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Balancing HCI concentration-response data using B-spline interpolation
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Figure 1 ROC and AUC for Imbalanced and balanced data and balancing process

Table 2. Summary of Results: Mouse

Algorithm
HCI  

time [h]

Subchronic Chronic

imbalanced balanced imbalanced balanced

kNN
1 0.83 0.95 0.8 0.87

24 0.81 0.94 0.78 0.87
72 0.79 0.95 0.78 0.85

RF
1 0.8 0.96 0.76 0.84

24 0.78 0.96 0.79 0.87
72 0.78 0.94 0.75 0.84

SVM
1 0.8 0.86 0.75 0.76

24 0.76 0.8 0.72 0.74
72 0.72 0.8 0.72 0.72

DT
1 0.64 0.85 0.65 0.72

24 0.67 0.85 0.66 0.74
72 0.63 0.83 0.67 0.73

NB
1 0.51 0.58 0.56 0.59

24 0.64 0.63 0.63 0.67
72 0.56 0.66 0.59 0.62

Table 3. Summary of Results: Rat

Algorithm
HCI  

time [h]

Subchronic Chronic

imbalanced balanced imbalanced balanced

kNN
1 0.81 0.88 0.8 0.82

24 0.82 0.89 0.78 0.79
72 0.77 0.88 0.76 0.78

RF
1 0.78 0.9 0.78 0.81

24 0.79 0.9 0.78 0.79
72 0.77 0.9 0.77 0.78

SVM
1 0.75 0.78 0.73 0.72

24 0.74 0.78 0.71 0.71
72 0.74 0.75 0.71 0.72

DT
1 0.67 0.77 0.65 0.69

24 0.65 0.77 0.68 0.68
72 0.66 0.76 0.68 0.66

NB
1 0.57 0.61 0.55 0.59

24 0.64 0.68 0.62 0.63
72 0.63 0.67 0.64 0.66

Table 4. Summary of results: Dog

Algorithm
HCI  

time [h]

Subchronic Chronic

imbalanced balanced imbalanced balanced

kNN
1 0.77 0.81 0.77 0.79

24 0.82 0.83 0.76 0.76
72 0.81 0.82 0.75 0.74

RF
1 0.75 0.8 0.76 0.77

24 0.82 0.84 0.75 0.78
72 0.8 0.83 0.74 0.77

SVM
1 0.72 0.71 0.71 0.72

24 0.76 0.77 0.72 0.73
72 0.75 0.74 0.7 0.71

DT
1 0.64 0.71 0.66 0.67

24 0.68 0.66 0.64 0.68
72 0.67 0.71 0.65 0.67

NB
1 0.54 0.57 0.6 0.59

24 0.66 0.68 0.62 0.64
72 0.62 0.64 0.55 0.58
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Background
Only a fraction of chemicals in everyday use has been subjected 
to thorough toxicity testing due to the infeasibility of animal 
experimentation. A promising alternative to the current toxicity 
testing paradigm is predictive toxicology based on a combination 
of in vitro high-throughput screening (HTS) assays and 
computational methods. HTS assays provide a rapid screening 
approach and access to cellular bioactivities across a large number 
of chemicals, whereas computational models allow extrapolation of 
these measurements and comparison with animal apical responses.
Here we propose a methodology to predict subchronic and chronic 
in vivo toxicity from in vitro HCI data using physiologically based 
toxicokinetics (PBTK), High Content Imaging (HCI), and Machine 
Learning (ML). We investigated the impact of three main factors on 
predictive performance:
1. choice of ML algorithm,
2. use of balanced vs imbalanced data, defined by toxic and non-

toxic labels, and
3. selection of the time point at which the HCI measurements were 

obtained. 

Method
Physiologically based toxicokinetic (PBTK) modeling and machine learning (ML) were 
utilized to predict mouse, rat, and dog liver toxicity from high content imaging (HCI) 
data obtained by measuring HepG2 cell responses to 967 chemical treatments across 
10 endpoints and 3 time points (1h, 24h, and 72h). 
Steps performed:
• The HCI data were normalized to generate z-score data for p53, c-Jun, H2A.X, PH3, 

α-tubulin, mitochondrial membrane potential, mitochondrial mass, cell cycle arrest, 
nuclear size, and cell number. 

• Lowest-observed adverse effect level (LOAEL) values for chemicals from subchronic/
chronic studies in mouse (75/154), rat (161/160), and dog (69/113) were obtained from 
the ToxRef database. 

• LOAEL values were converted to average venous concentrations using PBTK to 
match the in vitro treatment protocol. 

• Each in vitro treatment was associated with a toxicity class as follows: nontoxic 
if the venous concentration corresponding to LOAEL was greater than in vitro 
concentration, and toxic otherwise. 

• Five ML algorithms (k-nearest neighbors (kNN), Random forest (RF), support vector 
machine (SVM), decision trees (DT) and naïve Bayes (NB)) were used to evaluate the 
accuracy for predicting toxicity in each study type and species by each in vitro time 
point. Algorithms were evaluated using ten-fold cross validation.

• A balanced data was created using B-splines to interpolate the HCI concentration-
response data at untested concentrations.

Results
Balancing the HCI data: The mean area under the receiver operating characteristic 
curves (AUC) for chronic and subchronic imbalanced data were 0.7 and 0.72, 
respectively. The predictive performance was higher for balanced datasets with a 
mean AUC of 0.73 and 0.79 for chronic and subchronic toxicity, respectively. 
Predictions using balanced training data: RF was the best algorithm to predict 
subchronic liver toxicity with AUC 0.96 for mice, 0.9 for rat, and 0.84 for dog. For 
chronic studies, the most accurate classifiers were RF for mice (AUC 0.87), and kNN for 
rat (AUC 0.82) and dog (AUC 0.79). The best prediction for mouse subchronic/chronic 
liver toxicity was obtained from 1h/24h HepG2 data. In contrast, for rats and dogs, the 
highest scores were obtained at 24h/1h.
Prediction using test data: The best performing algorithms showed lower predictions 
with external validation data. For subchronic toxicity prediction, AUC values for the RF 
algorithm were 0.87, 0.84, and 0.78 for mouse, rat, and dog, respectively. Prediction 
of chronic toxicity with external validation data gave AUC of 0.8 for the kNN algorithm 
in mouse, and AUCs of 0.7 and 0.71 for RF algorithm in rat and dog, respectively. 
Subchronic studies have better prediction than chronic.

Discussion
Previously applied ML approaches have mainly compared apical animal observations with in-vivo 
observations. This study uses PBTK to estimate venous concentrations that correspond to animal 
subchronic and chronic LOAEL doses, which serve as thresholds that assign HCI treatments into 
toxic and non-toxic classes. 

Objective 
This study (a) outlines a methodology that 
combines HCI HepG2 responses, ML, and PBTK 
to predict mouse, rat and dog subchronic/chronic 
liver toxicity, and (b) identifies the algorithm, data 
set preparation approach and time points that 
provide best predictive accuracy.

Conclusion
This study shows the utility of 
a new approach for linking in 
vitro data to in vivo outcomes 
using PBTK and machine 
learning. Our findings suggest 
that HCI data measured at early 
time points (within the first 24h) 
give better prediction than 
measurement obtained at later 
time points. Also, subchronic 
animal outcomes are better 
predicted then chronic outcomes. 
Additional improvement in ML 
performance is possible through 
balancing the number of 0 (non-
toxic) and 1 (toxic) labels in the  
in-vitro dataset. 
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Table 1 Workflow that integrates PBTK and Machine Learning

Figure 1 ROC and AUC for Imbalanced and balanced data and balancing process

• We observed that ML gives better prediction 
when applied to early time point HCI 
measurements (1h and 24h) than at later 
(at 72h), which suggests that early cell 
responses may be more informative for 
toxicity prediction.

• ML prediction was better in the case of 
balanced HCI data. This finding highlights 
the utility of using concentration-response 
modeling to fill data gaps versus resampling 
alone.

• Our approach predicted subchronic toxicity 
better than chronic toxicity. This may be 
due to the the limited number of endpoints 
used in this study or the ability of the HepG2 
model for capturing key events in adverse 
outcome pathways to chronic liver injury.

ToxRefDB 
Liver Toxicity LOAEL HCI Study (Features) Labels

Chemical 
name Species Study type: 

Subcronic Unit conc
[uM]

Chemical
name

time
[h] p53 SK OS Mt MM MMP MA CCA NS CN YSUB

 mouse

Dicofol

Rat 0.64

mg/kg/day

0.39 Dicofol 1 -0.16 -0.14 0.83 -0.02 0.62 0.41 0.35 -0.02 1.00 -0.08 0

Dog 3.3 0.78 Dicofol 1 -0.12 -0.09 0.79 0.23 0.61 0.43 0.40 0.15 0.99 -0.29 0

Mouse 18.2 1.56 Dicofol 1 -0.05 -0.02 0.68 0.38 0.60 0.40 0.29 0.46 0.82 -0.46 0

3.13 Dicofol 1 -0.02 0.01 0.45 0.24 0.49 0.28 -0.08 0.76 0.46 -0.34 0

6.25 Dicofol 1 -0.02 0.05 0.08 -0.04 0.23 0.06 -0.46 0.93 0.08 -0.05 0

90 days PBTK (HTTK) simulation 
to get venous concentration

12.5 Dicofol 1 0.02 0.21 -0.29 -0.20 -0.18 -0.15 -0.38 1.07 -0.14 0.08 0

25 Dicofol 1 0.18 0.65 -0.52 -0.28 -0.77 -0.39 0.12 1.33 -0.43 0.03 0

Dicofol

Rat 2.88

uM

50 Dicofol 1 0.99 1.74 -0.82 -0.15 -1.35 -0.97 0.70 1.60 -1.01 -0.13 0

Dog 18.12 100 Dicofol 1 4.30 3.04 -3.23 2.11 0.32 -1.78 0.03 1.17 0.16 -2.06 1

Mouse 56.99 200 Dicofol 1 8.20 3.69 -9.76 6.87 4.35 -1.83 -3.05 -0.76 4.07 -8.48 1

Predict/Estimate: 
1. Subchronic and chronic adverse effect 

observed in repeat-dose mouse, rat, and 
dog studies,

2. Best time point for prediction, and
3. Estimate Accuracy

Machine Learning by: 1. Species (rat, dog, nouse), 
 2. Study type (subchronic, chronic), and
 3. HCI time point (1h, 24h, and 72h).

Applied Classification Algorithms: 1. k-nearest neighbors (kNN),
 2. Random Forest (RF),
 3. Support Vector Classifier (SVC),
 4. Decision Trees (DT), and
 5. Naïve Bayes (NB).
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