

Introduction to the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Tool

Carlie A. LaLone

Predict Susceptibility

Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division

April 27th, 2020

Chemical Safety Evaluation

- Protect human health and the environment
 - Ensure that chemicals in the marketplace are reviewed for safety
- Challenging mission:

ntal Protection

- Tens of thousand of chemicals are currently in use and hundreds are introduced annually
- Many have not been thoroughly evaluated for potential risk to human health and the environment
 - Chemicals tested across species: Even more sparse

Reduce Animal Testing at the US EPA

- EPA Administrator Andrew Wheeler signed directive (Sept. 10th 2019) to reduce animal testing
 - Calls for the Agency to:

tal Protection

- Reduce its request for, and funding of, mammal studies by 30% by 2025
 - That is ~5 years from today!
- Eliminate all mammal study requests and funding by 2035
 - That is ~ 15 years from today

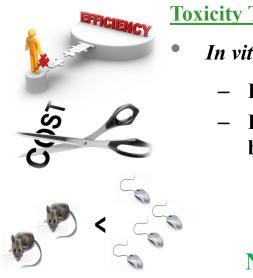
How do we get there? NAMs

Transformation of Toxicity Testing

Historically:

Whole animal test

- Observe Toxic Outcome - Examples
 - tumor development


Disturbance

Molecular

Target

• mortality

Resource intensive

Toxicity Testing in the 21st Century:

- In vitro and in silico methods
 - Pathway-based approaches
 - Focus on disturbance of the biological pathway
 - Predictive of the observable toxic effects

Observed

Toxic Effect

New Approach Methods (NAMs)

- Informatics
- High throughput
- Systems biology
- OMICs

Enabled by evolution of the science and technology

Biological Pathway

Model Organisms for Toxicity Testing

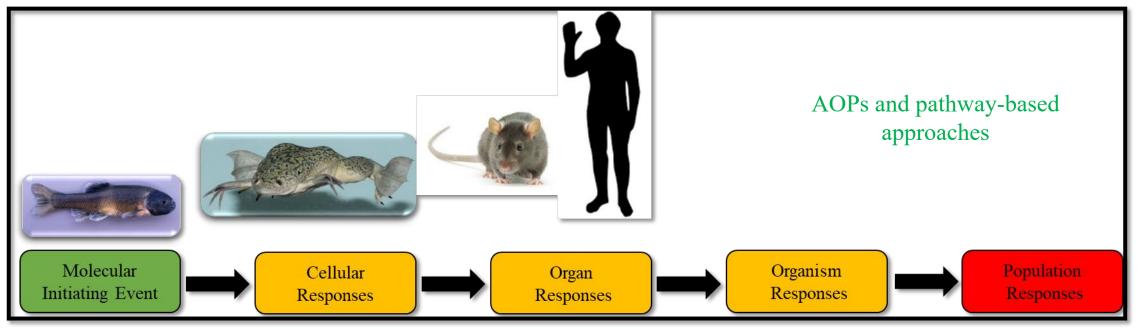
• <u>Assumed</u> that sensitivity of species to a chemical is a function of their relatedness

Human Health Risk Assessment

Ecological Risk Assessment

۲

 \simeq

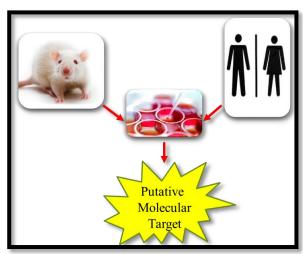

Cannot Test

Use of Surrogates

Representative species across a diversity of organism classes

Surrogates in 21st Century Chemical Safety

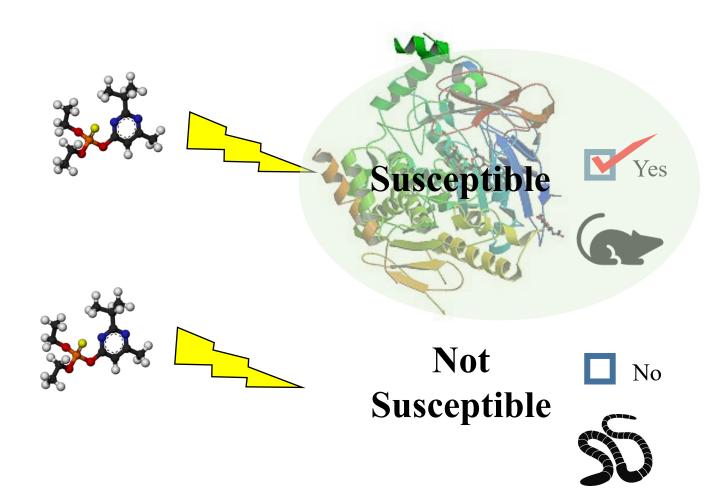
AI and Text Mining of Available Toxicity Literature


Environmental Protection

Is the model organism A good surrogate for the Species we are trying to protect? Maybe

Could we gather evidence rapidly to help us understand this question? Absolutely!!!

HTS



Considering chemical sensitivity?

Factors that make a species sensitive

- Exposure
- Dose
- ADME
- Target receptor availability
- Life stage
- Life history
- etc.
- etc.

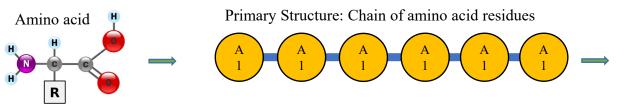
Simple question to address:

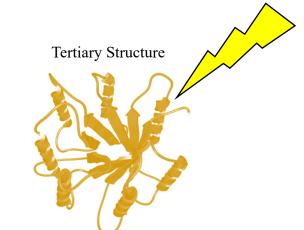
Is the known chemical target available in a species for a chemical to act upon?

Yes or No

Likely susceptible or Not likely susceptible (at least through the known mechanism)

New Approach Methods: Species Extrapolation


New tools and technologies have emerged


- Improved sequencing technologies
- Large databases of sequence data

- **Focus on the molecular machine: The Protein**
 - Large biomolecule assembled from amino acids encoded in genes

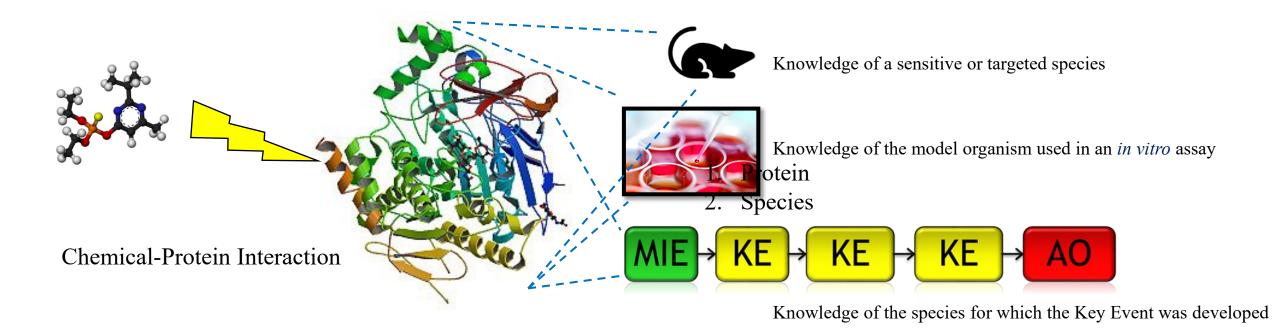
- Many functions (e.g., catalyze reactions, structural/mechanical functions, cell signaling, immune response, etc.)
- Evaluate protein similarity between species
 - Moving away from empirical testing and qualitative understanding of molecular target (protein) conservation to <u>quantitative measures</u>

TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245

https://seqapass.epa.gov/seqapass/

<u>Sequence Alignment to</u> <u>Predict Across Species</u> <u>Susceptibility</u> (SeqAPASS)

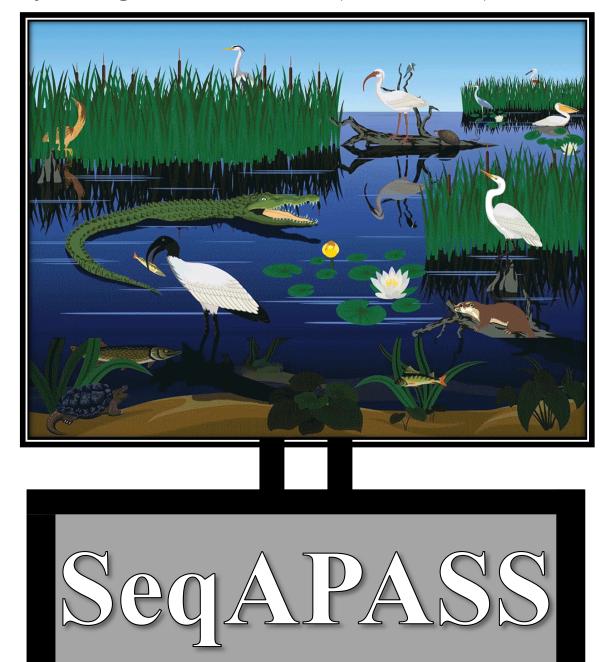
OXFORD SOCIETY of Toxicology

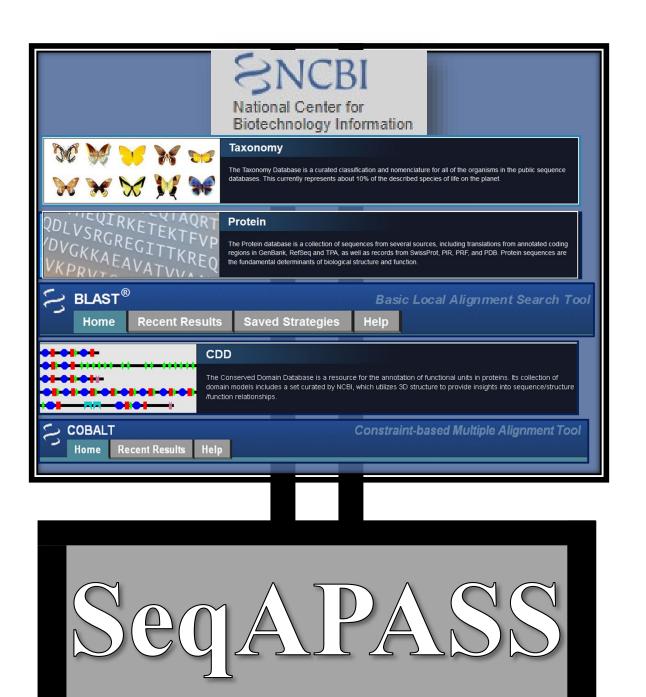

doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016 Research article

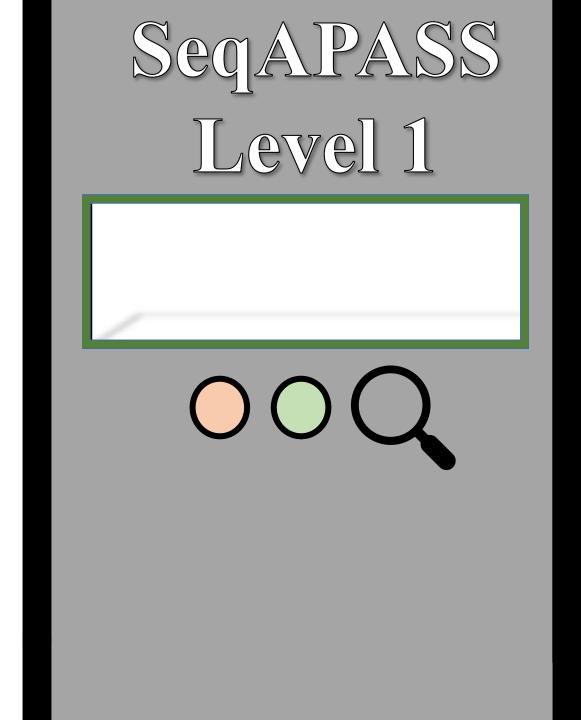
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

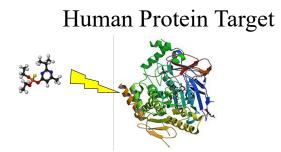
Carlie A. LaLone,^{*,1} Daniel L. Villeneuve,^{*} David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,^{*} and Gerald T. Ankley^{*}

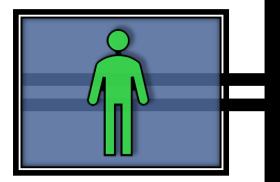
What information is required for a SeqAPASS query?

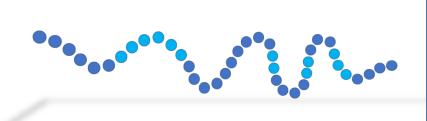


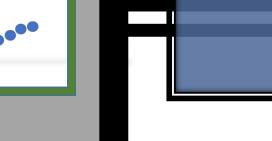

Compare to <u>Millions</u> of Proteins From <u>Thousands</u> of Species

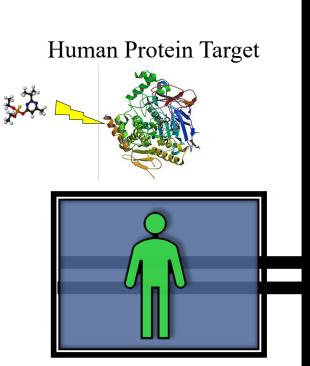

Greater similarity = Greater likelihood that <u>chemical can act on the protein</u> <u>Line of Evidence</u>: Predict Potential Chemical Susceptibility Across Species

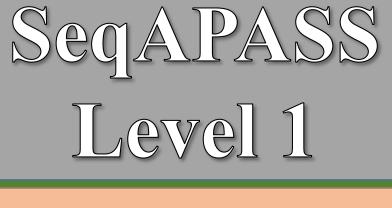



Animation by: Miguel Moravec (EPA CSS) & Andrew Patterson

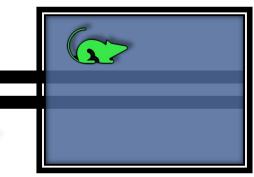


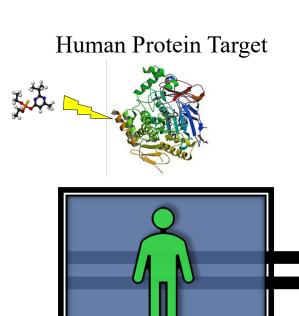






OOQ

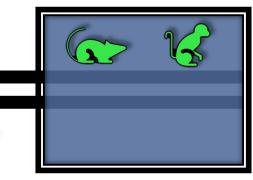




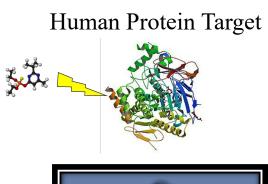
 $OOO_{Yes}O$

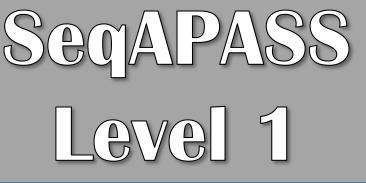
Line of Evidence: Primary amino acid sequence Conserved

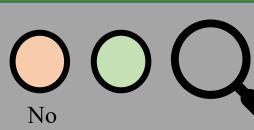
Percent similarity

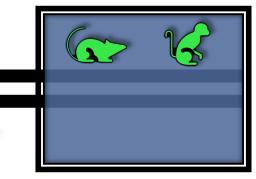


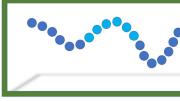
Yes


Line of Evidence: Primary amino acid sequence Conserved



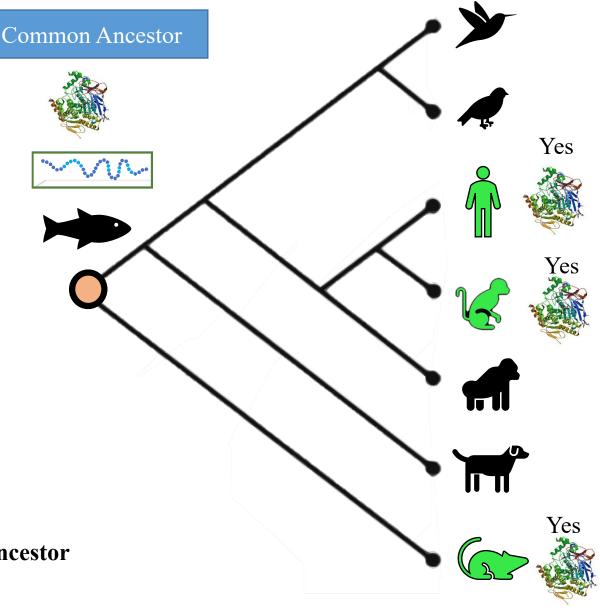




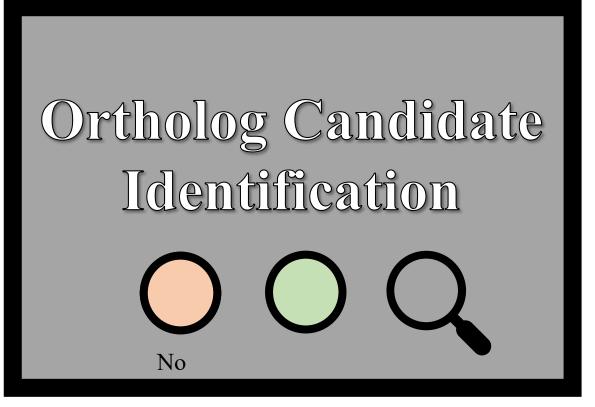


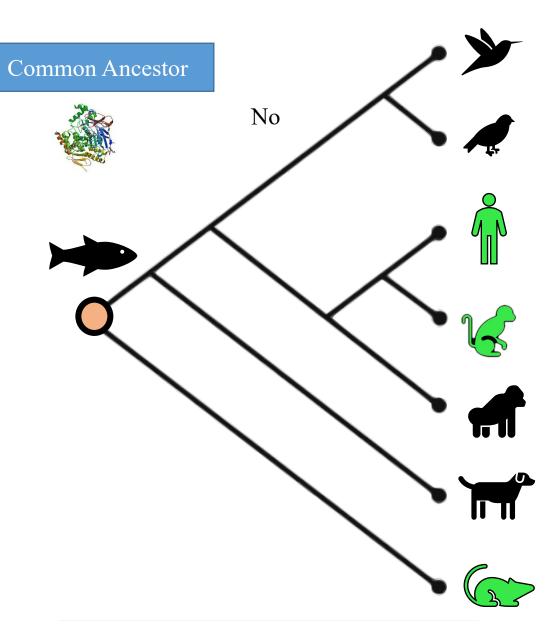


Line of Evidence: Primary amino acid sequence Conserved



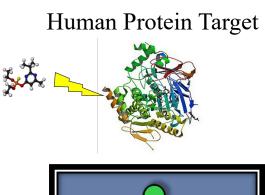
SegAPASS Level 1

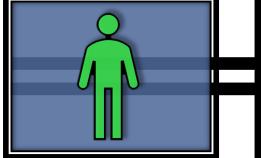


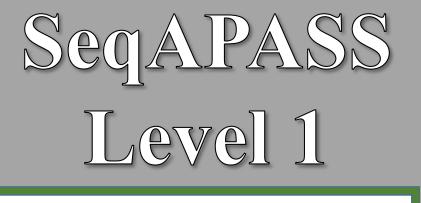

Proteins in different species that evolved from a common ancestor

Typically maintain similar function

SegAPASS Level 1

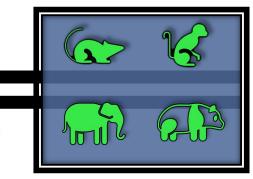

SegAPASS Level 1


Common Name	Ortholog Candidate	Cut-off	Percent Similarity	
Human	Y	33.15	100	
Florida manatee	Y	33.15	98.8	
Mallard	Y	33.15	82.29	
Rock pigeon	Y	33.15	80.93	
Green anole	Y	33.15	80.65	
Pacific transparent sea squirt	Y	33.15	Lo	west % Similarity that is still an ortholog
Yesso scallop	N	33.15	32.87	
Purple sea urchin	Ν	33.15	26.05	
Human whipworm	Ν	33.15	23.53	
Bed bug	Ν	33.15	21.62	

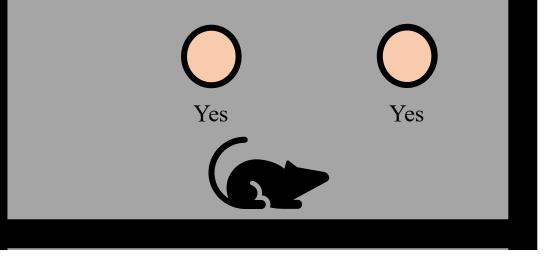

Example:

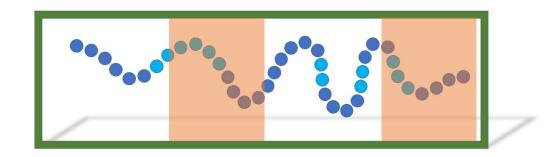
Susceptibility Cut-off: Set at 33.15

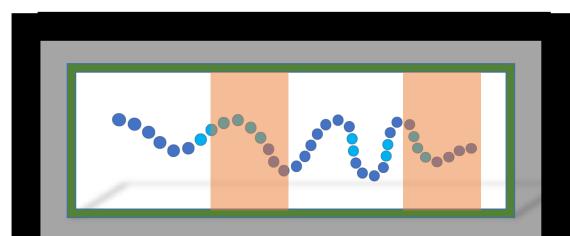
Above cut-off: More likely to be susceptible base on similar **FUNCTION**

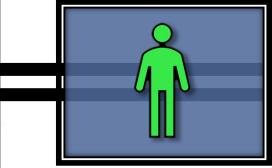


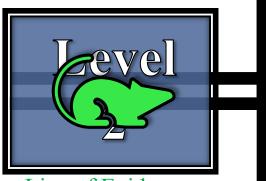
 $\left(\right) \left(\right) \left(\right)$

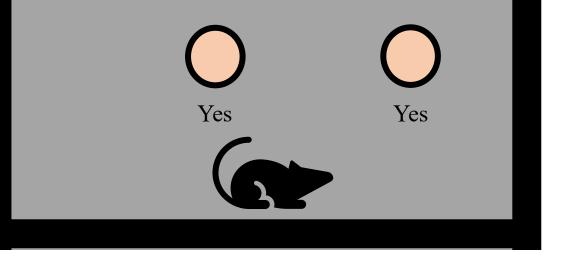

Line of Evidence: Primary amino acid sequence Conserved



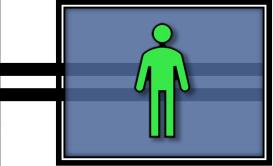

Hundreds to Thousands of Species

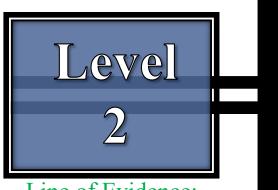


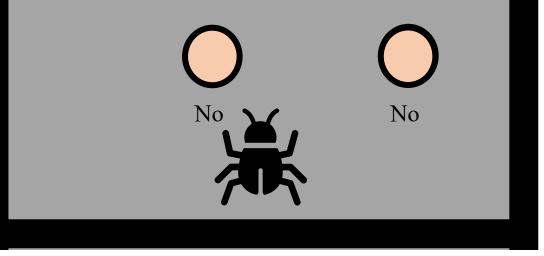

Domain Conserved

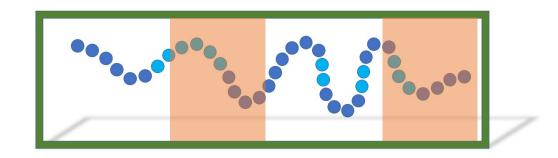


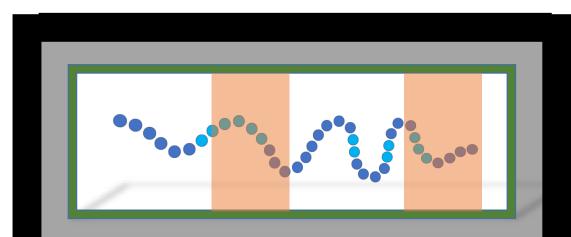


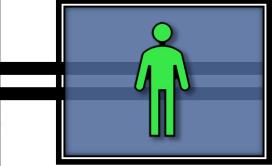


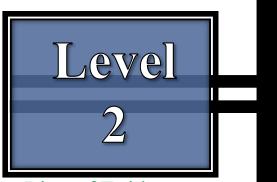

Line of Evidence: Domain Conserved

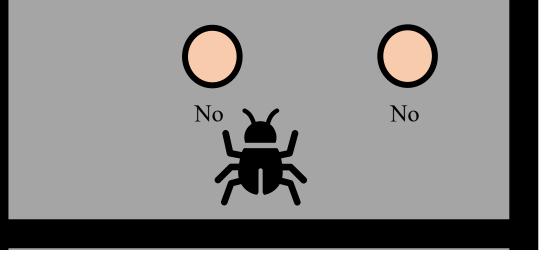


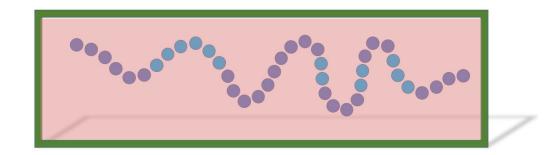


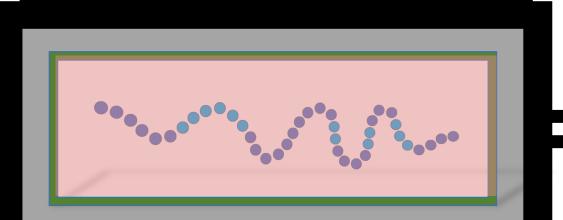


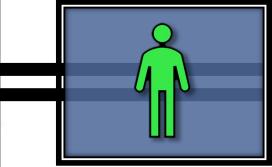


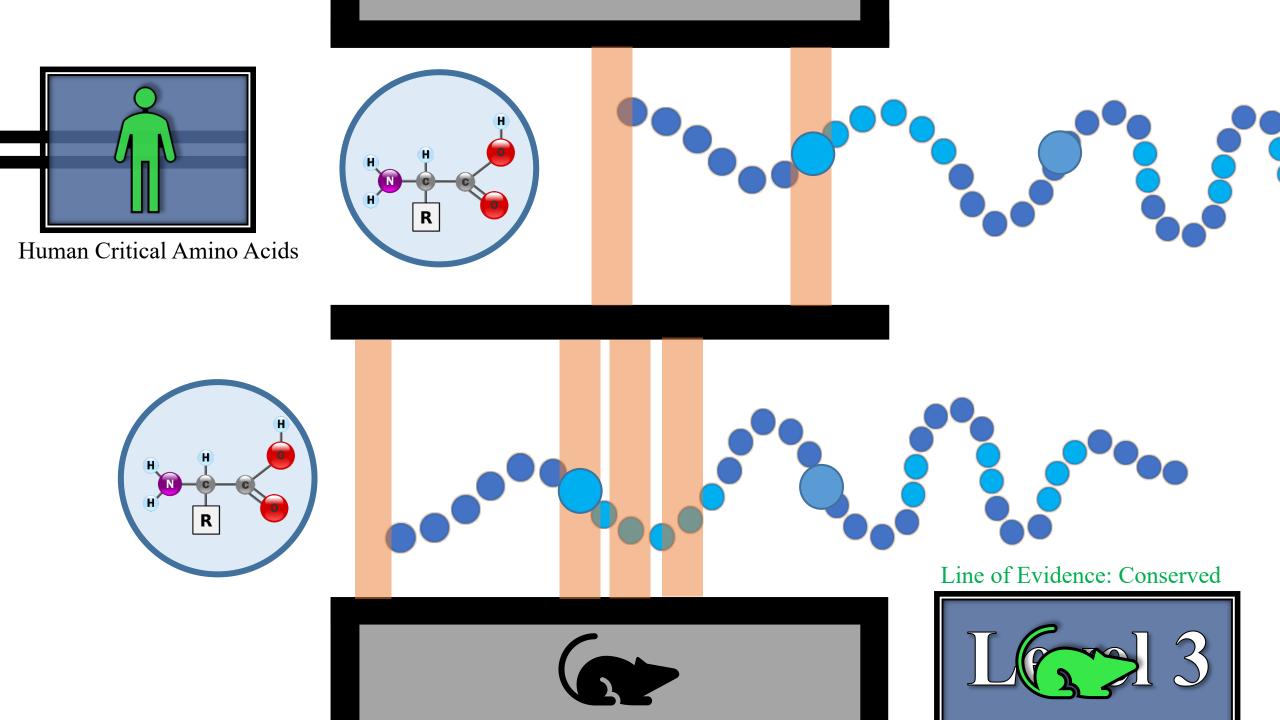

Line of Evidence: Domain Conserved

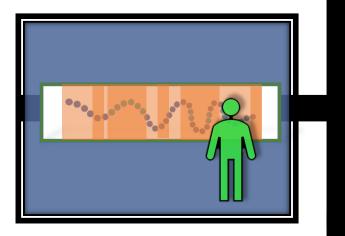


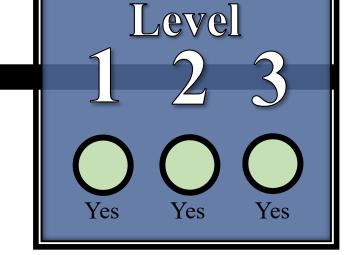


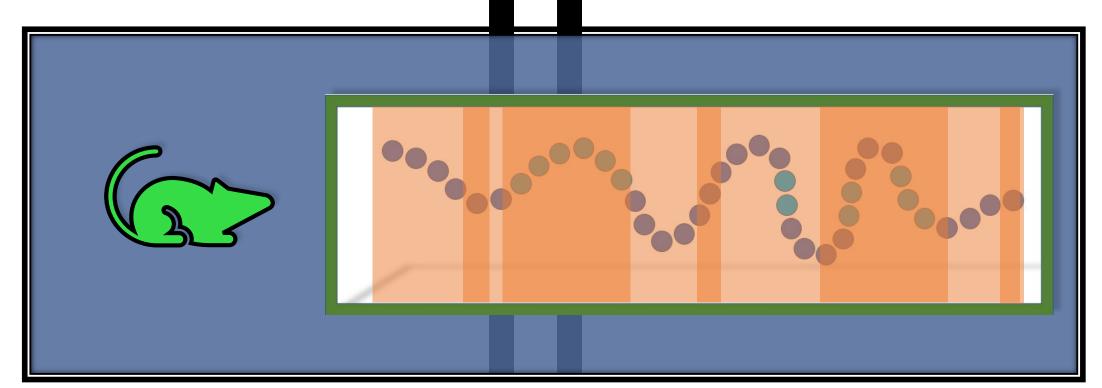





Line of Evidence: Domain Not Conserved







SeqAPASS Summary

Gather Lines of Evidence for Conservation of Protein Target: Susceptibility Prediction: Yes or No

SeqAPASS DEMO:

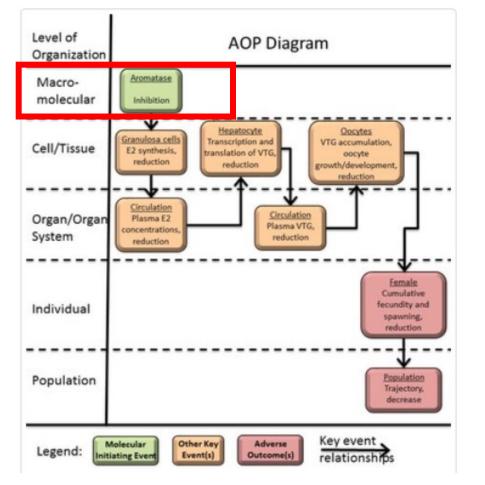
Take a whirlwind tour of the tool and updated features

DEMO

How to get started!

Process:

- Define your question problem formulation
- Literature review to understand protein target and species
- How well has the protein been characterized?
- Do we know anything about functional domains?
- Do we have any information about the chemical-protein interaction?
- Use SeqAPASS to Guide you through the evaluation:
- SeqAPASS Level 1 Query view results
- SeqAPASS Level 2 Query view results
- SeqAPASS Level 3 Query view results
- Address challenge in cross species extrapolation


SeqAPASS was developed for you!

SeqAPASS Case Study

Case Study: SeqAPASS Evaluation to define the taxonomic relevance of an MIE in an AOP

AOP:25 Aromatase inhibition leading to reproductive dysfunction (<u>https://aopwiki.org/aops/25</u>)

axonomic Applicab	ility 😢		
Term	Scientific Term	Evidence	Link
medaka	Oryzias latipes	Moderate	NCBI
zebrafish	Danio rerio	Moderate	NCBI
athead minnow	Pimephales promelas	Strong	NCBI

Stressors 📀			
Name			
Fadrozole			
Letrozole			
Prochloraz			

Question(s): How broadly an I anticipate extrapolating this MIE? OR from a chemical specific perspective, What other species are likely susceptible to Fadrozole?

Contect Us

Related Topics: SeqAPASS

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Expedies distribution of literature to support Level 3, critical individual amino acid residue comparisons Seleno-cysteine (U) added to Level 3, critical individual amino acid residue comparisons

Welcome to SeqAPASS	0
Login	
For optimal SeqAPASS performance use Chrome 🕖	
Want an account? Click here for instructions.	
	About SegAPASS

Discover.	Connect.	Ask.
Accessibility	Data_gov	Contact Us
EPA Administrator	Inspector General	Hotlines
Budget & Performance	Jobs	FOIA Requests
Contracting	Newsroom	Frequent Questions
Grants	Open Government	
January 19, 2017 Web Snapshot	Regulations.gov	Follow.
No FEAR Act Data	Subscribe	
Privacy	USA.gov	f 🎔 🛗 🚥 O
	White House	LAST UPDATED ON {MARCH 6, 2018}

Search EPA.gov

Contect Us

Related Topics: SeqAPASS

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Return

EPA Users

1. Go to https://waa.epa.gov and login with your existing EPA LAN id and password.

- Under the "Community Access" menu, select "Request Web Community Access"
- 3. Select the "SeqAPASS Users" community and click submit.
- Return to the SeqAPASS login page to access SeqAPASS

External Users

- 1. Go to https://waa.epa.gov and click on the "Self Register" link.
- 2. Fill out the form using the following EPA Contact information:
 - EPA Contact Name Carlie Lalone o
 - EPA Contact's Email Address Ialone.carlie@epa.gov EPA Contact's Phone Number 218-529-5038
- Select the "SeqAPASS Users" community from the dropdown menu at the bottom of the page.
- 4. Once you submit the form you will receive an email confirming your request and a follow-up email with your username once your account has been activated.

Top of Page

New to SeqAPASS Version 4 (See user guide for more details)

- New EPA compliant login through the <u>Web Application Access</u>
- · Integrated information and help buttons
- · Links to guide user to an appropriate query protein
- Level 1, Level 2, and Level 3 data summary reports
- · Interoperability with the ECOTOX Knowledgebase to compare sequence-based susceptibility predictions to existing empirical toxicity data
- Expedited identification of literature to support Level 3, critical individual amino acid residue, comparisons using Reference Explorer
- · Ability to create Level 3 Data reports with combined taxonomic groups
- · Seleno-cysteine (U) added to Level 3, critical individual amino acid residue comparisons

	SeqAPASS Login	×	
Log In to SeqAPASS Welcome to Login	 User Account Migration - Version 4 of SeqAPASS All users external to EPA with login on the previous SeqAPASS version will automatically migrate to the new Web Application Access login, however they will need to reset their passwords. More information is provided on the SeqAPASS Log In page (Want an account? Click <u>here</u> for instructions). Your previous account including completed SeqAPASS jobs were transferred. If you are having any problems accessing your account, please email us at <u>SeqAPASS.support@epa.gov</u>. 	4	
	APASS performance use Chrome <i>1</i> ? Click <u>here</u> for instructions. Abo	out Se	egAPASS

Identify a Protein Target

SeqAPASS is designed to predict cross species chemical susceptibility based on a protein molecular target. The following resources have been identified to guide the user to an appropriate protein target based on the chemical, adverse outcome pathway (AOP), or high-throughput screening (HTS) assay target of interest. Click the help buttons below for descriptions of how to find relevant protein target information from these resources.

All links will open in a new tab.

The following links exit the site EXIT

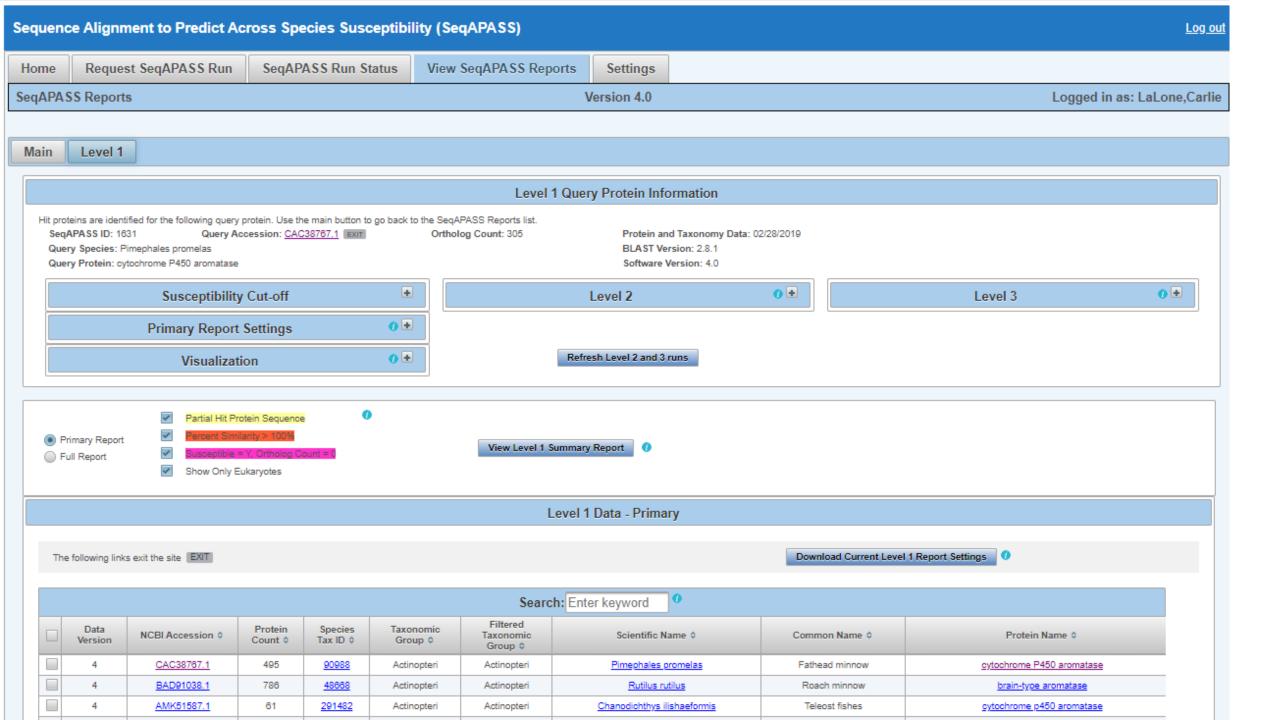
Pharmaceutical protein targets:

Pesticides and other chemical protein targets:

AOP chemical intiators:

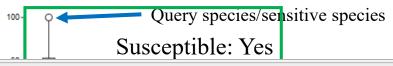
ToxCast HTS results by chemical:

	Identify a Protein Target	Ξ
SeqAPASS is designed to predict cross species chemica outcome pathway (AOP), or high-throughput screening (I All links will open in a new tab.	I susceptibility based on a protein molecular target. The following resources have been identified to guide the user to an appropriate protein target based on the chemical, adverse are resources.	
 The following links exit the site EXIT Pharmaceutical protein targets: Pesticides and other chemical protein targets: AOP chemical initiators: 	Adverse Outcome Pathway Wiki is the central repository for all AOPs. • Click the Stressors link on the top of the page. Use the search stressors Search function to search for a chemical of interest or scroll through the stressors presented in the Listing Stressors table. Click on chemical name. On Stressor Overview page, view the Events Including This Stressor section for Event Names associated with the molecular target. Click on the Event Name to learn more about the event. Scroll to Taxonomic Applicability. If species are listed these are the species for which there is evidence to link them to the event. This information provides the SeqAPASS user with the molecular target in the form of the event and the target species from the Taxonomic Applicability information.	
https://aopwiki.org ToxCast HTS results by chemical:	0	


0

€ EPA		Comp	are Primary Amino Acid Sequ	iences	0
United States Environmental Protection Agency	Select Search: 🖲 By Sp By Ac				
			Query Species Selection		0
	Query Species Search:				
	Add Query Species	NCBI Taxonomy Database EXIT			
	Query Species:	fathead minnow (Taxid:90988)			
			Ourse Brotain Salastian		0
			Query Protein Selection		v
	Query Protein Search:				
		Filter Protein NCBI Protein Database EXIT			
	Query Proteins:	[CAC38767.1] cytochrome P450 aromatase [AAG00590.1] aromatase, partial			
		Add Selected Protein(s)			
			SeqAPASS Submission		0
	Final Query Protein(s)	[CAC38767.1] cytochrome P450 aromatase			
		Remove Selected Protein(s) Remove All Proteins			
	Request Run Clear				

ne	Request	SeqAPASS R	Run SeqAP	ASS Run Status	View SeqAPASS Reports	Settings		
PAS	SS Reports				Ve	rsion 4.0		Logged in as: LaLo
v P:	artial Protein	Sequence	Request	Selected Report	Refresh Available Reports			
	iew Report	Sequence	Request	Selected Report	Reliesh Available Reports			
	ave Report	s)						
					Availal	ble Reports		
					Search: Ente	er keyword		
	SeqAPASS Run Id *	Data Version \$	Ortholog Count \$	Level 1 Query Accession \$	Query Protein Name 0	NCBI Taxonomy ID \$	Query Species Name 🗘	Query Common Name 0
	1631	4	305	CAC38767.1	cytochrome P450 aromata	se 90988	Pimephales promelas	Fathead minnow
	1630	4	648	ABF74729.1	retinoid X receptor-like prot	ein 35525	Daphnia magna	Common water fleas
	1629	4	470	NP_001097670.1	neverland	7227	Drosophila melanogaster	Fruit fly
	1628	4	152	BAM83853.1	Methoprene-tolerant	6669	Daphnia pulex	Common water flea
	1627	4	90	NP_524143.2	ftz transcription factor 1, isofo	orm B 7227	Drosophila melanogaster	Fruit fly
	1626	4	215	BAF49033.1	ecdysone receptor B	35525	Daphnia magna	Common water fleas
	1625	4	14	XP_011493380.2	ecdysone-inducible protein E75 is	oform X2 7159	Aedes aegypti	Yellow fever mosquito
	1624	4	48	ALC49375.1	Cyp18a1	30019	Drosophila busckii	Fruit flies
	1623	4	116	NP_001011578.1	vitellogenin precursor	7460	Apis mellifera	Honey bee


Top of Page

Sequenc	ce Alignment to Predict Ac	ross Species Susceptibi	lity (SeqAPASS)				<u>Log out</u>
Home	Request SeqAPASS Run	SeqAPASS Run Status	View SeqAPASS Reports	Settings			
SeqAPAS	SS Reports		١	/ersion 4.0			Logged in as: LaLone,Carlie
Main	Level 1						
			Level 1 Quer	y Protein Infor	mation		
Seq/ Quer	APASS ID: 1631 Query Are Species: Pimephales promelas ry Species: Pimephales promelas ry Protein: cytochrome P450 aromatase	rotein. Use the main button to go back ession: <u>CAC38767.1</u> [Exit]	o the SeqAPASS Reports list. Ortholog Count: 305	Protein and BLAST Versi Software Ver			
	Susceptibility	Cut-off 🛛		Level 2	0 +	Level 3	0 •
	Primary Report S	Settings 🛛 🕨					
	Visualizatio	on 🕜 🗖	Refre	sh Level 2 and 3 ru	ns		
	Visualize Data This will open in a s	separate tab.					

EPA United States Environmental Protection Interactive Data Visualization

(1 of 94)

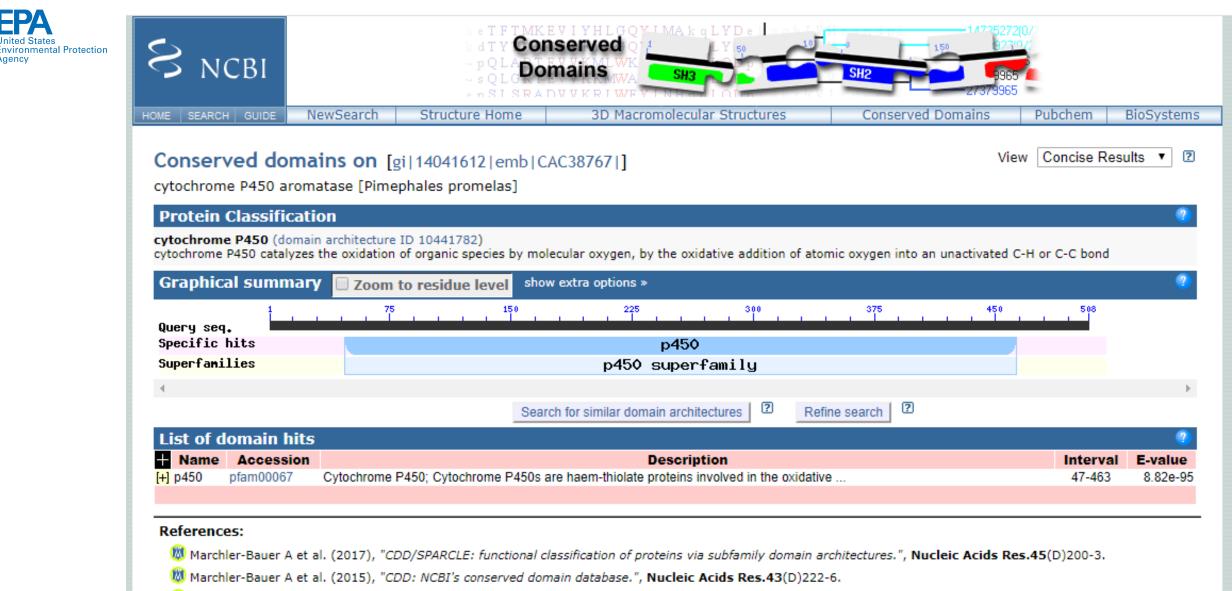
Level 1 Data - Primary

		Search:	Enter keyword						
Common Name 🌣	Protein Name 🌣	BLASTp Bitscore ≎	Ortholog Candidate 🗢	Ortholog Count	Cut-off ©	Percent Similarity ©	Susceptibility Prediction ©	Analysis Completed ≎	Eukaryote ¢
Human	estrogen receptor isoform 1	1241.87	Y	348	27.98	100.00	Y	2019 05 16 11:04:08	Y
Western gorilla	estrogen receptor alpha	1229.54	Y	348	27.98	99.01	Y	2019 05 16 11:04:08	Y
Chimpanzee	estrogen receptor isoform X2	1229.54	Y	348	27.98	99.01	Y	2019 05 16 11:04:08	Y
Western lowland goril	PREDICTED: estrogen receptor isoform X2	1228.77	Y	348	27.98	98.95	Y	2019 05 16 11:04:08	Y
Pygmy chimpanzee	estrogen receptor isoform X2	1228.00	Y	348	27.98	98.88	Y	2019 05 16 11:04:08	Y
Sumatran orangutar	estrogen receptor isoform X2	1227.62	Y	348	27.98	98.85	Y	2019 05 16 11:04:08	Y
Bornean orangutan	estrogen receptor alpha	1227.62	Y	348	27.98	98.85	Y	2019 05 16 11:04:08	Y
Pig-tailed macaque	estrogen receptor isoform X2	1227.23	Y	348	27.98	98.82	Y	2019 05 16 11:04:08	Y
Rhesus monkey	PREDICTED: estrogen receptor isoform X2	1227.23	Y	348	27.98	98.82	Y	2019 05 16 11:04:08	Y
Sooty mangabey	PREDICTED: estrogen receptor isoform X2	1227.23	Y	348	27.98	98.82	Y	2019 05 16 11:04:08	Y
·									3

Crocodyli Lepidosauri Amphibi Malacostrac Scyphozo Trichopla Chilopod Cephalopod Arachnid Rhopalurida Anthozo Hydrozo Tricladid Diplopod Actinopte Cladisti Lingulat Polychaet Echinoide Liliopsid Cubozo Enople Cestod Taxonomic Bivalvi Mammali Testudine Å Chondrichthye Ceratodontimorph Coelacanthiforme Petromyzontiforme Myxiniforme Gastropod Branchiostomida Priapulida Ascidiace Insect Collembol Maxillopod Enopl Branchiopod Clitellat Eutardigrad Monogonont Asteroide Appendiculari Peripatopsida Chromadore Macrostomid Trematod Merostomat Enteropneus group: Class

1 2 3 4 5 6 7 8 9 10

ES EI


10 ~

Download Table: 😽 📥

Anopl

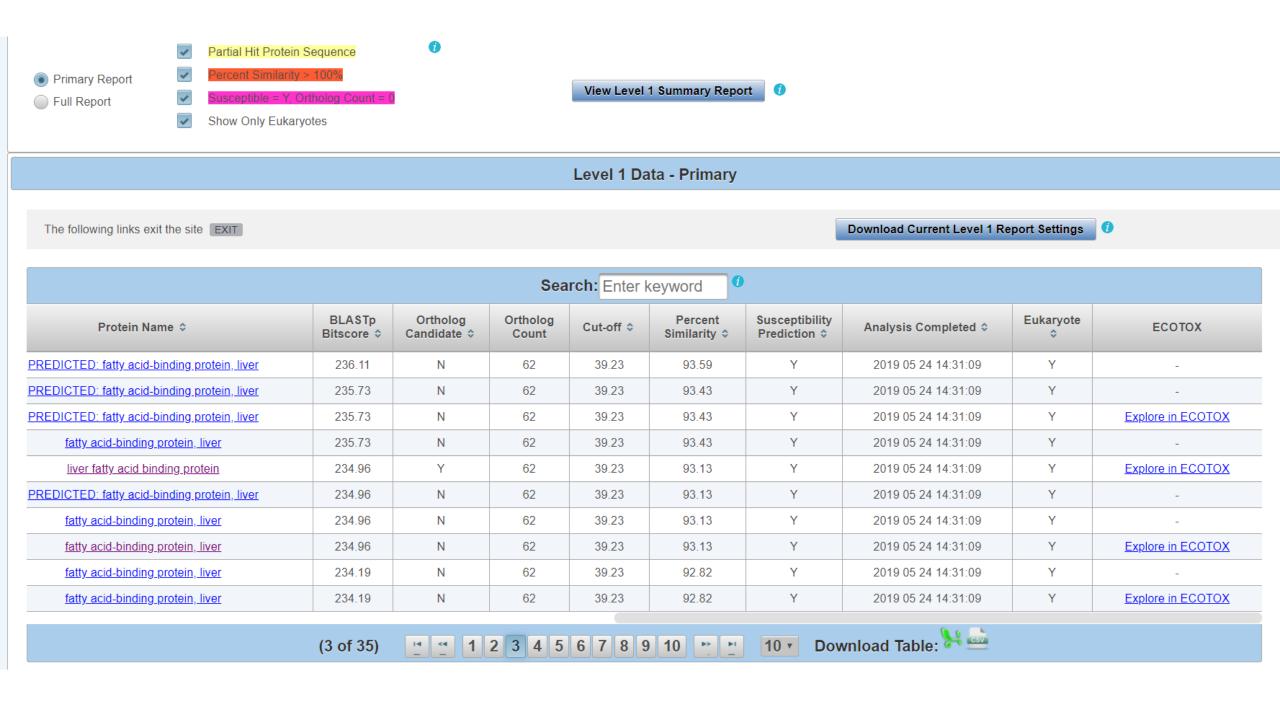
Sequen	ce Alignment to Predict Ac	ross Species Susceptibi	ility (SeqAPASS)					Log out
Home	Request SeqAPASS Run	SeqAPASS Run Status	View SeqAPASS Reports	Settings				
SeqAPA	SS Reports			Version 4.0				Logged in as: LaLone,Carlie
Main	Level 1							
			Level 1 Q	ery Protein Info	ormation			
Sec	APASS ID: 1631 Query Acc PAPASS ID: 1631 Query Acc Pry Species: Pimephales promelas Pry Protein: cytochrome P450 aromatase	rotein. Use the main button to go back session: <u>CAC38767.1</u> EXIT	to the SeqAPASS Reports list. Ortholog Count: 305	BLAST Ve	d Taxonomy Data: 02/28/201 rsion: 2.8.1 Version: 4.0)		
	Susceptibility	Cut-off 🛛 🛨		Level 2	0 =		Level 3	0 🛨
	Primary Report S	Settings 🛛 🖸		Level 2 Query Doma	in			
	Visualizatio	on o 🗆	NCBI Conserved Dom Functional		0			
	Visualize Data This will open in a s	separate tab.	-Select Domain -	• main Run	0			
				View Level 2 Data				
			Choose Domain -Select Completed D	omain - 🔻 🕖				
			View Level 2	Data				
			R	efresh Level 2 and 3	runs			

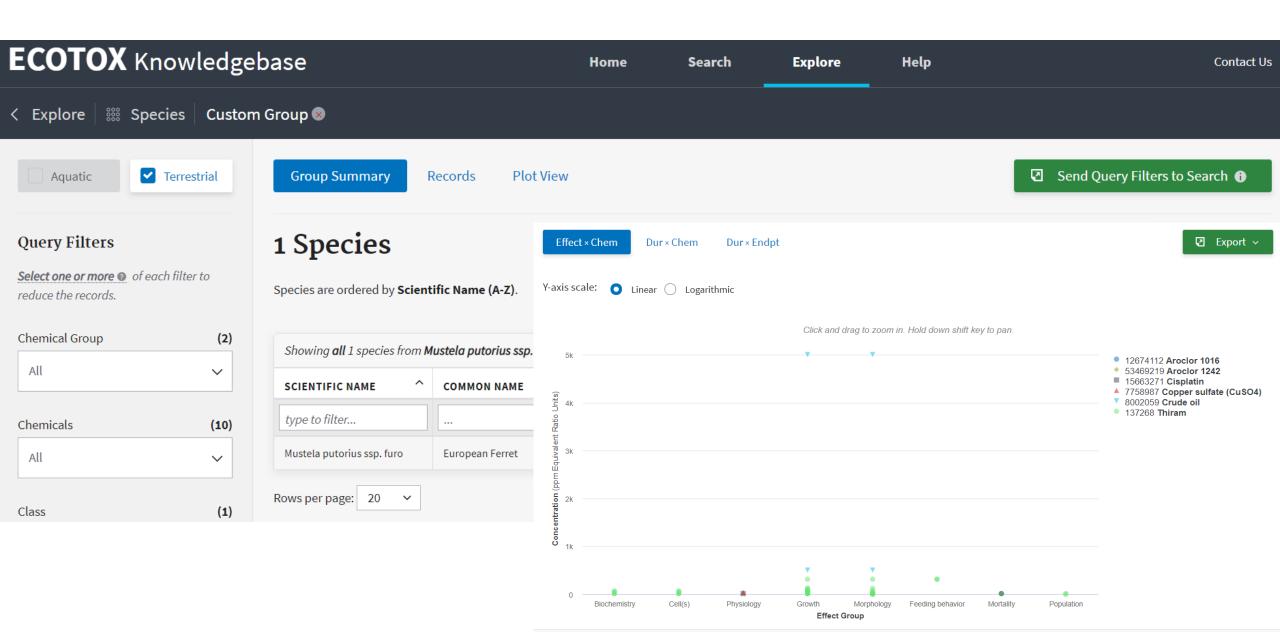
💹 Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.

💹 Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Agency

Help | Disclaimer | Write to the Help Desk NCBI | NLM | NIH

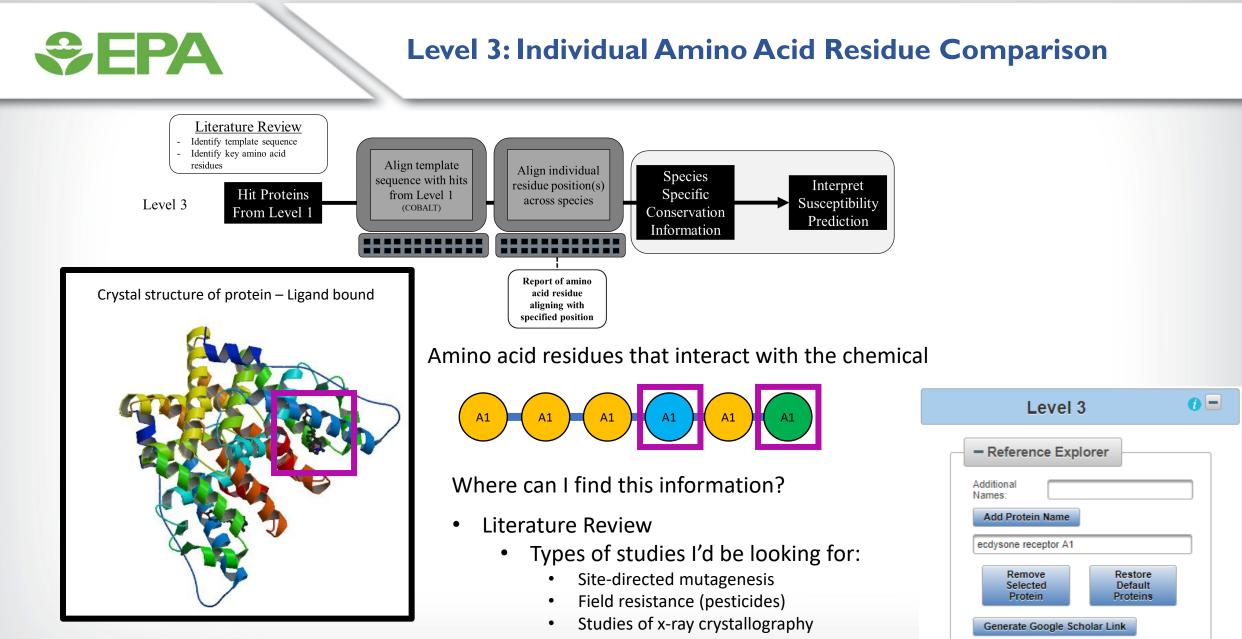

Seque	nce Alignment to Predict Ac	ross Species Susceptibi	lity (SeqAPASS)					Log out
Home	Request SeqAPASS Run	SeqAPASS Run Status	View SeqAPASS Reports	Settings				
SeqAP/	ASS Reports			Version 4.0				Logged in as: LaLone,Carlie
Main	Level 1							
			Level 1 Que	ery Protein Infor	mation			
Se	oteins are identified for the following query p qAPASS ID: 1631 Query Acc ery Species: Pimephales promelas ery Protein: cytochrome P450 aromatase Susceptibility	cession: <u>CAC38767.1</u> EXIT	Ortholog Count: 305	Protein and BLAST Vers Software Ve			Level 3	0 •
	Primary Report S			evel 2 Query Domair				
	Visualizatio		Functional D -Select Domain -	omains				
			(80) PLN03234, P (296) PTZ00404, I (349) TIGR04458,	LN03234, cytochro PTZ00404, cytochro putative_cytochro P450_cycloAA_1	ome P450 83B1; Provisional ome P450; Provisional me_P450, 4-nitrotryptopha cytochrome P450, cyclodi	al n s		
			Ref	resh Level 2 and 3 ru	ns			



Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Level Two Summary Report View SeqAPASS Reports Home Request SeqAPASS Run SegAPASS Run Status Filtered Median Taxonomic Group Number of Mean Percent Susceptibility SeqAPASS Reports Taxonomic Group Percent Species 0 Similarity \$ Prediction 0 Similarity 0 \$ 228 58.06 66.03 Y Actinopteri Actinopteri Main Level 1 Level 2 5 58.82 Y 55.61 Chondrichthyes Chondrichthyes Aves Aves 87 56.35 60.94 Y Crocodylia 4 60.05 60.01 Y Level 2 Quer Crocodylia 18 37.92 Y 41.71 Amphibia Amphibia Hit domains are identified for the following query domain. Use the main button to go back to the SeqAPASS Reports list. Mammalia 149 51.96 59.03 Y Mammalia Query Accession: CAC38767.1 EXIT SegAPASS ID: 1631 Ortholog Count: 348 Y Testudines Testudines 10 50.68 60.20 Query Species: Pimephales promelas Query Domain: (47) pfam00087 EXIT , p450 , Cytochrome P450 14 56.22 Y Lepidosauria Lepidosauria 45.24 Query Protein: cytochrome P450 aromatase 1 54.47 54.47 Y Ceratodontimorpha Ceratodontimorpha Coelacanthiformes Coelacanthiformes 50.04 50.04 V Susceptibility Cut-off 1 2 3 4 5 6 7 8 9 10 (1 of 11) 80 10 . Download 8-1 Visualization Table: 🕌 🚠 0 ~ Partial Hit Protein Sequence ~ Primary Report View Level 2 Summary Report 0 ~ sceptible = Y, Ortholog Count = 0 Full Report ~ Show Only Eukaryotes Level 2 Data - Primary Download Current Level 2 Report Settings The following links exit the site EXIT Search: Enter keyword Filtered Data Protein Species Taxonomic NCBI Accession \$ Taxonomic Scientific Name 0 Common Name 0 Protein Name \$ Tax ID 0 Version Count 0 Group 0 Group 0 CAC38767.1 495 90988 Pimephales promelas Fathead minnow cytochrome P450 aromatase 4 Actinopteri Actinopteri 786 4 BAD91038.1 48668 Actinopteri Actinopteri Rutilus rutilus Roach minnow brain-type aromatase 4 AMK51587.1 61 291482 Actinopteri Actinopteri Chanodichthys ilishaeformis Teleost fishes cytochrome p450 aromatase 343 143606 4 ADB44882.1 Actinopteri Actinopteri Gobiocypris rarus Teleost fishes cytochrome P450 aromatase ROI37052.1 23922 495550 4 Teleost fishes Actinopteri Actinopteri Anabarilius grahami Brain aromatase 4 XP 016324429.1 68487 1608454 Actinopteri Actinopteri Sinocyclocheilus anshuiensis Teleost fishes PREDICTED: brain aromatase isoform X1 4 ACB13198.1 117439 7962 Common carp Actinopteri Actinopteri Cyprinus carpio aromatase AAK00642.1 cytochrome P450 aromatase 4 87698 7955 Actinopteri Actinopteri Danio rerio Zebrafish AVY53511.1 784 210638 4 Actinopteri Actinopteri Tor putitora Golden mahseer cytochrome P450 aromatase AXG24156.1 68 Goldfish 145923 Actinopteri Actinopteri cytochrome P450 19A1B 4 Carassius auratus grandoculis

Ψ,

(1 of 131) 1 2 3 4 5 6 7 8 9 10 P 10 Download Table:



Taxonomic Group \$	Filtered Taxonomic Group ≎	Number of Species \$	Mean Percent Similarity \$	Median Percent Similarity \$	Susceptibility Prediction \$
Mammalia	Mammalia	122	87.15	88.78	Y
Aves	Aves	78	75.84	77.33	Y
Lepidosauria	Lepidosauria	10	52.36	45.72	Y
Testudines	Testudines	4	76.53	76.64	Y
Crocodylia	Crocodylia	4	74.81	75.11	Y
Amphibia	Amphibia	6	63.71	69.08	Y
Actinopteri	Actinopteri	75	61.49	65.19	Y
Chondrichthyes	Chondrichthyes	3	56.54	63.51	Y
Ceratodontimorpha	Ceratodontimorpha	1	37.40	37.40	Ν
Branchiopoda	Branchiopoda	1	27.32	27.32	Ν

×

Homology modeling

This is not trivial....it can take some time to identify literature and formulate the Level 3 query

Level 2 Query Domain	
Loron L Quory Domain]
NCBI Conserved Domain Database EXIT	
-Select Domain -	
Request Domain Run	
View Level 2 Data	
Choose Domain to View	
-Select Completed Domain - 🔹 🧃	
View Level 2 Data	

Refresh Level 2 and 3 runs

United States Environmental Protection	Level 3	0 -
Agency	Reference Explorer () Additional Names: Add Protein Name fatty acid-binding protein liver	
	Remove Selected Protein Restore Default F Generate Google Scholar Link Generate Google Scholar Link	Proteins

Google Scholar

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C34&q=(fatty acid-binding protein OR liver)AND("site-directed mutagenesis" OR "molecular docking" OR "docking analysis" OR "docking simulations" OR "x-ray crystallography" OR "crystal structure" OR "homology modeling" OR "protein structure" OR "protein binding" OR "molecular model" OR "binding" OR "field resistance" OR "amino acid" OR "amino acid residues" OR "mutation" OR "mutations" OR "molecular dynamics" OR "transcriptional activation" OR "3D-pharmacophore" OR "pharmacophore" OR "structure-based" OR "chemo-bioinformatics" OR "3D-stuctures" OR "3D-QSAR")

Search Google Scholar

Copy to Clipboard

×

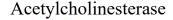
≡	Google Scholar	(fatty acid-binding protein OR liver)AND("site-directed mutagenesis" OR "mol			SIGN IN
•	Articles	About 18,400 results (0.15 sec)		S My profile	★ My library
	Any time Since 2020 Since 2019 Since 2016 Custom range Sort by relevance Sort by date ✓ include patents ✓ include citations	The Crystal Structure of the Liver Fatty Acid-binding Protein A COMPLEX WITH TWO BOUND OLEATES J Thompson, N Winter, D Terwey, J Bratt Journal of Biological, 1997 - ASBMB The crystal structure of the recombinant form of rat liver fatty acid-binding protein was completed to 2.3 Å and refined to an R factor of 19.0%. The structural solution was obtained by molecular replacement using superimposed polyalanine coordinates of six intracellular ☆ 切り Cited by 269 Related articles All 8 versions Web of Science: 206 ≫ Crystal structure of rat intestinal fatty-acid-binding protein: Refinement and analysis of the Escherichia coli-derived protein with bound palmitate JC Sacchettini, JI Gordon, LJ Banaszak - Journal of molecular biology, 1989 - Elsevier Rat intestinal fatty-acid-binding protein (I-FABP) is a small (15,124 M r) cytoplasmic polypeptide that binds long-chain fatty acids in a non-covalent fashion. I-FABP is a member of a family of intracellular binding proteins that are thought to participate in the uptake ☆ 切り Cited by 314 Related articles All 6 versions Web of Science: 308 ≫	[PDF] jbc.org Full View		
		Crystal structure and thermodynamic analysis of human brain fatty acid- binding protein GK Balendiran, F Schnütgen, <u>G Scapin</u> Journal of Biological, 2000 - ASBMB Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the ☆ ワワ Cited by 190 Related articles All 7 versions Web of Science: 128 Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites S Curry, H Mandelkow, P Brick, N Franks - Nature Structural & Molecular, 1998 - nature.com III is in accordance with our structural results, although the difficulty in distinguishing between	[PDF] jbc.org Full-Text@EPA Libraries		

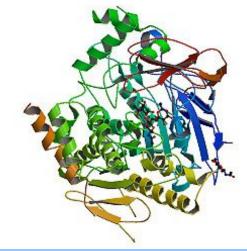
disorder and occupancy in **crystal structure** determinations makes it ... Although most iLBP proteins bind only a single long-chain **fatty** acid, rat **liver fatty acid binding protein** can hold two ...

☆ 579 Cited by 1277 Related articles All 7 versions Web of Science: 948 🄊

Focus on Structure: Level 3 Susceptibility Predictions






doi: 10.1093/toxsci/kfy186 Dryad Digital Repository DOI: https://doi.org/10.5061/dryad.2tg69(Advance Access Publication Date: July 27, 2018 Research Article

In Silico Site-Directed Mutagenesis Informs Species-Specific Predictions of Chemical Susceptibility Derived From the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Tool

Jon A. Doering,^{*,†} Sehan Lee,^{‡,§} Kurt Kristiansen,[¶] Linn Evenseth,[¶] Mace G. Barron,[‡] Ingebrigt Sylte,[¶] and Carlie A. LaLone^{*,1}

Level 3 Template Protein Information

Individual amino acid residu	e(s) aligned with template sequence. Use the main	button to go back to the SeqAPASS Repo	rts list.
SeqAPASS ID: 713	Query Accession: NP 000116.2	Ortholog Count: 305	Protein and Taxonomy Data: 10/25/2017
Level 3 Run Name: fish			BLAST Version: 2.6.0
Template Species: Homo	sapiens		Cobalt Data: 07/09/2010
Template Protein: [NP_00	0116.2] estrogen receptor isoform 1		Cobalt Version: 2.1.0
Query Residues: No Resid	lues Selected		Software Version: 3.0
Channe Anima Animalanta			

elect Amino Acid Residues								
1M	^							
2T								
зм	*							
4T								
5L								
8H								

7T 8K

Update Report

Enter Amino Acid Residue Positions

	Agency						
evel 3	3 Data - Full						
				Search: E	nter keyword		
Data Versior	NCBI Accession <	Protein Count ≎	Species Tax ID ≎	Taxonomic Group ≎	Scientific Name ≎	Common Name ≎	Protein Name ≎
4	ABP48741.1	29304	35525	Branchiopoda	<u>Daphnia magna</u>	common water fleas	ecdysteroid receptor
4	O18473.1	19556	<u>7102</u>	Insecta	Heliothis virescens	Tobacco budworm	RecName: Full=Ecdysone receptor; /
4	XP_021181318.1	40862	<u>29058</u>	Insecta	Helicoverpa armigera	Cotton bollworm	ecdysone receptor isoform X2
4	AGA17965.1	414	<u>56364</u>	Insecta	Agrotis ipsilon	Black cutworm moth	EcR B-like protein
4	XP_026744320.1	24101	<u>7111</u>	Insecta	Trichoplusia ni	Cabbage looper	ecdysone receptor isoform X2
4	ADO64595.1	496	<u>7109</u>	Insecta	Spodoptera littoralis	African cotton leafworm	ecdysone receptor
4	ACA30302.1	1370	<u>7107</u>	Insecta	Spodoptera exigua	Beet armyworm	ecdysone receptor
4	XP_022819527.1	25104	<u>69820</u>	Insecta	Spodoptera litura	Owlet moths	ecdysone receptor isoform X1
4	XP_026757744.1	17712	<u>7137</u>	Insecta	Galleria mellonella	Greater wax moth	ecdysone receptor isoform X1

Amino Acid info

ID \$	Name \$	Side Chain 🗘	Size 🗘
A	Alanine	Aliphatic	89.094
С	Cysteine	Sulfur-Containing	121.154
D	Aspartic Acid	Acidic	133.104
E	Glutamic Acid	Acidic	147.131
F	Phenylalanine	Aromatic	165.192
G	Glycine	Aliphatic	75.067
Н	Histidine	Basic	155.156
I	Isoleucine	Aliphatic	131.175
К	Lysine	Basic	146.189
L	Leucine	Aliphatic	131.175
Μ	Methionine	Sulfur-Containing	149.208
Ν	Asparagine	Amidic	132.119
Р	Proline	Aliphatic	115.132
Q	Glutamine	Amidic	146.146
R	Arginine	Basic	174.203
S	Serine	Hydroxylic	105.093
Т	Threonine	Hydroxylic	119.119
V	Valine	Aliphatic	117.148
W	Tryptophan	Aromatic	204.228
Х	Unknown	Unknown	-100.0
Y	Tyrosine	Aromatic	181.191

Level 3 Data - Full

					Search: Er	iter keyword						
Similar Susceptibility as Template ©	Position 1	Amino Acid 1	Direct Match 1	Side Chain 1	Side Chain Match 1	MW 1	MW Match 1	Total Match 1	Position 2	Amino Acid 2	Direct Match 2	Side
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A
Y	351	D	Y	Acidic	Y	133.104	Y	Y	353	E	Y	A

6 0 L

(1 of 14) 1 2 3 4 5 6 7 8 9 10 10 Download Table:

Evolution of the SeqAPASS tool

- v1.0 (2016): Develop interface Level 1 & 2 and integrate essential functionality
 - Case studies to support
 - Collect Feedback from Users
- v2.0 (2017): develop Level 3 Susceptibility Predictions
 - Case studies to support
 - Semi automated update of executables and databases (protein, taxonomy, conserved domains)
 - Collect Feedback from Users
- v3.0 (2018): Develop visualization (Level 1 & 2), automate Level 3 Susceptibility Predictions
 - Case studies to support
 - Update executables and databases (protein, taxonomy, conserved domains)
 - Collect Feedback from Users
 - User Guide
 - Training materials
- v4.0 (2019): Improve visualization, user guidance, summary tables, interoperability
 - Case studies to support
 - Update executables and databases
 - Collect Feedback from Users
 - Update/publish user guide
 - Publish SOP for testing

Application of SeqAPASS

SAT SUN MON KE KE KE MIE → AO

SUN

MON TUE WED THU

Contents lists available at ScienceDirect Aquatic Toxicology

journal homepage: www.elsevier.com/locate/aquatox

Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action

Carlie A. LaLone^{a,*}, Daniel L. Villeneuve^a, Lyle D. Burgoon^b, Christine L. Russom^a, Henry W. Helgen^c, Jason P. Berninger^d, Joseph E. Tietge^a, Megan N. Severson^a, Jenna E. Cavallin^e, Gerald T. Ankley^a

Case studies: Permethrin

17alpha-ethinyl estradiol human 17β-trenbolone

estrogen receptor voltage-gated sodium channel mosquito bovine androgen receptor

SETAC PRESS

Environmental Toxicology and Chemistry, Vol. 35, No. 11, pp. 2806-2816, 2016 Published 2016 SETAC Printed in the USA

EVALUATION OF THE SCIENTIFIC UNDERPINNINGS FOR IDENTIFYING ESTROGENIC CHEMICALS IN NONMAMMALIAN TAXA USING MAMMALIAN TEST SYSTEMS

GERALD T. ANKLEY,*† CARLIE A. LALONE,† L. EARL GRAY,‡ DANIEL L. VILLENEUVE,† and MICHAEL W. HORNUNG† Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina

Article pubs.acs.org/est

Evidence for Cross Species Extrapolation of Mammalian-Based High-Throughput Screening Assay Results

Carlie A. LaLone,*[†][©] Daniel L. Villeneuve,^{†©} Jon A. Doering,[‡] Brett R. Blackwell,^{†©} Thomas R. Transue,[§] Cody W. Simmons,[§] Joe Swintek,[¶] Sigmund J. Degitz,[†] Antony J. Williams,[∥] and Gerald T. Ankley^{†®}

TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245 Society of

www.toxsci.oxfordiournals.or

doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016 Research article

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species **Extrapolation of Chemical Toxicity**

Carlie A. LaLone,^{*,1} Daniel L. Villeneuve,^{*} David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,* and Gerald T. Ankley*

- Diacylhydrazines and bisacylhydrazine tobacco budworm Case studies: Neonicotinoids Strobilurin fungicides
 - honey bee corn rust
- ecdysone receptor nicotinic acetylcholine receptor cytochrome b

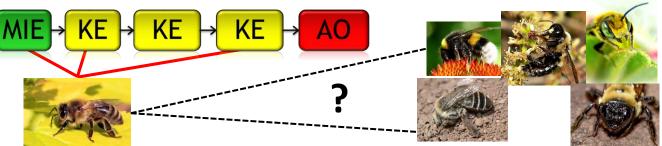
doi: 10.1093/toxsci/kfy186 Dryad Digital Repository DOI: https://doi.org/10.5061/dryad.2tg6967 Advance Access Publication Date: July 27, 2018 Research Article

TOXICOLOGICAL SCIENCES, 166(1), 2018, 131-145

In Silico Site-Directed Mutagenesis Informs Species-Specific Predictions of Chemical Susceptibility **Derived From the Sequence Alignment to Predict** Across Species Susceptibility (SeqAPASS) Tool

Jon A. Doering,*,† Sehan Lee,^{‡,§} Kurt Kristiansen,[¶] Linn Evenseth,[¶] Mace G. Barron,[‡] Ingebrigt Sylte,[¶] and Carlie A. LaLone^{*,1}

Mouse acetylcholinesterase Case studies: Tobacco budworm ecdysone receptor

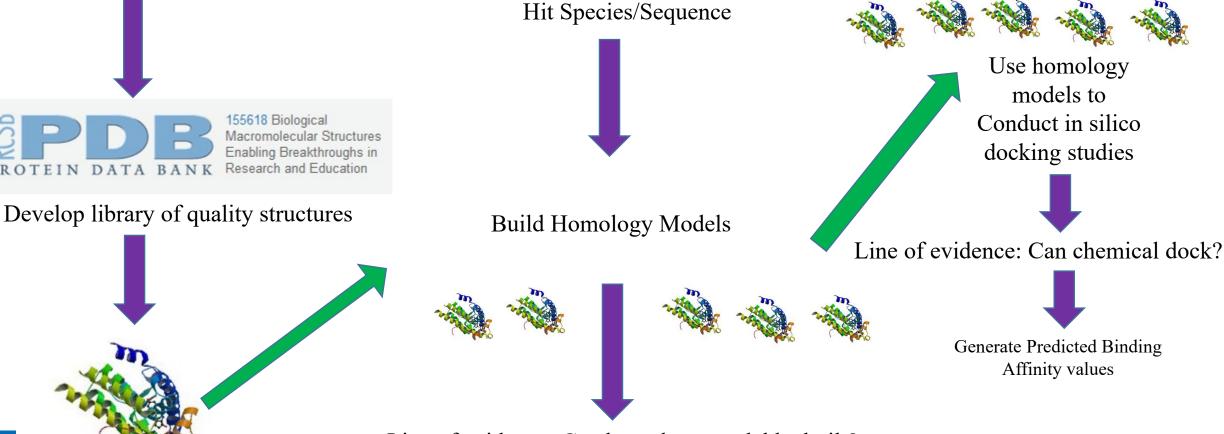


SeqAPASS Advances FY19-22

SeqAPASS development/training and outreach focus Public version releases Published user guides Standard Operating Procedures - Testing Advanced Molecular modeling/docking

Laboratory confirmation of predictions Site-directed mutagenesis

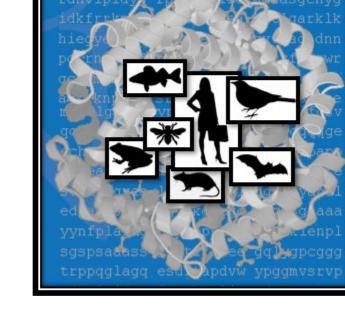
SeqAPASS application PFAS bioaccumulation/toxicity targets High priority pesticides -Apis vs. non-apis bee



Advanced Molecular Modeling to Inform Species-Specific Predictions of Chemical Susceptibility

Query Species/Sequence

Line of evidence: Can homology model be built?



Take Home Message

Regardless of your experience level with such comparisons/data/results

YOU can use SeqAPASS

After all, it was created for you!!!!

LaLone.Carlie@epa.gov; Blatz.Donovan@epa.gov; Vliet.Sara@epa.gov

Acknowledgements

U.S. EPA, ORD

Gerald Ankley Daniel Villeneuve Donovan Blatz (ORISE) Jon Doering (U of Lethbrigde) Colin Finnegan (Iowa State University) <u>GDIT</u>

Thomas Transue Cody Simmons Audrey Wilkinson Badger Technical Services

Joe Swintek

SeqAPASS v4.0

LaLone.Carlie@epa.gov https://seqapass.epa.gov/seqapass/