

A Weight-of-Evidence Approach for Androgen **Receptor Conservation Across Vertebrate Species**

www.epa.gov

Sara M.F. Vliet^a, Kristan Markey^b, Scott G. Lynn^b, Carlie A. LaLone^c ^a ORISE Research Participation Program, U.S. EPA, ORD/CCTE/GLTED, Duluth, MN; ^b U.S. EPA, OCSPP/OSCP, Washington, DC; ^c U.S. EPA, ORD/CCTE/GLTED, Duluth, MN

Background

Endocrine Disruptor Screening Program (EDSP)¹:

- Tasked with evaluating thousands of chemicals for potential endocrine bioactivity to protect human health and wildlife
- Traditional evaluation methods rely on resource-intensive whole-animal testing
- New Approach Methodologies are needed to rapidly prioritize and screen chemicals for potential endocrine bioactivity while reducing animal testing

U.S. EPA Toxicity Forecaster (ToxCast) Program²:

- Rapid, automated high-throughput screening assays using mammalian cell lines for the prioritization of chemicals for further testing and identification of putative molecular target
- Whether or not these mammalian-based screening approaches reasonably reflect potential

Tier 1: In-Silico Evaluation of Structural Conservation

Sequence Alignment to Predict Across Species Susceptibility Tool^{4,5} (SeqAPASS; seqapass.epa.gov/seqapass):

- impacts on non-mammalian vertebrates remains unclear
- Evaluating the conservation of chemical-molecular interactions, cellular responses, and organismal outcomes across taxa can facilitate an understanding of chemical susceptibility across species

Molecular Organism Interaction Response Response Response Response

Hierarchal Framework for Evaluating Androgen Receptor Conservation:

- Previously published Hierarchal Framework for Evaluating Pathway Conservation³ uses available tools and existing data to assemble evidence for pathway conservation
- Androgen receptor (AR) is an important endocrine target for a number of environmental chemicals
- Knowledge of chemicals that can disrupt AR signaling is still growing
- A large base of pre-existing structural, molecular target, and toxicity data exists for AR

knowledge of protein sequence and ligand binding to make predictions of chemical susceptibility across species

90-	•		•	•	•	,			Se	þ	A	PA B	SS	S L di	.ev inį	ve g l	el : Do	2: on	S na	im ain	nil n /	lar Ac	rit ro	ty DS	oi s ⁻	f / Ta	AR axa	: L a	.ig	aı	nd
70					l	•	•	•	•																						Class Name
60-										Ĭ	•	•																			Mammalia Lepidosauria
50-						ļ																									Testudines
40-																															Aves
			Ļ	1					Τ		Ń																				Crocodylia
30-																															Amphibia
20-								Ψ		Ψ		Η.	•																		Coelacanthiforn
10-		I	I		'	1					P	- 6		Ì.	P	•	•	•	ŧ	•	Ļ	Ê.	٠	•	•	٠	.	• •	• •	•	Cladistia
				1	1			'	1			Ļ						•			I	1									Actinopteri
01	alia-	uria-	nes-	ves-	ibia-	nes-	stia-	teri-	yes-	pha-	nes-	nes-	nida-	leta-	dae-	ısta-	aca-	lvia-	cea-	pha-	plia-	oda-	oda-	ola-	sida-	iata-	oda-	ada-	lata-	-ere-	chondrichthy
	amm	idosai	estudi	A	Amphi	hiforr	Cladi	tinop	richth	timorl	iniforr	htiforr	rachn	lycha	stomi	opneu	acostr	Biva	scidia	limor	anau	strop	chiop	ollemb		ostom	halop	araigra	Lingui	-hinoid	Ceratodontimor
	Σ	Lep	Ť		, -	Coelacant		Ac	Chond	Ceratodon	Myx	Petromyzoi	A	Pc	Branchio	Enter	Malá		Ā	Priapu	He	Ga	Bran	ŭ		Mer	Cep	EUC		ù	Results acros
															Та	axo	on														acid residues

		Level 2	Level	- Level 3	
Class Name	Level 1 Shared Suseptible?	Shared Suseptible ?	Species with Shared Suseptibility	Species not Similarly Suseptible	Shared Suseptible ?
Mammalia	Yes	Yes	106	0	Yes
Lepidosauria	Yes	Yes	3	0	Yes
Testudines	Yes	Yes	3	0	Yes
Aves	Yes	Yes	33	0	Yes
Crocodylia	Yes	Yes	3	0	Yes
Amphibia	Yes	Yes	5	0	Yes
Coelacanthiformes	Yes	Yes	2	0	Yes
Cladistia	Yes	Yes	1	0	Yes
Actinopteri	Yes	Yes	88	1	Yes/No
Chondrichthyes	Yes	Yes	3	0	Yes
Ceratodontimorpha	Yes	Yes	2	0	Yes

ss all three levels of analysis suggest conservation of AR and critical amino across vertebrate species

Tier 2: In-Vitro Evaluation of Cellular Responses

Adapted from Ankley et al., 2016

Incorporation of Technical Advances and Tools for Improved Systematic Review:

Semantic Ontology Concept Mapping

- Using accurate search terms is essential for conducting an unbiased, comprehensive survey of the literature landscape
- Scientific language is often non-standard, redundant, and mischaracterized
- Semantic ontology concept mapping approaches can develop comprehensive literature search strings by expanding the vocabulary and knowledge
- At the endpoint level, this technique can be used as a point of integration and promote consistent interpretation as well as interoperability with other relevant databases.

Systematic Review Software

- Collaborative web-based systematic literature review software provides a platform for unbiased article evaluation, and data collection
- Facilitates blind Quality Assurance/Quality Control

3 0 Kd (nM, ³H-testosteron Kd (nM, ³H-methyltrienolone) Kd (nM, ³H-dihydrotestosterone

• Preliminary results suggest functional conservation of AR across vertebrate species for three high-affinity AR ligands

Tier 2: In-Vitro Evaluation of Cellular Responses

Preliminary results suggest conservation of AR responsiveness to high-affinity androgens across species

Chemical	Fish	Reptile	Amphibian	Bird
Testosterone (endogenous androgen)	∘Female sex reversal	 Female development of male sex characteristics Masculinized gonad tissue Altered population sex-rations towards male-based populations 	 Altered population sex-rations towards male-based populations 	 Cloacal gland induction Increase in crowing behavior
Methyltestosterone (synthetic androgen)	 Reduced gonadosomatic index 	 Female development of male sex characteristics Masculinized gonad tissue Altered population sex-rations towards male-based populations 	 Altered population sex-rations towards male-based populations 	 Reduced egg laying in females
17ß-trenbolone (environmental androgen)	 Female development of male secondary sex characteristics Reduced circulating E2 Levels Masculinized gonad tissue Reduced vitellogenin levels 	 Permale development of male secondary sex characteristics Masculinized gonad tissue Altered population sex-rations towards male-based populations 	 Altered population sex-rations towards male-based populations Female development of male secondary sex characteristics Masculinized gonad tissue 	 Cloacal gland induction Altered population sex-rations towards male-based populations

Summary: A Weight-of-Evidence for AR Conservation

• Evaluation of the AR protein sequence suggests conservation AR-ligand binding across vertebrate species with available data

Study Objective: Leverage existing data and technological advances in data curation science to enable a robust evaluation of the cross-species comparability of chemical interactions at the AR

• Preliminary comparisons of in vitro binding data and in vivo studies suggests strong similarities across taxonomic groups for high-affinity AR-ligands

- Overall, this preliminary data suggests that mammalian-based androgen receptor screening approaches, such as the ToxCast program, can reasonably reflect potential impacts on non-mammalian vertebrates
- Future work will compare all results from in vitro and in vivo systematic review across species and chemicals with different binding affinities (i.e. weak, moderate, and high affinity)

References / Acknowledgements

Sara Vliet, PhD vliet.sara@epa.gov 218-529-5022

- **1.** U.S. EPA, https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-program
- 2. Judson et al. 2010, In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project
- 3. Ankley et al. 2016, Evaluation of the scientific underpinnings for identifying estrogenic chemicals in nonmammalian taxa using mammalian tests
- 4. Lalone et al. 2016, SeqAPASS: A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity
- 5. Doering et al. 2018, In Silico Site-Directed Mutagenesis Informs Species-Specific Predictions of Chemical Susceptibility Derived From the SeqAPASS Tool
- 6. Perera et al. 2017, Binding of bisphenol A, bisphenol AF, and bisphenol S to the androgen receptor
- 7. Marhefka et al. 2001, Homology modeling of the human androgen receptor ligand binding domain
- 8. Wang et al. 2006, Structure of the ligand-binding domain of human androgen receptor in complex with a selective modulator LGD2226