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Method Results Discussion
Physiologically based toxicokinetic (PBTK) modeling and machine learning (ML) were Balancing the HCI data: The mean area under the receiver operating characteristic Previously applied ML approaches have mainly compared apical animal observations with in-vivo
! utilized to predict mouse, rat, and dog liver toxicity from high content imaging (HCI) curves (AUC) for chronic and subchronic imbalanced data were 0.7 and 0.72, observations. This study uses PBTK to estimate venous concentrations that correspond to animal
S data obtained by measuring HepG2 cell responses to 967 chemical treatments across respectively. The predictive performance was higher for balanced datasets with a subchronic and chronic LOAEL doses, which serve as thresholds that assign HCI treatments into
In vivo \ / Liver Toxic Effect 10 endpoints and 3 time points (1h, 24h, and 72h). mean AUC of 0.73 and 0.79 for chronic and subchronic toxicity, respectively. toxic and non-toxic classes.
Steps performed: Predictions using balanced training data: RF was the best algorithm to predict  We observed that ML gives better prediction
+ The HCI data were normalized to generate z-score data for p53, c-Jun, H2A.X, PH3, subch.ronlc I|.ver toxicity with AUC 0.96 f.o.r mice, 0.9 for rat, gnd 0.84 for dog. For Table 2. Summary of Results: Mouse when applied to early time point HCI
/ \ a-tubulin, mitochondrial membrane potential, mitochondrial mass, cell cycle arrest, chronic studies, the most accurate classifiers were R.F for mice (AUC 0.87), a.nd kNN.for measurements (1h and 24h) than at later
Machine Learning nuclear size, and cell number. rat (AUC 0.82) and dog (AUC 0.79). The best prediction for mouse subchronic/chronic (at 72h), which suggests that early cell
- OOOOOORAOEA) iver toxicity was obtained from 1h/24h HepG2 data. In contrast, for rats and dogs, the 1 0.83 0.95 08 0.87 responses may be more informative for
: * Lowest-observed adverse effect level (LOAEL) values for chemicals from subchronic/ highest scores were obtained at 24h/1h. NN 2 08 094 078 087 toxicity prediction.
QORI chronic studies in mouse (75/154), rat (161/160), and dog (69/113) were obtained from o . , | o 12 0.19 0.35 0.78 0.85 o ,
1000000000000 the ToxRef database Prediction using test data: The best performing algorithms showed lower predictions 1 08 0.96 076 0.84 * ML prediction was better in the case of
I vitro No Liver Toxicity | | with external validation data. For subchronic toxicity prediction, AUC values for the RF | — balanced HCI data. This finding highlights
* LOAEL valges were converted to average venous concentrations using PBTK to algorithm were 0.87, 0.84, and 0.78 for mouse, rat, and dog, respectively. Prediction 1 08 036 075 076 the utility of using concentration-response
match the in vitro treatment protocol. of chronic toxicity with external validation data gave AUC of 0.8 for the kNN algorithm SVM 24 076 08 072 074 modeling to fill data gaps versus resampling
Backgrcund  Each in vitro treatment was associated with a toxicity class as follows: nontoxic in mouse, and AUCs of 0.7 and 0.71 for RF algorithm in rat and dog, respectively. 712 32 :885 8;2 8;; alone.
i i i N Vi Subchronic studies have better prediction than chronic. . . . . : : . .
Only a fraction of chemicals in everyday use has been subjected T the venous concentration corresponding to LOAEL was greater than in vitro P ) , oo s o o » Our approach predicted subchronic toxicity

concentration, and toxic otherwise. better than chronic toxicity. This may be

to thorough toxicity testing due to the infeasibility of animal 1 2 ok o2t U
: - : - . i i _ i : : NB 2 064 063 063 067 due to the the limited number of endpoints
experimentation. A promising alternative to the current toxicity * Five ML algorithms (.k.nearest neighbors (KNN), Random forest (RF), support vector Figure 1 ROC and AUC for Imbalanced and balanced data and balancing process B o - o - > the € P
testing paradigm is predictive toxicology based on a combination machine (SVM), decision trees (DT) and naive Bayes (NB)) were used to evaluate the used in this study or the ability of the HepG2
of in vitro high-throughput screening (HTS) assays and accuracy for predicting toxicity in each study type and species by each in vitro time ROC and AUC for Imbalanced HCl Data ROC and AUC for Balanced HCl Data Table 3. Summary of Results: Rat model for capturing key events in adverse
computational methods. HTS assays provide a rapid screening point. Algorithms were evaluated using ten-fold cross validation. Subchronie Study - Chremestudy Subchronie Study —  Chromiestudy outcome pathways to chronic liver injury.
approach and access to cellular bioactivities across a large number A balanced data was created using B-splines to interpolate the HCI concentration- |
of chemicals, whereas computational models allow extrapolation of response data at untested concentrations. e S T s 1 08 088 08 0
these measurements and comparison with animal apical responses. S S — kNN 2 0.82 0.89 078 079 C .
L AT S - onclusion
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Here we propose a methodology to predict subchronic and chronic 1 078 09 078 081
L . L . . . Table 1 Workflow that integrates PBTK and Machine Learnin Rat Rat | | | | : Tk
in vivo toxicity from in vitro HCI data using physiologically based J J o RF 2 079 09 078 0.79 This study shows the utility of
toxicokinetics (PBTK), High Content Imaging (HCI), and Machine 1 . - 1 e e . - a new approach for linking in
Learning (ML). We investigated the impact of three main factors on SVM 2 074 078 07 07 vitro data to in vivo outcomes
redictive performance: Chemical _ stdytype: | Chemical 72 074 075 07 072 . .
P P ame. SPedes Glone  Un M) name [ P KOS M MM MWP WA ccA NS N Yo 1 06 o7 065 069 using PBTK and machine
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J | sl s R pm Em e R ER R B e e e o — T learning. Our findings suggest
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. P 3 _ et e et e " | give better prediction than
obtained. 90 days PBTK (HTK)simultio . 25  Dicofol 1 002 021 -029 -020 -018 -015 -038 107 -0M4 008 0 Table 4. Summary of results: Dog tained |
10 getvenous concentration 25 Dicotol 1 018 065 -052 -028 -0/7 039 012 133 -043 003 0 Balancing HCI concentration-response data using B-spline interpolation measurement obtained at later
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