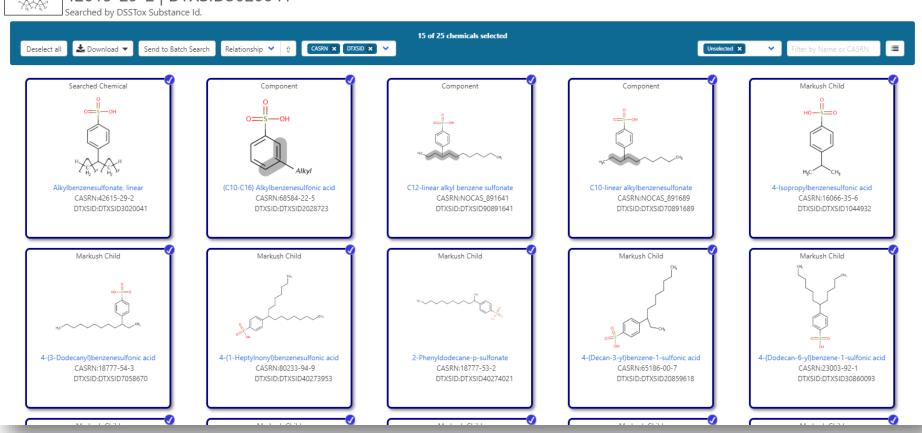

DTXSID: DTXSID0027729 PubChem: 0 CASRN: 11070-44-3


"Markush Structures"


https://en.wikipedia.org/wiki/Markush_structure







How to represent complexity?

Alkylbenzenesulfonate, linear 42615-29-2 | DTXSID3020041

In the Dashboard Abstract Sifter

Literature Searching

Limonene 138-86-3 | DTXSID2029612 Searched by Approved Name.

1) Select PubMed starting point query then 2) click on Retrieve. 1 Select a Query Term Retrieve Articles

Select a Query Term Select a Query Term Hazard Fate and Transport Metabolism/PK/PD Chemical Properties Exposure Mixtures Male Reproduction Androgen Disruption Female Reproduction GeneTox Cancer Clinical Trials Embryo and embryonic development Child (infant through adolescent) Dust and Exposure Food and Exposure

Optionally, edit the query before retrieving.

("138-86-3" OR "Limonene") AND (food AND (exposure OR near-field OR far-field OR nhanes OR Environmental Monitoring OR Environmental Exposure OR exposome))

70 of 70 articles loaded...

Algae

Disaster / Emergency

Water and Exposure

Literature Searching

To f	To find articles quickly, enter terms to sift abstracts. 1										
limonene			food			xposure	Clear Terms				
	limonene ↓	food	exposure	Total	PMID	Year	Title	1			
	17	2	2	21	2024047	1991	The human relevance of the renal tumor-inducing pote				
	11	2	3	16	23424676	2013	Mechanism of bacterial inactivation by (+)-limonene an				
	10	1	3	14	23573938	2013	Safety evaluation and risk assessment of d-Limonene.				
	10	5	0	15	12633519	2003	Development of a questionnaire and a database for as				
	9	1	1	11	18809464	2008	Odour of limonene affects feeding behaviour in the blo	1			
	_										

The human relevance of the renal tumor-inducing potential of d-limonene in male rats: implications for risk assessment.

The monoterpene d- limonene is a naturally occurring chemical which is the major component in oil of orange. Currently, d- limonene is widely used as a flavor and fragrance and is listed to be generally recognized as safe (GRAS) in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations). Recently, however, d- limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to d- limonene causes a significant incidence of renal tubular tumors exclusively in male rats. Although d- limonene is not carcinogenic in female rats or male and female mice given much higher dosages, the male rat-specific nephrocarcinogenicity of d- limonene may raise some concern regarding the safety of d- limonene for human consumption. A considerable body of scientific data has indicated that the renal toxicity of d- limonene results from the accumulation of a protein, alpha 2u-globulin, in male rat kidney proximal tuble lysosomes. This protein is synthesized exclusively by adult male rats. Other species, including humans, synthesize proteins that share significant homology with alpha 2u-globulin. However, none of these proteins, including the mouse equivalent of alpha 2u-globulin, can produce this toxicity, indicating a unique specificity for alpha 2u-globulin. With chronic exposure to d- limonene, the hyaline droplet nephropathy progresses and the kidney shows tubular cell necrosis, granular cast formation at the corticomedullary junction, and compensatory cell proliferation. Both d- limonene and cis-d- limonen

Abstract Sifter for Excel

F1000Research

F1000Research 2017, 6(Chem Inf Sci):2164 Last updated: 02 OCT 2019

SOFTWARE TOOL ARTICLE

Abstract Sifter: a comprehensive front-end system to PubMed [version 1; peer review: 2 approved]

Nancy Baker 1, Thomas Knudsen, Antony Williams 2

First published: 21 Dec 2017, 6(Chem Inf Sci):2164 (https://doi.org/10.12688/f1000research.12865.1)

Latest published: 21 Dec 2017, 6(Chem Inf Sci):2164 (

https://doi.org/10.12688/f1000research.12865.1)

Open Peer Review

Reviewer Status 🗸 🗸

¹Leidos, Research Triangle Park, NC, USA

²National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

Work in Progress

List Registration Activities

- Registering and curating numerous lists
 - NIST library of chemicals –clean up especially around stereochemical representation
 - United States Geological Survey chemicals in water
 - Scientific Working Group for the Analysis of Seized Drugs
 - Synthetic Cannabinoids
 - Blood Exposome Database

Blood Exposome Curation

 Blood exposome data collection from Barupal and Fiehn. Great work and we reviewing.

Vol. 127, No. 9 | Research

Generating the Blood Exposome Database Using a Comprehensive Text Mining and Database Fusion Approach

Dinesh Kumar Barupal

☐ and Oliver Fiehn

☐

Published: 26 September 2019 | CID: 097008 | https://doi.org/10.1289/EHP4713 | Cited by: 1

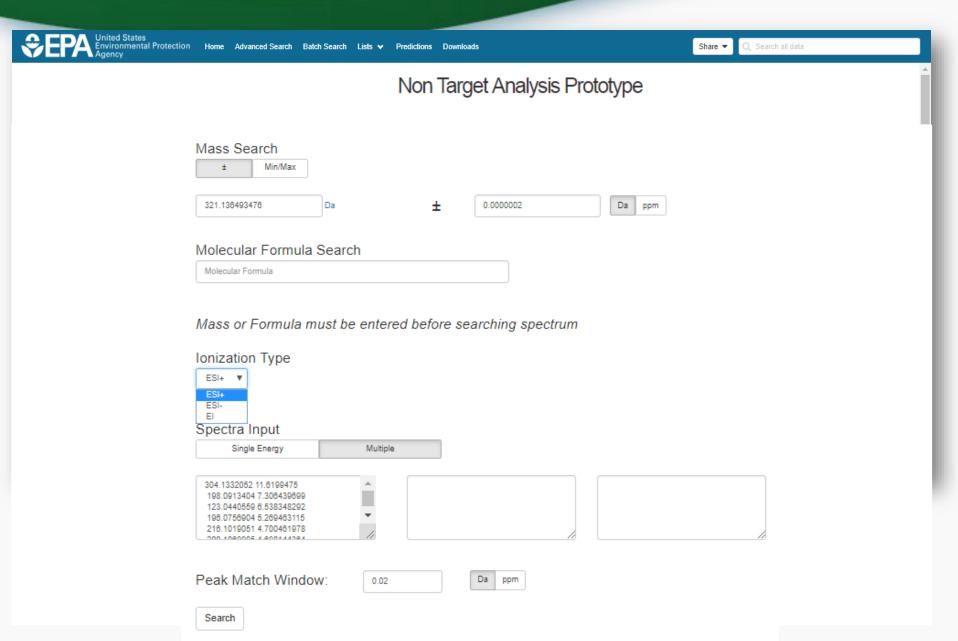
- Aggregating large datasets is CHALLENGING
- Comparing with our "Abstract Sifter" approach
- We will iterate into a dashboard form..

Prototype Work in Progress

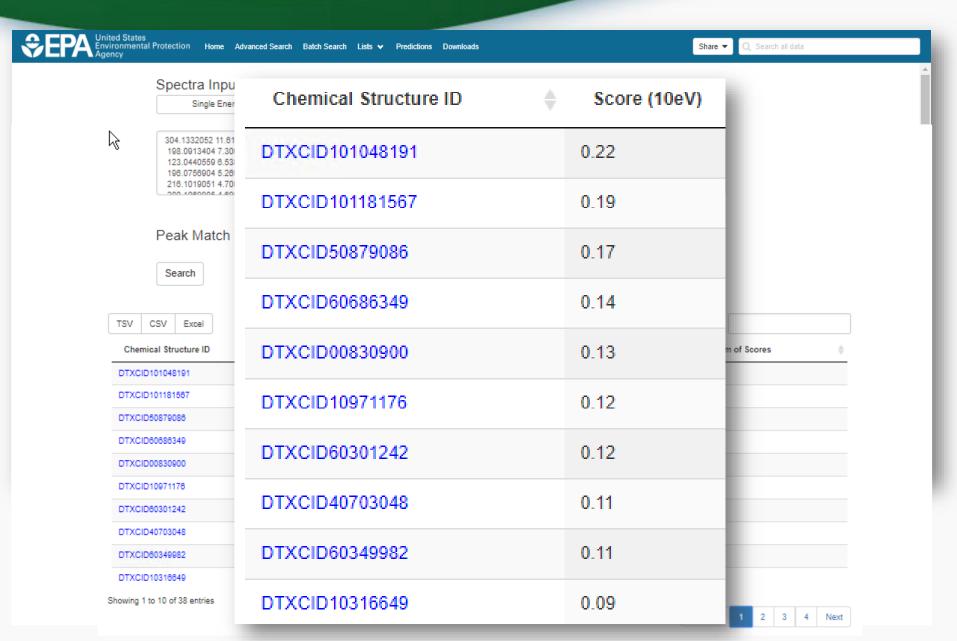
- CFM-ID
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Structure/substructure/similarity search
- Access to API and web services

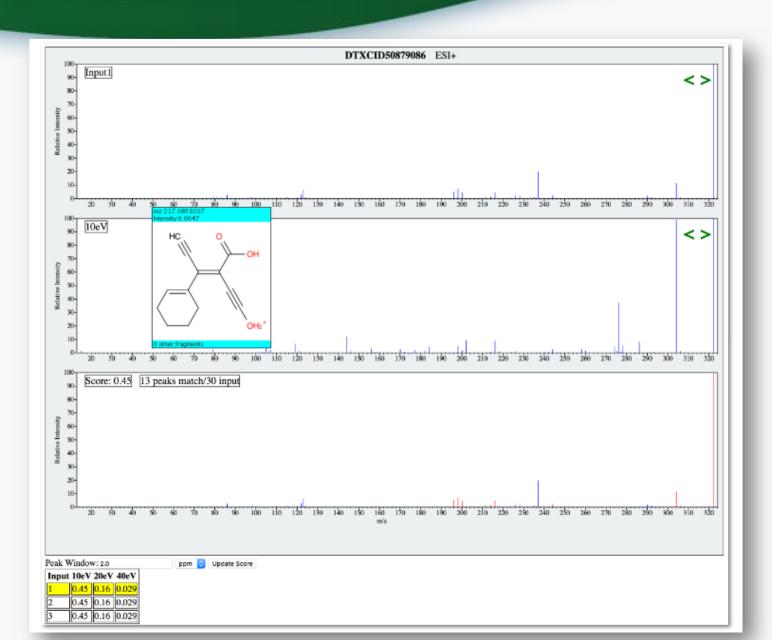
Predicted Mass Spectra

http://cfmid.wishartlab.com/



- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard


Search Expt. vs. Predicted Spectra


Search Expt. vs. Predicted Spectra

Spectral Viewer Comparison

Predicted Data Already Public Publication and Data Files

Data Descriptor | OPEN | Published: 02 August 2019

Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns

Andrew D. McEachran , Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris

Grulke, Jon R. Sobus & Antony J. Williams

Scientific Data 6, Article number: 141 (2019) | Download Citation ±

CFM-ID Paper Data

Dataset posted on 01.03.2019, 08:38 by EPA's National Center for Computational Toxicology

This upload is a zip containing the following files.

Predicted EI-MS Spectra of CompTox Chemicals Dashboard Structures:

Predicted EI-MS spectra of ~700,000 chemical structures from the CompTox Chemicals Dashboard were generated using the CFM-ID model developed by Allen, et al. (https://doi.org/10.1021/acs.analchem.6b01622). These data are provided in .dat ASCII format.

Predicted MS/MS Spectra in ESI-positive mode of CompTox Chemicals Dashboard

Predicted MS/MS spectra of ~700,000 chemical structures from the CompTox Chemicals Dashboard were generated using the CFM-ID model developed by Allen, et al. (https://doi.org/10.1007/s11306-014-0676-4) in ESI-positive mode. These data are provided in .dat ASCII format.

Predicted MS/MS Spectra in ESI-negative mode of CompTox Chemicals Dashboard Structures:

Predicted MS/MS spectra of ~700,000 chemical structures from the CompTox Chemicals Dashboard were generated using the CFM-ID model developed by Allen, et al. (https://doi.org/10.1007/s11306-014-0676-4) in ESI-negative mode. These data are provided in .dat ASCII format.

BibTeX

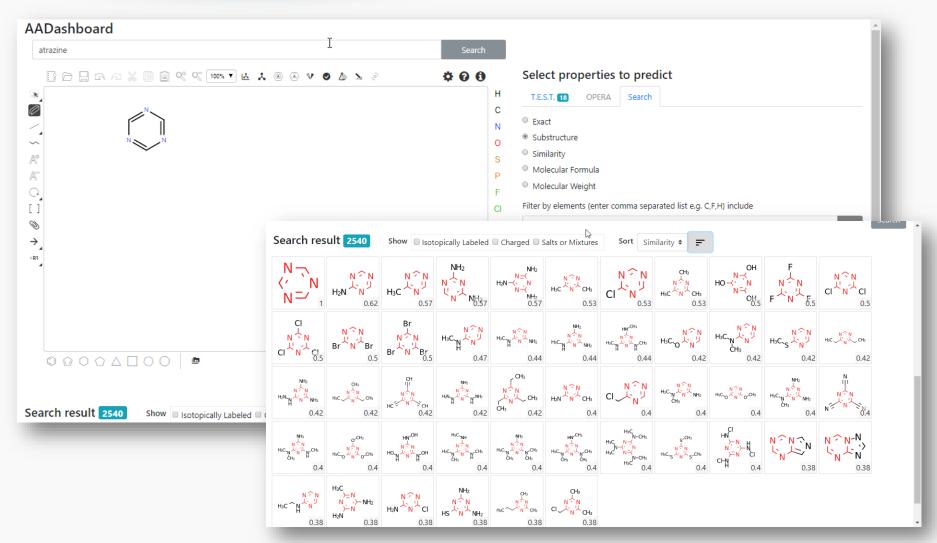
Ref. manager

https://epa.figshare.com/articles/CFM-ID_Paper_Data/7776212/1

Published: Chao et al

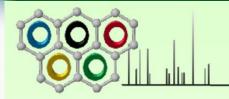
Analytical and Bioanalytical Chemistry

RESEARCH PAPER


In silico MS/MS spectra for identifying unknowns: a critical examination using CFM-ID algorithms and ENTACT mixture samples

Alex Chao ^{1,2} • Hussein Al-Ghoul ^{1,2} • Andrew D. McEachran ^{1,3} • Ilya Balabin ⁴ • Tom Transue ⁴ • Tommy Cathey ⁴ • Jarod N. Grossman ^{2,3} • Randolph Singh ^{1,5} • Elin M. Ulrich ² • Antony J. Williams ⁶ • Jon R. Sobus ²

Received: 4 October 2019 / Revised: 27 November 2019 / Accepted: 11 December 2019 © The Author(s) 2019

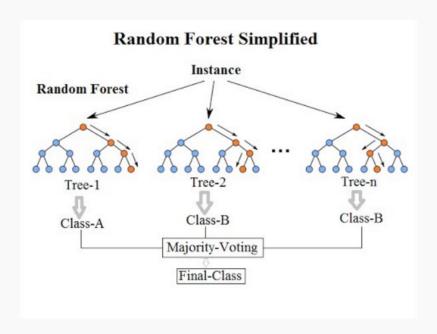

Prototype Development

CASMI 2012-2017 revisited

Critical Assessment of Small Molecule Identification

The experimental and computational mass spectrometry communities are invited to participate in the fifth round of an open contest on the identification of small molecules from mass spectrometry data.

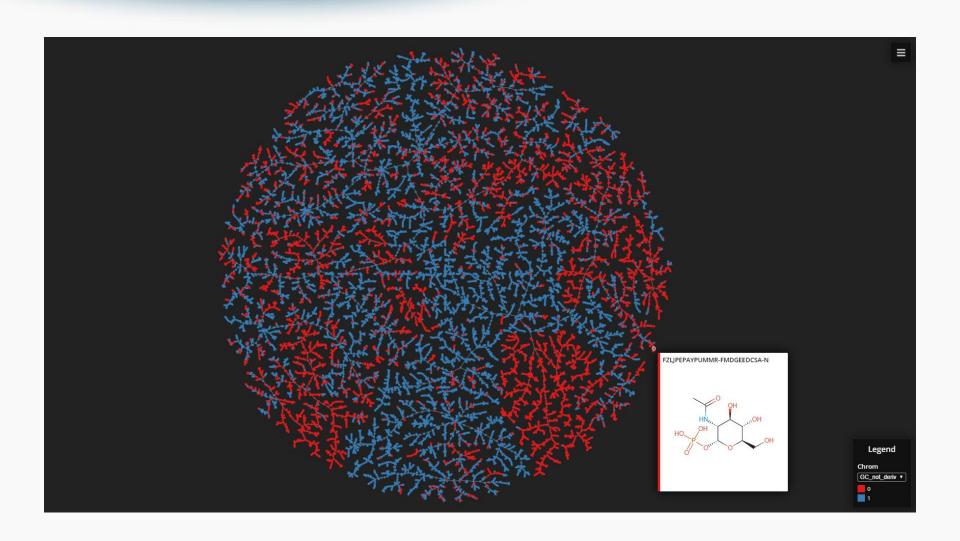
This year the contest will test the applicability of MS and MS/MS on natural products chemistry identifications. With 45 (Category 1) and up to 243 (Categories 2&3) natural products challenges - including a few tricky ones - there's something for everyone!


 Application of metadata candidate ranking and CFM-ID to all five years of CASMI data

Method Amenability Prediction Charlie Lowe

Why?

- Chromatography-mass spectrometry can be LC or GC
- Which phase is more appropriate for which chemicals?

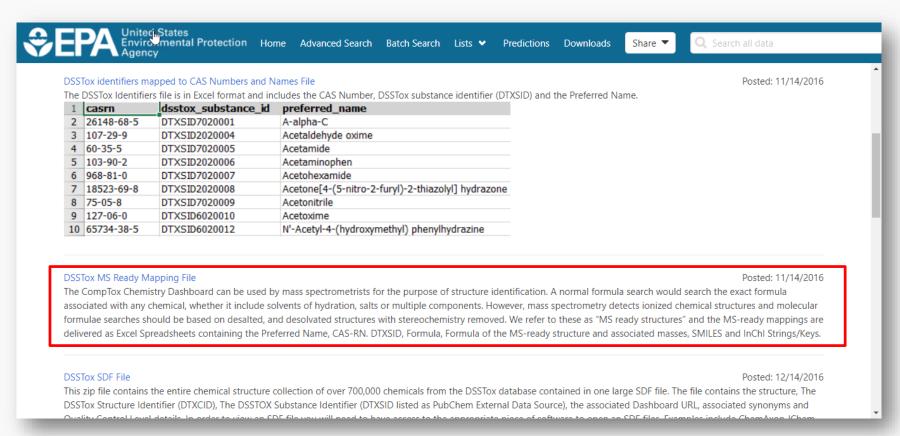

Ongoing Work

- Data sources to date
 - Massbank of North America
 - 9,275 chemicals for non-derivatized GC
 - 846 chemicals for derivatized GC
 - 816 chemicals for APCI+
 - 454 chemicals for APCI-
 - 4,907 chemicals for ESI+
 - 3,430 chemicals for ESI-
 - EPA Non-targeted Analysis Collaborative Trial (ENTACT)
 - 886 chemicals for non-derivatized GC
 - 44 chemicals for derivatized GC
 - 774 chemicals for APCI+
 - 431 chemicals for APCI-
 - 1,113 chemicals for ESI+
 - 648 chemicals for ESI-

TMAP Visualization of MoNA GC Data

Future Work: Add database of Collision Cross Section Prediction

PNNL Collision Cross Section Database


	Search					<u></u>	•	lt [T	± .
Showing 1 to 25 of 1000 rows 25 ▼ rows per page		<	1	2	3	4	5		40	>

Chemical	SMILES	InChi	Formula	Mass ^	CCS (Å ²)	
(3E)-pent-3-en-2-one	*	*	C ₅ H ₈ O	84.0575	[M-H] ⁻ 112.1 ISiCLE Lite v0.1.0 [M+Na] ⁺ 112.6 ISiCLE Lite v0.1.0 [M+H] ⁺ 113.1 ISiCLE Lite v0.1.0	
$H_3C - \frac{CH_3}{S} = 0$ Dimethyl sulfone	*	*	C ₂ H ₆ O ₂ S	94.0089	[M-H] ⁻ 106.9 ISiCLE Lite v0.1.0 [M+Na] ⁺ 107.3 ISiCLE Lite v0.1.0 [M+H] ⁺ 108.1 ISiCLE Lite v0.1.0	
isothiocyanatocyclopropan e	*	*	C ₄ H ₅ NS	99.0143	[M-H] ⁻ 111.9 ISiCLE Lite v0.1.0 [M+Na] ⁺ 112.1 ISiCLE Lite v0.1.0 [M+H] ⁺ 110.0 ISiCLE Lite v0.1.0	-

API services and Open Data

- Web Services https://actorws.epa.gov/actorws/
- Data sets also available for download...

Web Services https://actorws.epa.gov/actorws/

- Data in UI, JSON and XML format
- Our services are free of course...

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=80-05-7

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=DTXCID60513

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws/dsstox/

InChlKey to DTXCIDs

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier = UVOFGKIRTCCNKG-UHFFFAOYSA-N

Image DTXCID		Smiles	Image	MsReady DTXCID	MsReady SMILES	
H ₃ C — NH ₂ ⁺ CH ₃ CH ₃	DTXCID60513	C[NH2+]C.CN(C)C([S-])=S	H_3C N CH_3	DTXCID0023797	CN(C)C(S)=S	
H ₃ C — NH ₂ ⁺ CH ₃ CH ₃	DTXCID60513	C[NH2+]C.CN(C)C([S-])=S	CH ₃ / H ₃ C—NH	DTXCID704057	CNC	

Data and Services used by the Community

NORMAN Suspect List Exchange

https://www.norman-network.com/?q=node/236

NORMAN

Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

Wastewater Suspect List based on Swedish Product Data	Wastewater Suspect List Original File with Mapped DTXSIDs (12/02/2019)	KEMIWWSUS InChlKeys (12/02/2019)	A prioritized list of 1,123 substances relevant for wastewater based on Swedish product registry data, including scores. Provided by Stellan Fischer, KEMI.
Algal toxins list from CompTox	ALGALTOX XLSX, CSV (14/02/2019) CompTox ALGALTOX List	ALGALTOX InChlKeys (14/02/2019)	List of algal toxins (generated during blooms) from the CompTox Chemicals Dashboard.
CCL 4 Chemical Candidate List	CCL4 XLSX, CSV (14/02/2019) CompTox CCL4 List	CCL4 InChlKeys (14/02/2019)	Contaminants that are not (yet) regulated in the USA but are known or anticipated to occur in public water systems; from CompTox.
Hydrogen Deuterium Exchange (HDX) Standard Set	HDXNOEX XLSX, CSV (14/02/2019) CompTox HDXNOEX List CompTox HDXEXCH List	HDXNOEX InChlKeys (14/02/2019)	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule HRMS (Ruttkies et al. submitted). HDXEXCH list also contains observed deuterated species.
Neurotoxicants Collection from Public Resources	NEUROTOXINS XLSX, CSV (14/02/2019) CompTox NEUROTOXINS List	NEUROTOXINS InChlKeys (14/02/2019)	A list of neurotoxicants compiled from public resources, details on CompTox and Schymanski et al. (submitted).
Statins Collection from Public Resources	STATINS XLSX, CSV (14/02/2019) CompTox STATINS List	STATINS InChlKeys (14/02/2019)	A list of statins (lipid-lowering medications) compiled from public resources, details on CompTox.
Synthetic Cannabinoids and Psychoactive Compounds	SYNTHCANNAB XLSX, CSV (14/02/2019) CompTox SYNTHCANNAB List	SYNTHCANNAB InChlKeys (14/02/2019)	A list of synthetic cannabinoids and psychoactive compounds assembled from public resources, from CompTox.

Integration to MetFrag in place

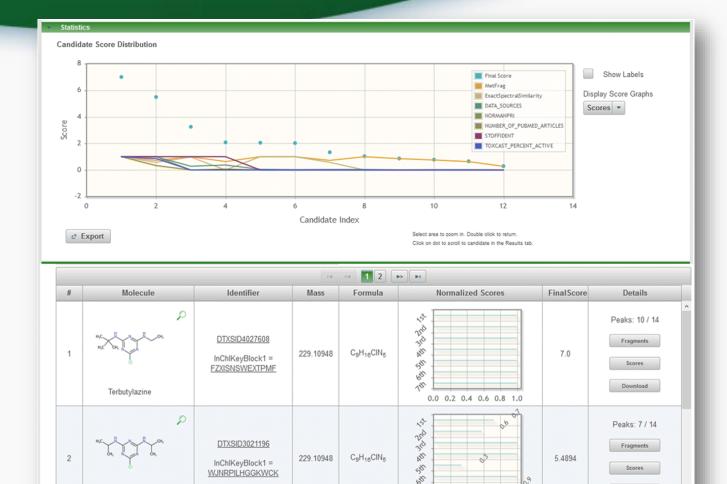
Propazine

Sebuthylazine

3

DTXSID7058171

InChlKeyBlock1 =


BZRUVKZGXNSXMB

229.10948

C9H16CIN5

150

भूति अपी अपी

411

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Download

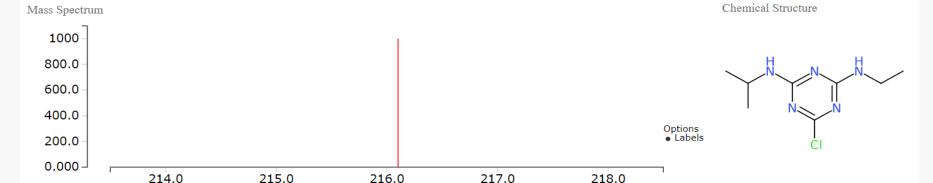
Peaks: 10 / 14

Fragments

Scores

Download

3.2476


MassBank mapping to Dashboard Based on Web Service lookup

MassBank Record: EA028808

Atrazine; LC-ESI-ITFT; MS2; CE: 15%; R=15000; [M+H]+

CH\$NAME: Atrazine

CH\$NAME: 6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine

CH\$NAME: 6-chloranyl-N4-ethyl-N2-propan-2-yl-1,3,5-triazine-2,4-diamine

CH\$COMPOUND CLASS: N/A; Environmental Standard

CH\$FORMULA: C8H14ClN5 CH\$EXACT_MASS: 215.0932

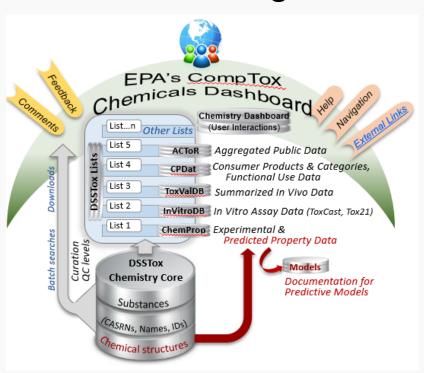
CH\$SMILES: c1(nc(nc(n1)Cl)NCC)NC(C)C

CH\$IUPAC: InChI=1S/C8H14ClN5/c1-4-10-7-12-6(9)13-8(14-7)11-5(2)3/h5H,4H2,1-3H3,(H2,10,11,12,13,14)

CH\$LINK: CAS 1912-24-9 CH\$LINK: CHEBI 15930 CH\$LINK: KEGG C06551

CH\$LINK: PUBCHEM CID: 2256

CH\$LINK: INCHIKEY MXWJVTOOROXGIU-UHFFFAOYSA-N


CH\$LINK: CHEMSPIDER <u>2169</u>

CH\$LINK: COMPTOX DTXSID9020112

Conclusion



- Dashboard access to data for ~875,000 chemicals (~895k in the Spring Release)
- MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Curation and mutual sharing of chemical lists is important (e.g. NORMAN)

Acknowledgements

EPA ORD

Ann Richard Chris Grulke Jeremy Dunne Jeff Edwards Grace Patlewicz Alex Chao Kristin Isaacs **Charles Lowe** James McCord **Seth Newton** Katherine Phillips Jon Sobus Mark Strynar Elin Ulrich Joach Pleil

TEAMS

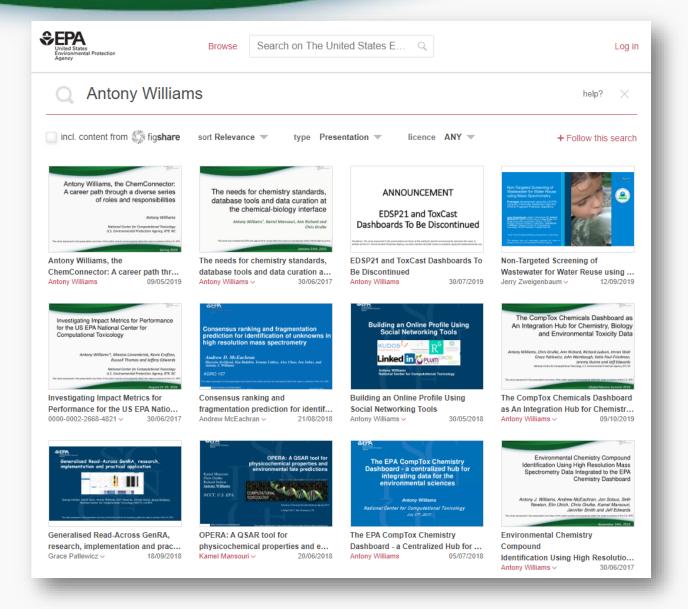
IT Development Team Curation Team

ILS

Kamel Mansouri

GDIT

Ilya Balabin Tom Transue Tommy Cathey


Collaborators

Emma Schymanski NORMAN Network Andrew McEachran

MANY presentations online

https://tinyurl.com/w5hqs55

Contact



Antony Williams

CCTE, US EPA Office of Research and Development,

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821

https://doi.org/10.1186/s13321-017-0247-6