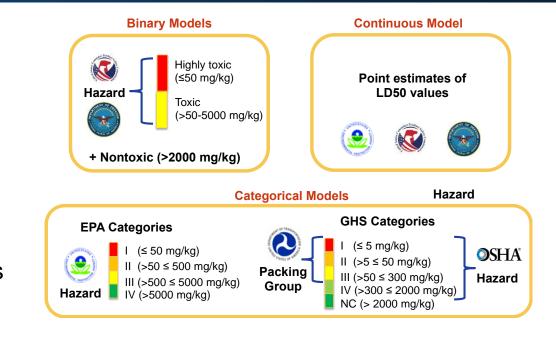
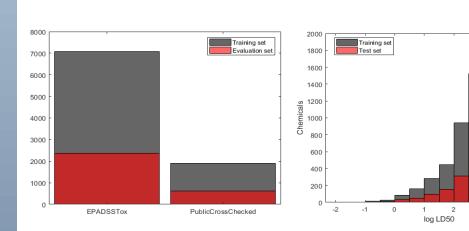


Collaborative Modeling Project for Predicting Acute Oral Toxicity


Kamel Mansouri¹, Agnes Karmaus¹, Jeremy Fitzpatrick^{2,3}, Grace Patlewicz², Prachi Pradeep², David Allen¹, Warren Casey⁴, and Nicole Kleinstreuer⁴ ¹ILS, RTP, NC, USA; ²EPA/CCTE, RTP, NC, USA; ³ScitoVation LLC, RTP, NC, USA; ⁴NIH/NIEHS/DNTP/NICEATM, RTP, NC, USA

Background

- Acute systemic toxicity tests are commonly required by regulatory authorities to characterize a chemical's toxicity.
- In silico models provide an alternative to traditional animal tests for predicting acute oral toxicity and bridging data gaps.
- NICEATM and the ICCVAM Acute Toxicity Workgroup (ATWG) organized an international collaborative project to develop in silico models for predicting acute oral toxicity.
- Predictions within the applicability domains of the submitted models were evaluated using external validation sets, then combined into consensus predictions for each endpoint, forming the Collaborative Acute Toxicity Modeling Suite (CATMoS).


Project Data

- Endpoints: five endpoints were selected by the ICCVAM ATWG member agencies to serve as endpoints for predictive modeling within the CATMoS project.
- Collected data: 34,508 rat oral LD50 values for 16,297 chemicals total.

15,688 chemical structures

21.200 LD50 values

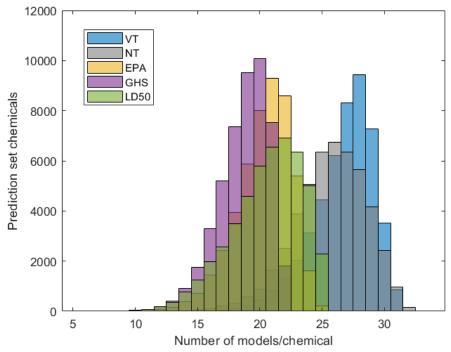
tautomers and nitro groups standardized, valence corrected, structures neutralized

11,992 chemicals with standardized structures

Available data split into:

- 75% training set: 8,994 chemicals
- 25% evaluation set: 2,998 chemicals
- Training data for all endpoints included in same structure file
- Similar distributions and variability for values and categories
- Similar distribution of chemical structure sources

International Consortium of Participants

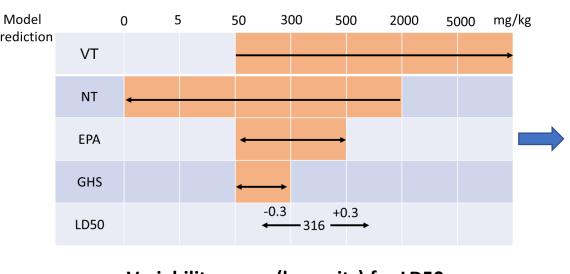

A consortium of **35 international participants** representing academia, industry, and government

QSAR-ready standardization

Desalted, stereochemistry stripped,

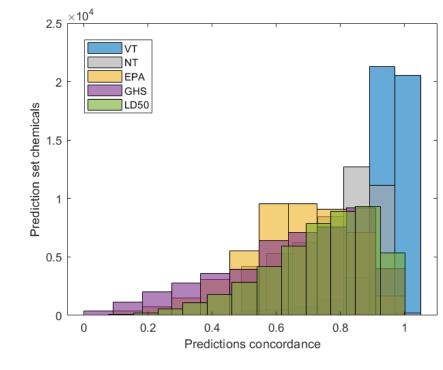
Group ID	Institution Russia Russia	Country
NICEATM Canada Hudson Bay	NTP Interagency Center for the Evaluation of Alternative Toxicological Methods	USA
UNIBARI	Università degli Studi di Bari	Italy
LOREAL	L'Oréal R&I	France
UNICAMB	University of Cambridge	UK Okhotsk
UNC (B)	UNC Eshelman School of Pharmacy	USA
FUG	Federal University of Goias France Mongolia	Brazil
	University of Milano-Bicocca	Italy
DOW NV ur United Stat	The Dow Chemical Company Spain Greece Turkey Turkey	
IRCCS (5 groups)	Istituto di Ricerche Farmacologiche Mario Negri	
MSU AZ NM MS AL SS	Michigan State University	USA
SIMPLUS	Simulations Plus, Inc.	USA
KU Gulf of	Kyoto University Graduate School of Medicine	Japan
ECUST Cuba	East China University of Science and Technology, China	China
USAFSAM	Henry M Jackson Foundation for the Advancement of Military Medicine	USA
RUT (2 groups)	1 ⁵ Rutgers University Burking Chad Chad Guild of Ader Arabian San Bay of Bergal Vietnam Ph	USA
COLPHA	Collaborations Pharmaceuticals, Inc.	USA
UL colo	Underwriters Laboratories	USA
NCSTATE	North Carolina State University	USA
PNNL	Pacific Northwest National Laboratory	USA
NCCT	National Center for Computational Toxicology, USEPA	USA atura Sea Guinea
HZM Peru	Helmholtz Zentrum München, Germany	Germany
UNISTRA	Universite de Strasbourg	France
NRMRL	National Risk Management Research Laboratory, USEPA	USA ^{IT} Corel Sea
LSINC	Leadscope Inc.	USAstralia
NCATS	National Center for Advancing Translational Sciences, NIH	USA
ATSDR	Agency for Toxic Substances and Disease Registry, CDC	USA
ROSETTAC	Rosettastein Consulting UG	Germany
UCOL	University of Colorado	USA
DUT	Dalian University of Technology	China TAS Tasman Sea New Zealand
DOW_AGRO	Dow Agrosciences	USA Contact map owner

Coverage and concordance of the models (139 models received)



- Unambiguous algorithm
- Availability of code

BA = -


Steps for combining the models into consensus

WoE approach to combine the five independent calls

Consensus Modeling

Model evaluation procedure

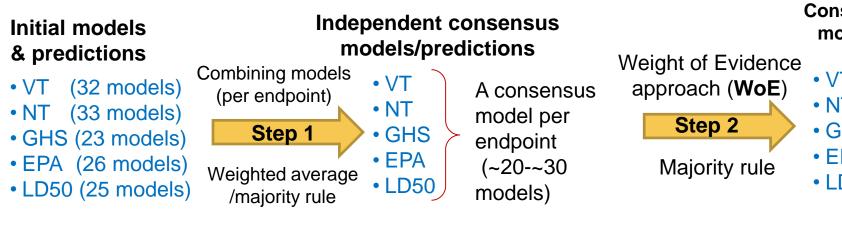
Qualitative evaluation:

- Documentation Defined endpoint
- Defined applicability domain Availability of input data

used for modeling

Quantitative evaluation:

- Goodness of fit: training (Tr) statistics
- Predictivity: statistics on the evaluation set (Eval)
- Robustness: balance between (Goodness of fit) & (Predictivity)


S = 0.3 * (Goodness of fit) + 0.45 * (Predictivity) + 0.25 * (Robustness)

Mechanistic interpretation

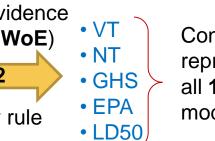
Categorical models (binary and multi-class):

Goodness of fit = $0.7 * (BA_{Tr}) + 0.3 * (1 - |Sn_{Tr} - Sp_{Tr}|)$ $Predictivity = 0.7 * (BA_{Eval}) + 0.3 * (1 - |Sn_{Eval} - Sp_{Eval}|)$ $Robustness = 1 - |BA_{Tr} - BA_{Eval}|$

$$\frac{(Sn+Sp)}{2} \quad Sn = \frac{TP}{TP+FN} \quad Sp = \frac{TN}{TN+FP}$$

Variability range (log units) for LD50

Original: independent calls VT NT EPA GHS LD50 0 2 3 **316** molX 0


Goodness of fit = $R_{T_T}^2$ $Predictivity = R_{Eval}^2$

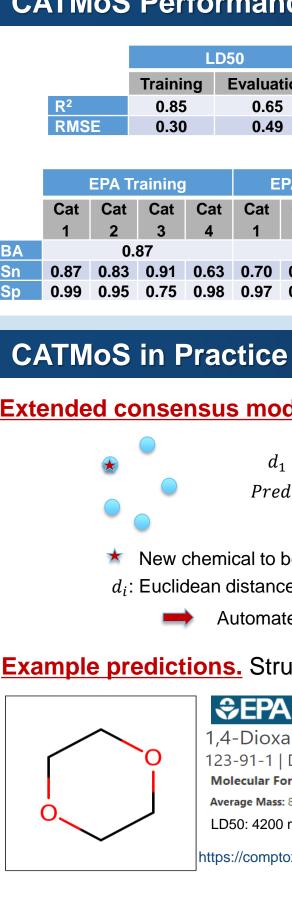
Continuous models:

 $Robustness = 1 - |R_{Tr}^2 - R_{Eval}^2|$

 $R^{2} = 1 - \frac{\sum_{i=1}^{n_{TR}} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n_{TR}} (y_{i} - \bar{y})^{2}} \begin{array}{l} \hat{y}_{i} \text{ and } y_{i} \text{ are the} \\ estimated and \\ observed responses \end{array}$

Consistent consensus models/predictions

all 139 models


Consensus representing

Winning bi 50 300 500 2000 5000 mg/kg 0 VT 0 NT 1 0 0 EPA 0 GHS 0 0 0 0 LD50? 0 0 4 3 1 1 1 1

Adjusted LD50: (160+300)/2=230mg/kg

WoE: consistent calls

	VT	NT	EPA	GHS	LD50
molX	0	0	2	3	<mark>230</mark>

MoleculeID	CATMoS_VT_pred	CAT
123-91-1	0	
67-97-0	1	

OPERA suite of models:

- Free, open-source, and open-data
- Command line and GUI
- Single chemical and batch mode • Windows OS and Linux

References

- Toxicol Pharmacol 94:183-196.
- Predictive Models for Acute Oral Systemic Toxicity. https://ntp.niehs.nih.gov/go/tox-models. Accessed 29 Aug 2019. Kleinstreuer et al. 2018. Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation. Comput Toxicol 8:21–24.
- OPERA Open structure-activity/property relationship app. https://github.com/NIEHS/OPERA. Accessed 29 Aug 2019. Mansouri et al. 2018. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminform

Acknowledgements

This project was funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN273201500010C. Disclaimer: The views expressed above do not necessarily represent the official positions of any federal agency. Since the poster was written as part of the official duties of the authors, it can be freely copied.

CATMoS Performance Evaluation

											VT				NT			
LD50											Trainin	ng E	Evaluat	ion	Train	Eval	uation	
inir	ng	g Evaluation			Balanced accuracy (BA)			0.93	0.93 0.84			0.92	0.78					
.85		0.65				Sens	Sensitivity (Sn)			0.87		0.70		0.88	0.67			
.30	1	0.49				Specificity (Sp)				0.99	1	0.97		0.97	0.90			
ng EPA Ev			ΡΑ Εν	valuatio	on	GHS Tra				ining			GHS Evaluation					
It	Cat	Cat	Cat	Cat	Cat			Cat	Cat	Cat	Cat	Cat	Cat	Cat	Cat	Cat	Cat	
	4	1	2	3	4	_		1	2	3	4	5	1	2	3	4	5	
	-	0.74					BA			0.88			0.74					
1	0.63	0.70	0.56	0.81	0.40		Sn	0.73	0.75	0.84	0.80	0.88	0.50	0.53	0.56	0.66	0.67	
'5	0.98	0.97	0.88	0.62	0.97		Sp	0.99	0.99	0.92	0.89	0.96	0.99	0.97	0.89	0.74	0.90	

≠ 0

 $f(d_i)$

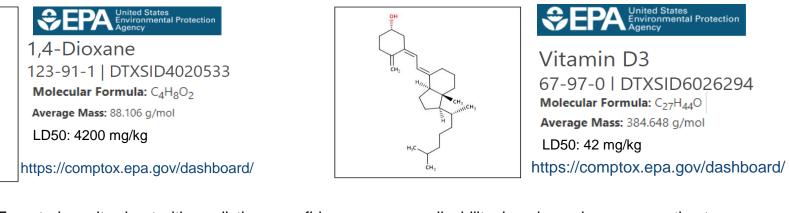
Extended consensus model using a weighted read-across approach

$$d_{1} = 0$$

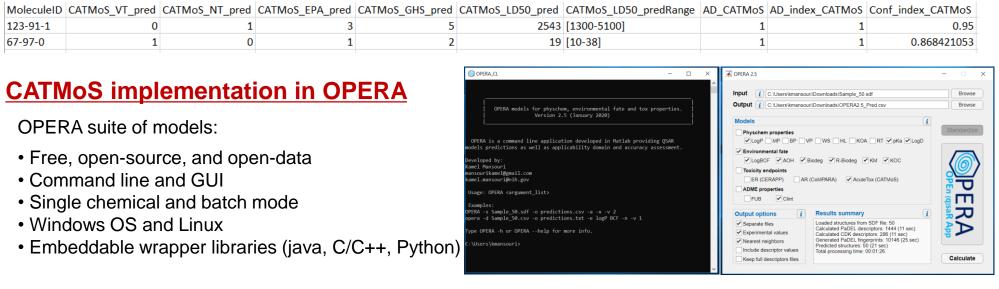
$$red_{i} = N_{i}$$

$$d_{1} \neq 0$$

$$w_{i} = f(d_{i})$$


$$Pred_{i} = f(w_{i}, N_{i})$$

* New chemical to be predicted \bigvee Nearest neighbors (N_i)


 d_i : Euclidean distance based on the selected descriptors for each endpoint

Automated, similarity-endpoint dependent read-across: weighted kNN

Example predictions. Structures taken from the EPA CompTox Chemicals Dashboard.

Consensus output: Exported results sheet with predictions, confidence range, applicability domain, and accuracy estimates.

Strickland et al. 2018. Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies. Regul

• Integrated Chemical Environment (ICE). https://ice.ntp.niehs.nih.gov/. Accessed 29 Aug 2019. • Williams et al. 2017. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform 9(1):61. https://comptox.epa.gov/dashboard/

