SETAC Europe Continuing Education Course: TC07-The Endocrine System: Global Perspectives on Testing Methods and Evaluation of Endocrine Activity (<u>https://dublin.setac.org/programme/scientific-programme/training-courses/</u>)

Slides given as part of this training course in a virtual training recorded on May 8, 2020 Katie Paul Friedman and Antony Williams

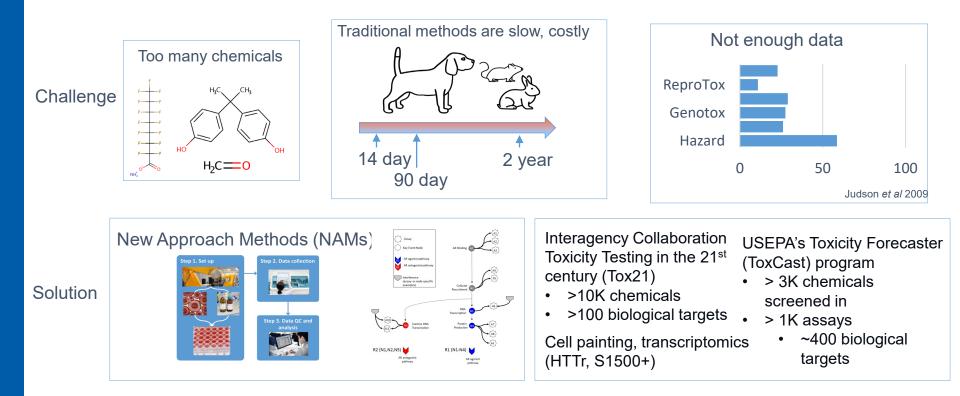
The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

What does the future hold?

TOXICITY TESTING IN THE 21ST CENTURY A VISION AND A STRATEGY

Goals

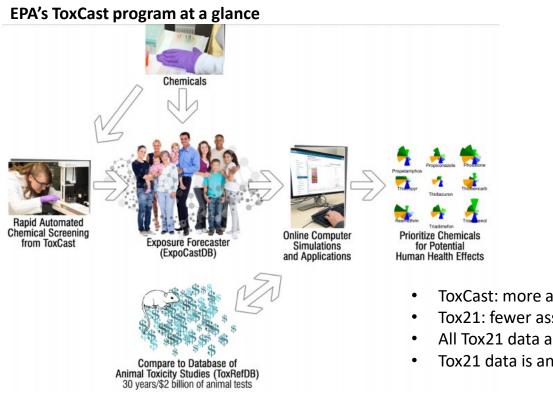
1. To provide broad coverage of chemicals, chemical mixtures, outcomes, and life stages

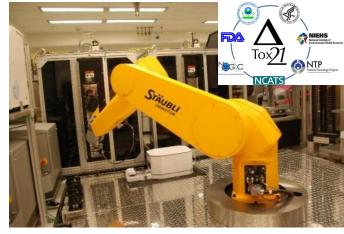

2. To reduce the cost and time of testing

3. To use fewer animals and cause minimal suffering in the animals used

4. To develop a more robust scientific basis for assessing health effects of environmental agents

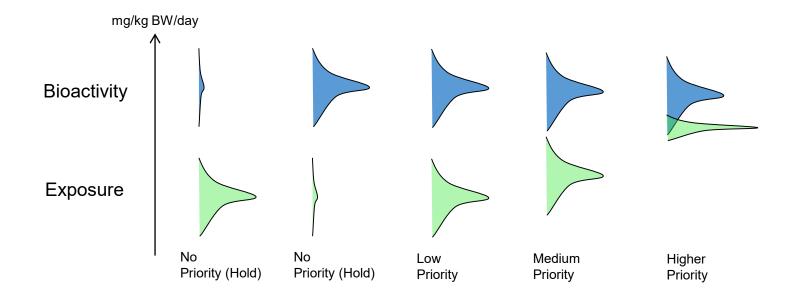
Why can't we just use traditional approaches?




<u>New Assessment Methodologies</u>

- Animal testing isn't always the answer
 - Time consuming, expensive, ethically challenging
- <u>New Assessment Methodologies</u> (NAMs)
 - Categories, read across, (Q)SARs, and other model predictions
 - Need for regulatory acceptance (e.g., confidence in applying data to decisions)
 - Challenges in interpretation (e.g., linking molecular/cellular changes to adversity)
 - Need for flexibility (e.g., NAMs may be context/pathway specific)

ToxCast and Tox21 have generated a lot of publicly available bioactivity data for hazard screening and prediction.



Tox21 robot

- ToxCast: more assays, fewer chemicals, EPA-driven
- Tox21: fewer assays, all 1536 well plate, driven by consortium
- All Tox21 data are analyzed by multiple partners
- Tox21 data is analyzed in the ToxCast Data Pipeline

Exposure provides context for high-throughput science

Endocrine hazard and risk evaluation using public tools: approach outline

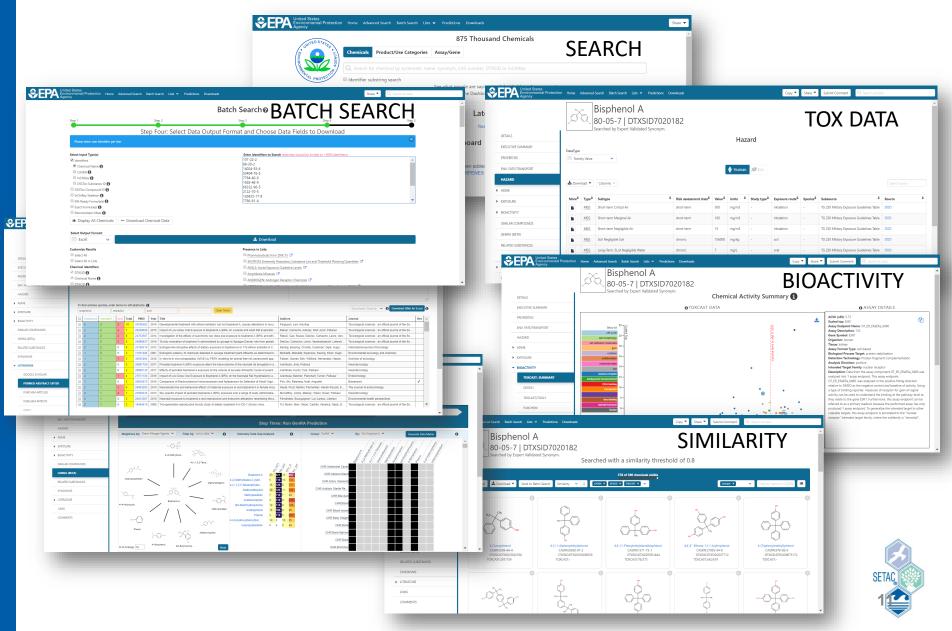
- Publicly available data from ToxCast is actively being applied to endocrine hazard labeling in the EU.
- Risk-based approaches that incorporate bioactivity and exposure make the best use of new approach methodologies.

This presentation will demonstrate where to find these information and suggest an approach for utilizing them in endocrine hazard and risk evaluation.

CompTox Chemicals Dashboard

UNITED STATES	875 Thousand Chemicals
j j	Chemicals Product/Use Categories Assay/Gene
Agency	Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChlKey
WTAL PROTECTI	Identifier substring search
	See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here
	Latest News
	Read more news
	August 9th 2019 - New release (3.0.9) in time for ACS Fall Meeting
	August 14th, 2019 at 4:39:37 PM
	A new version of the Dashboard has been released in time for the ACS Fall meeting. Included in this release are updates to data in the ToxVal database, an update to the in vit database (version 3.2), and the release also addresses a number of minor bugs and includes a short list of additional functionality as described in the Release Notes here.
•	
	• • • •

https://comptox.epa.gov/dashboard

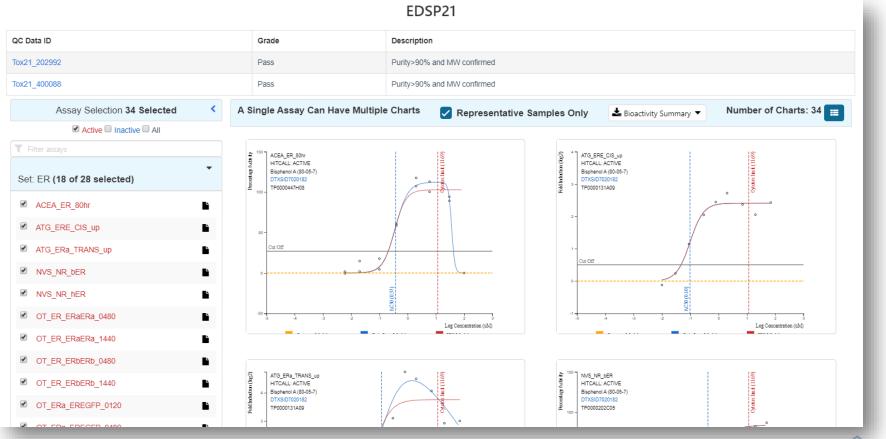


The CompTox Chemical Dashboard

- Freely accessible website and integration hub:
 - Chemical substances the majority with structures
 - Searchable by chemical, product use, and gene
 - Experimental and predicted physicochemical property data
 - Experimental and predicted fate and transport data
 - Information regarding consumer products containing chemicals
 - Bioactivity data for the ToxCast/Tox21 project
 - "Literature" searches for chemicals using public resources
 - Links to other agency websites and public data resources
 - "Batch searching" for thousands of chemicals
 - Chemical lists of interest pesticides, leachables, PFAS, (but not a list of endocrine disruptors)
- ¹⁰- Downloadable Open Data for reuse and repurposing

A single application integrating...

A data integration hub LOTS of data!


- >875,000 chemicals curated over 20 years
- >700,000 toxicity data points from >30 sources
- Millions of synonyms and identifiers
- Tens of thousands of experimental data points
- Millions of QSAR prediction reports
- Millions of bioactivity data points for >4000 chemicals and hundreds of assay end points
- Searching of Pubmed's 30 million abstracts

Review of Bioassay Data

€EP/	United States Environmental Protection Home Advanced Sear Agency	ich Batch Search Lists 🛩 Pi	redictions Downloads		-	С	opy 🔻 Share 🔻 S	ubmit Comment	Q Search all data			
EXECUTI	VE SUMMARY			CAST DATA			ASSAY DETAILS					
HAZARD ADME EXPOSUR BIOACTI TOX EDS	E/TRANSPORT Show cell cy cell cy cell motivation cell adhesion molecu g cell adhesion molecu g cell adhesion molecu g cell adhesion molecu g cell motivation g cell motivation	$\begin{array}{c} & & & & & \\ & & & & \\ &$		• 211 active	• of 989 a	Cytotox limit in MI (1169)	Sc Ar G G Ti Ar Bi D Ar D Ar D Q W W W G G G G G G G G G G G G G G G G	ne Symbol: AR ganism: human say Format Type: : ological Process Ta intection Technolog halysis Direction: N tended Target Fam escription: Data froi as analyzed in the p gative control and 1 poorter, measures of derstand the signal derstand the signal the AR. Furthermore imary readout, beca dipoints where this second target to oth	rget: cell proliferation y: RT-CES A illy: nuclear receptor m the assay component sostive fitting direction n baseline of activity. Usin the cells for gain-of-sig ing at the pathway-level this assay and point ca use this assay has prod one serves a signaling fi per celebable toronte, this	ACEA_AR_agonist_80hr lative to DMSO as the j a type of growth hal activity can be used to as they relate to the be referred to as a used multiple assay inction. To generalize the		
SIMIL GENR RELAT	La Download ▼ Columns > S	50 ♥	Description	Gene Symbol 🗘	AOP ^	Hit Call 🗘	Search query	AC50 \$	Show Inactive	Show Background		
SYNO	NVS_LGIC_rGluNMDA_Agonist		-	Grin1	13	ACTIVE	1.48	17.5	1.24	ion channel		
▶ LITER	• vvs_gpcr_p5HT2C		-	HTR2C	33	ACTIVE	2.00	18.3	1.26	gpcr		
	TOX21_PPARd_BLA_antagonist_ratio		1125	PPARD	36	ACTIVE	2.80	37.2	1.57	nuclear receptor		
	• ATG_PPRE_CIS_up		102	PPARA	58	ACTIVE	1.04	24.4	1.39	nuclear receptor		
	NVS_NR_hPPARa		718	PPARA	58	ACTIVE	1.59	0.105	-0.979	nuclear receptor		
	ATG_DR4_LXR_CIS_dn		-	NR1H3	58	ACTIVE	1.78	24.8	1.40	nuclear receptor		
	ATG_PXRE_CIS_up		-	NR112	60	ACTIVE	5.48	1.48	0.171	nuclear receptor		
	• ATG_PXR_TRANS_up		-	NR1I2	60	ACTIVE	2.49	0.722	-0.141	nuclear receptor		
	NVS_NR_hPXR		-	NR112	60	ACTIVE	1.69	12.3	1.09	nuclear receptor		
	• NVS_NR_hFXR_Antagonist		716	NR1H4	61	ACTIVE	1.93	16.4	1.22	nuclear receptor		
	OT_FXR_FXRSRC1_0480		753	NR1H4	61	ACTIVE	2.08	31.1	1.49	nuclear receptor		
	OT_FXR_FXRSRC1_1440		754	NR1H4	61	ACTIVE	3.43	32.6	1.51	nuclear receptor		

Endocrine-related subset of assays

Examine physicochemical properties such as logP, vapor pressure, and MW to get a better sense of whether the chemical was suitable for the current *in vitro* assay suite

Analytical chemistry:	SEPA United States Environmental Protection Agency	Home Advanced Search Batch S	Search Lists 💙 Predictions Downlo	ads			Copy 🔻 Share 🔻 Submit Con	nment Q Search all data	
was the chemical present and in the DOA for current ToxCast?			enol A 7 DTXSID702018 ^{DSSTox Substance Id.}	2					
	DETAILS	Summary V							
	EXECUTIVE SUMMARY				Summary				
ToxCast negatives:	PROPERTIES				ounnury				
what does a negative	ENV. FATE/TRANSPORT	La Download ▼ Columns ×							Search query
mean? Outside of	HAZARD	Property \$	Experimental average	Predicted average	Experimental median 🗘	Predicted median \$	Experimental range	Predicted range	¢ Unit ◆
domain of	ADME	LogP: Octanol-Water	3.32 (1)	3.29		3.43	3.32	2.40 to 3.64	-
applicability?	EXPOSURE	Melting Point	155 (7)	139	156	138	153 to 156	125 to 157	°C
- F-F	 BIOACTIVITY 	Boiling Point	200 (1)	363		360	200	343 to 401	°C
		Water Solubility	5.26e-4 (1)	9.62e-4		1.00e-3	5.26e-4	5.35e-4 to 1.31e-3	mol/L
	TOXCAST: SUMMARY	Vapor Pressure		8.37e-7		3.43e-7	-	6.83e-8 to 2.59e-6	mmHg
	EDSP21	Flash Point		190		190		188 to 192	°C
	TOXCAST/TOX21	Surface Tension		46.0			-	46.0	dyn/cm
Consider some	PUBCHEM	Index of Refraction	-	1.60			-	1.60	-
aspects of the		Molar Refractivity		68.2				68.2	cm^3
-	TOXCAST: MODELS	Polarizability		27.0				27.0	Å^3
Lipinski's rules:	SIMILAR COMPOUNDS	Density	-	1.17		1.17	-	1.14 to 1.20	g/cm^3
logP -0.4 to 5.6	GENRA (BETA)	Molar Volume	-	200			-	200	cm^3
range; MW 180-480;	RELATED SUBSTANCES	Thermal Conductivity	•	150			•	150	mW/(m*K)
Vapor Pressure < 1.		Viscosity		9.66				9.66	сP
- F	SYNONYMS	Henry's Law	-	1.26e-7			-	1.26e-7	atm-m3/mole
	LITERATURE	LogKoa: Octanol-Air		8.38				8.38	-
	10.02								

Examine QC data (if available) to see if we expect that the chemical was present for screening

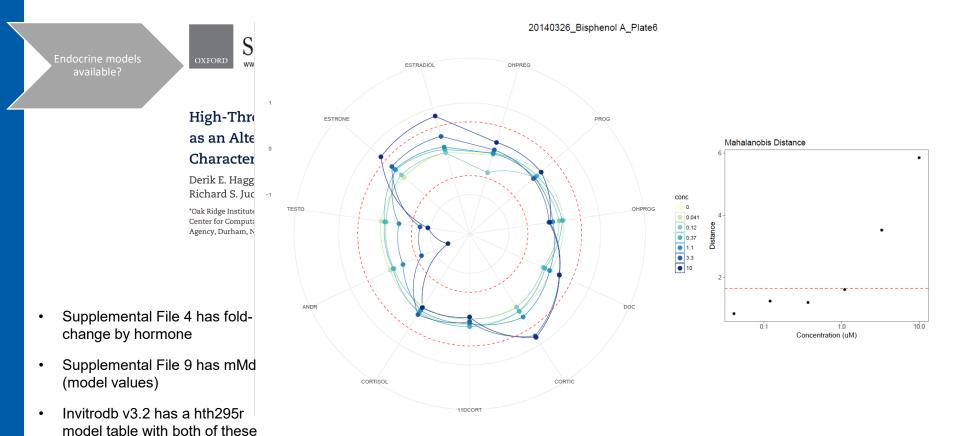
SEPA United States Environmental Protectio	n Home Advanced Search Ba	tch Search Lists 💙 Predictions Down	loads		C	opy 🔻 Share 💌 Submit Comment	Q Search all data
	80-05	nenol A 5-7 DTXSID702018 by DSSTox Substance Id.	82				
DETAILS				То	xCast/Tox21		
EXECUTIVE SUMMARY	QC Data ID		Grade	Des	ription		
PROPERTIES	Tox21_202992		Pass	Puri	y>90% and MW confirmed		
ENV. FATE/TRANSPORT	Tox21_400088		Pass	Puri	y≫90% and MW confirmed		
HAZARD	L.S.P	ection 0 Selected <	A Single Assay Can Have	Multiple Charts	Representative Samples Onl	y 🛃 Bioactivity Summar	Number of Charts: 0
ADME EXPOSURE	▼ Filter assays	e 🔲 Inactive 🗐 All		Select	one or more assays from the	list of assays to view t	he
▼ BIOACTIVITY	Odyssey Thera					*	Structure Search
TOXCAST: SUMMARY	Attagene (0 of 1	e / Tox21 Samples / Tox21_202992					
EDSP21	CellzDirect (0 of						
TOXCAST/TOX21	Bioseek (0 of 17 Apredica (0 of 1	phenol A					
				QC Grade		Identifiers	
				то 🔼	MW Confirmed, Purity > 90%	Tox21	Tox21_202992
Analytical chemistry:		H ₃ C CH ₃		T4 🔼	MW Confirmed, Purity > 90%	NCATS	NCGC00260537-01
was the chemical						CAS	80-05-7
present and in the DOA for current						PubChem	144210190
ToxCast?							

A note on ToxCast versioning

- Data change: curve-fitting, addition of new data
- Models change: improvements, more data, etc.
- The CompTox Chemicals Dashboard release from August 9, 2019 is now using ToxCast invitrodb version 3.2:

https://doi.org/10.23645/epacomptox.6062623.v4

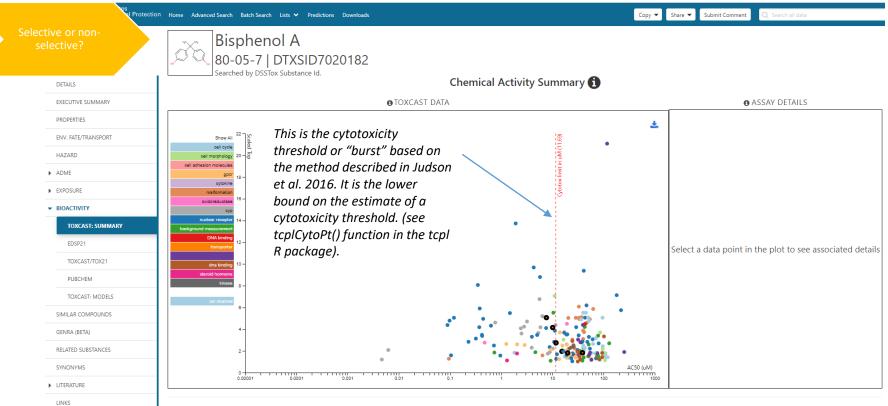
- All ToxCast data and endocrine models (CERAPP, COMPARA, ER, AR, steroidogenesis) can currently be accessed from within invitrodb.
- Data downloads for CCTE: <u>https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data</u>



Models >>> single assays. And equivocals happen.

	tome Advanced Search Batch Search Lists 🗸 Predictions Downloads			Copy 🔻 Share 🔻 Submit Comr	ment Q Search all data
Endocrine models available?	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.				
DETAILS		ToyCast	t: Models		
EXECUTIVE SUMMARY			del Predictions		
PROPERTIES	Download ToxCast Model Predictions				
ENV. FATE/TRANSPORT			>0.1 = posit	ive; 0.001-0.1 = e	quivocai
IAZARD	Model	Receptor	Agonist	Antagonist	Binding
	ToxCast Pathway Model (AUC)	Androgen	0.00	0.345	-
DME	ToxCast Pathway Model (AUC)	Estrogen	0.450	0.00	-
POSURE	COMPARA (Consensus)	Androgen	Inactive	Active	Active
BIOACTIVITY	CERAPP Potency Level (From Literature)	Estrogen	Active (Weak)	-	Active (Weak)
TOXCAST: SUMMARY	CERAPP Potency Level (Consensus)	Estrogen	Active (Weak)	Active (Strong)	Active (Weak)
EDSP21 TOXCAST/TOX21	CERAPP = consensus ER QSAR (
PUBCHEM	COMPARA = consensus AR QSA				
TOXCAST: MODELS	ToxCast Pathway Model AUC EF	•	• •		
	ToxCast Pathway Model AUC AI	R = full AR model (11 a	assays)		
SIMILAR COMPOUNDS					

HT-H295R model for steroidogenesis



SETAC

included in it.

Hope to include this in future release of the Dashboard.

Bioactivity Summary in the Dashboard

211 active of 989 assays

Summary of the assay data is in a table

Selective or non- selective?						211 active of 989 assays							Sea	Search query Show Inactive Show Background					
	Modal	Description	SeqAPASS 🕈	AOP \$	Event \$	Hit Call \$	ТорФ	Scaled Top 🗘	AC50	logAC50 \$	Bmad \$	MaxMed	MaxMedConc \$	Cutoff \$	Flags 🗘	ModIAcc \$	ModIAc10 \$	ModIAcb \$	Intended Target Family
ACEA_ER_80hr		2	NP_000116.2	200	1181	ACTIVE	112	4.18	0.373	-0.428	8.96	113 - percent_activity	0.301	26.9		-0.686	113	-0.686	nuclear receptor
APR_HepG2_CellLoss_24h_dn		-	-	-	-	ACTIVE	1.20	1.81	106	2.02	6.63e- 2	1.20 - log2_fold_induction	2.30	0.663		2.04	1.20	1.94	cell cycle
APR_HepG2_MitoMass_24h_dn		-	-	-	-	ACTIVE	0.874	1.76	109	2.04	4.96e- 2	0.867 - log2_fold_induction	2.30	0.496		2.05	0.867	1.95	cell morphology
APR_HepG2_MitoMembPot_24h_dn		-	-	-	-	ACTIVE	5.92	7.07	11.0	1.04	8.38e- 2	6.45 - log2_fold_induction	1.70	0.838		0.813	6.45	0.646	cell morphology
APR_HepG2_OxidativeStress_24h_up		-	-	-	-	ACTIVE	1.20	1.47	110	2.04	8.19e- 2	1.19 - log2_fold_induction	2.30	0.819		2.08	1.19	1.97	cell cycle
APR_HepG2_CellLoss_72h_dn		-	-	-	-	ACTIVE	4.49	5.05	95.2	1.98	8.89e- 2	4.43 - log2_fold_induction	2.30	0.889		1.75	4.43	1.52	cell cycle
APR_HepG2_MitoMembPot_72h_dn		-	-	-	-	ACTIVE	2.71	3.69	85.3	1.93	7.33e- 2	2.26 - log2_fold_induction	2.30	0.733		1.70	2.26	1.36	cell morphology
APR_HepG2_MitoticArrest_72h_up		-	-	-	-	ACTIVE	1.66	1.17	84.7	1.93	0.142	1.44 - log2_fold_induction	2.30	1.42	Borderline active	2.29	1.44	1.71	cell cycle
APR_HepG2_OxidativeStress_72h_up		-	-	-	-	ACTIVE	1.80	1.65	106	2.02	0.110	1.60 - log2_fold_induction	2.30	1.10		2.08	1.60	1.82	cell cycle
ATG_Ahr_CIS_up		-	NP_001612.1	150	18	ACTIVE	1.31	1.32	23.4	1.37	0.199	1.28 - log2_fold_induction	2.00	0.994		1.56	1.28	1.34	dna binding

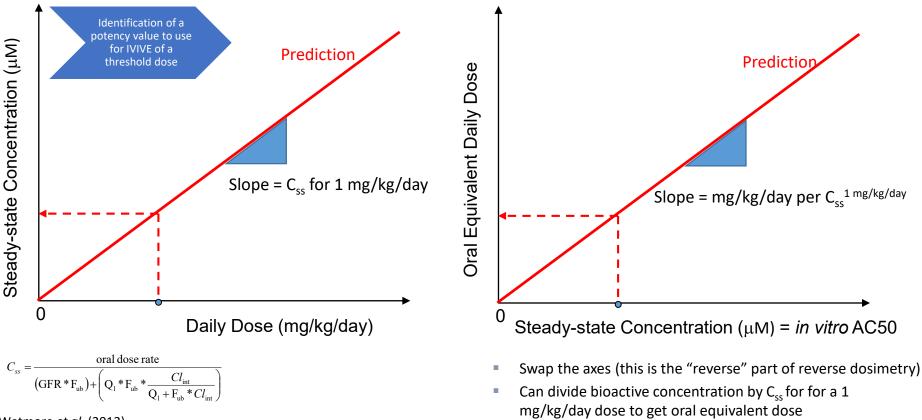
First << < 1 2 3 4 5 6 7 8 9 10 > >> Last

Showing 1 to 10 of 211 records

"Burst:" thinking and updates

Selective or nonselective?

- The latest Comptox Chemicals Dashboard release (version 3.0.9, August 9, 2019) demonstrates a cytotoxicity threshold based on the latest ToxCast database (invitrodb version 3.2, released August 2019). This value can change as more cytotoxicity data become available, curve-fitting approaches for existing data change, or the "burst" calculation approach is updated.
- In invitrodb version 3.2, 88 assays are considered for the cytotoxicity threshold. A positive hit must be
 observed in 5% of these assays (noting that not all chemicals are screened in all 88 assays) in order to assign
 a cytotoxicity threshold. The cytotoxicity threshold is a median of AC50 potency values from the N assays with
 a hit. The cytotoxicity threshold visualized in the Dashboard is a lower bound on this estimate, calculated as
 the median cytotoxicity potency minus 3 times the global median absolute deviation.
- This is discussed further in a publication (<u>10.1093/toxsci/kfw148</u>) and the ToxCast Pipeline R package (tcpl) function, tcplCytoPt() (available on CRAN: <u>https://cran.r-project.org/web/packages/tcpl/index.html</u>).
- If fewer than 5 cytotoxicity assays demonstrate a positive hit, a default of 1000 micromolar is assigned for the chemical.
- The lower bound estimate of the cytotoxicity threshold or "burst" is useful context for ToxCast results. Bioactivity observed below the cytotoxicity threshold may represent more specific activity that is less likely to be confounded by cytotoxicity.
- It is possible that AC50 values above the cytotoxicity threshold are informative. If an assay has a parallel cytotoxicity assay in the same cell type, that may be more informative for interpreting that assay. Or, if a result is consistent with an AOP relevant to the chemical with assay AC50 values above and below the cytotoxicity threshold, those data may be meaningful.


User application dictates "selectivity"

Selective or nonselective?

- AC50 < burst?
- AC50 0.5log₁₀ distance from burst?
- AC50 < parallel viability assays?
- How else to filter ToxCast data: 3+ caution flags & hit-percent
- Other related ideas:
 - What other assays appear active in a similar concentration range?
 - Is there consistent support for MOA(s), or is it nonspecific activity?

Steady state in vitro-in vivo extrapolation (IVIVE) assumption: blood::tissue partitioning ≈ cells::medium partitioning

Wetmore et al. (2012)

IVIVE via high-throughput toxicokinetic data and models

Identification of a potency value to use for IVIVE of a threshold dose

- Operationally, the httk R package (v 1.10.0) can be downloaded from CRAN or GitHub for reproducible generation of administered equivalent doses (AEDs)
- For some substances, there is a beta tab in the Dashboard with Css and other values needed (no models). More chemicals have information in the httk package.
- AC50 or LEC (micromolar) * (1 mg/kg/day/Css (micromolar)) = AED prediction
- Httk package optionally implements multiple models that can have increasing complexity based on data available

A EEA United States						
Separation Contest Environmental Protect	ction Home Advanced Search Batch Search Lists 💙 Predictions Downloads			Copy 🔻 Share 💌 S	Submit Comment Q Search all data	
	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.	IVIV	E.			
DETAILS			C			
EXECUTIVE SUMMARY	La Download ▼ Columns ×				Search query	
PROPERTIES						
ENV. FATE/TRANSPORT	Label	Measured \$	Predicted \$	Computed 🗘	Unit	\$
	In Vitro Intrinsic Hepatic Clearance	19.29	-	-	uL/min/million hepatocytes	
HAZARD	Fraction Unbound in Human Plasma	0.07	-			
▼ ADME	• Volume of Distribution	-	-	6.69	L/kg	
IVIVE	 Days to Steady State 	-	-	8	Days	
EXPOSURE	PK Half Life	-	-	29.83	hours	
BIOACTIVITY	Human Steady-State Plasma Concentration			1.98	mg/L	
		6 record	ds			

Bioactivity:exposure ratio requires exposure

Comparison to exposure predictions for a bioactivity:exposure ratio

Currently the Dashboard shows SEEM2 (2014) values

	Predictions Downloads Weight Search Batch Search Lists V Predictions Downloads Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.		Сору 🔻
DETAILS		(posure Predictions (mg/kg-bw/day)	
EXECUTIVE SUMMARY	🛓 Download 🔻		
PROPERTIES			
ENV. FATE/TRANSPORT	Demographic	Median 🗘	95th Percenti
	Ages 6-11	6.30e-5	5.82e-3
HAZARD	Ages 12-19	2.68e-5	2.00e-3
ADME	Ages 20-65	2.05e-5	1.61e-3
 EXPOSURE 	Ages 65+	1.61e-5	2.18e-3
PRODUCT & USE CATEGORIES	BMI > 30	1.69e-5	1.45e-3
	BMI < 30	2.67e-5	2.26e-3
CHEMICAL WEIGHT FRACTION	Repro. Age Females	1.11e-5	1.57e-3
CHEMICAL FUNCTIONAL USE	Females	1.11e-5	9.09e-4
TOXICS RELEASE INVENTORY	Males	3.89e-5	3.34e-3
MONITORING DATA	Total	2.11e-5	2.00e-3
EXPOSURE PREDICTIONS		10 records	

PRODUCTION VOLUME

Consensus modeling of chemical exposure based on pathways: ExpoCast SEEM3

Comparison to exposure predictions for a bioactivity:exposure ratio

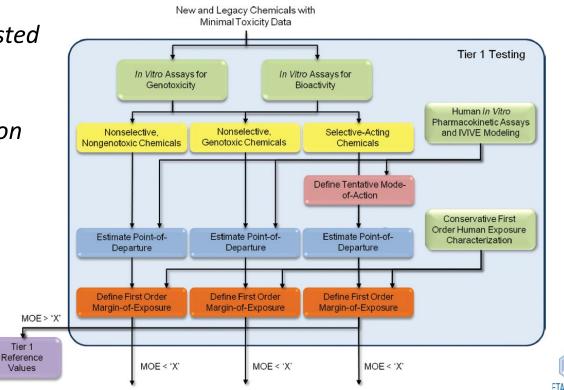
• "ExpoCast SEEM3" model:

- uses twelve different exposure predictors including both near- and far-field models;
- covers four distinct exposure pathways: nonpesticidal dietary, consumer products, far-field pesticide, and far-field industrial.
- In SEEM3 each exposure predictor is scaled and centered such that chemicals without a value for a predictor relevant to its exposure pathways are assigned the average value.

pubs.acs.org/est

SETAC

Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways


Caroline L. Ring,^{†,§,∞} Jon A. Arnot,^{||,L,#} Deborah H. Bennett,[∇][®] Peter P. Egeghy,[‡] Peter Fantke,[○][©] Lei Huang,[♠][®] Kristin K. Isaacs,[‡][®] Olivier Jolliet,[♠][®] Katherine A. Phillips,[‡][®] Paul S. Price,[‡][®] Hyeong-Moo Shin,[¶][®] John N. Westgate,^{||,°} R. Woodrow Setzer,[†] and John F. Wambaugh^{*,†}[®]

Cite This: Environ. Sci. Technol. 2019, 53, 719–732

Including risk-based approaches like BER in chemical safety decisions

 Specific vs. nonspecific modes-of-action and the challenge of hazard labeling

Thomas et al. 2013 suggested a framework for hazard assessment that would be largely customized based on MOE (or now, BER).

Including risk-based approaches like BER in chemical safety decisions

Now, ~6 years later, Thomas et al. (2019) suggest a computational toxicology blueprint that represents evolution of the same concept

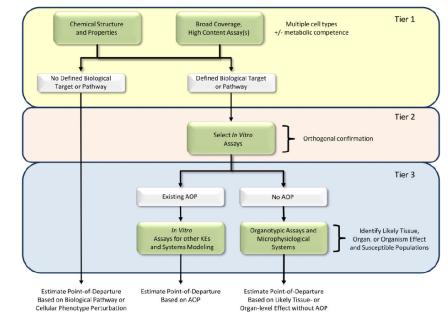


Figure 2. Tiered testing framework for hazard characterization. Tier 1 uses both chemical structure and broad coverage, high content assays across multiple cell types for comprehensively evaluating the potential effects of chemicals and grouping them based on similarity in potential hazards. For chemicals from Tier 1 without a defined biological target / pathways, a quantitative point-of-departure for hazard is estimated based on the absence of biological pathway or cellular phenotype perturbation. Chemicals from Tier 1 with a predicted biological target or pathway are evaluated Tier 2 using targeted follow-up assays. In Tier 3, the likely tissue, organ, or organism-level effects are considered based on either existing adverse cutcome pathways (AOP) or more complex culture systems. Quantitative points-of-departure for hazard are estimated based on the AOP orresponses in the complex culture system.

Screening level assessment example: combine NAMs for exposure, in vitro bioactivity, and toxicokinetics

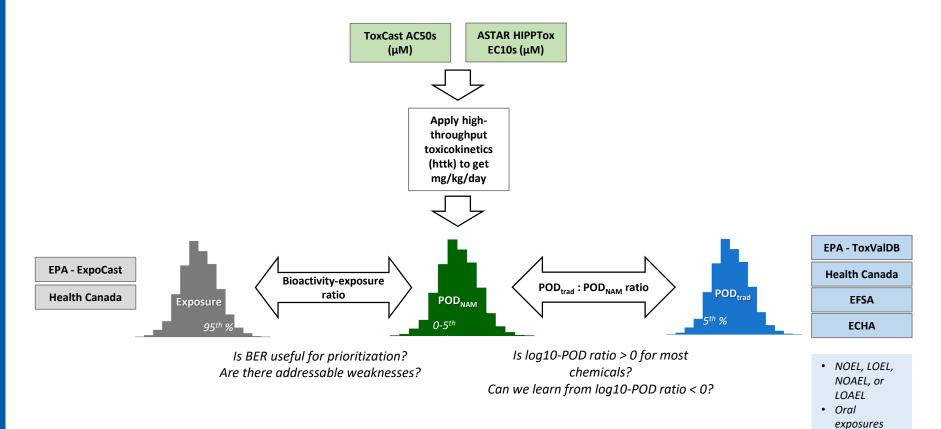
Conducted by Accelerating the Pace of Chemical Risk Assessment (APCRA)

BIRMINGHAM

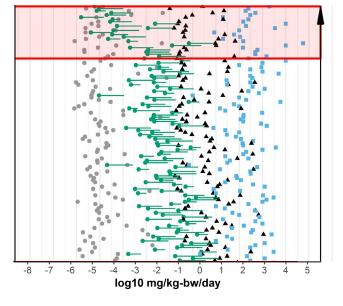
"international cooperative collaboration of government agencies convened to address barriers and opportunities for the use of new approach methodologies (NAMs) in chemical risk assessment" (Paul Friedman et al., accepted)

TOXICOLOGICAL SCIENCES, 2019, 1-24

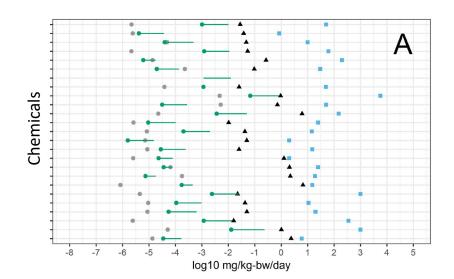
doi: 10.1093/toxsci/kfz201 Advance Access Publication Date: September 18, 2019 **Research** Article


Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization

(APCRA partners for these two case studies)


Case study workflow

SETAC


• Mg/kg/day

Prioritizing chemicals based on BER for all bioactivity or for some target bioactivity

ExpoCast • POD-NAM • max AED • POD-traditional

Figure 3 from Paul Friedman et al. https://doi.org/10.1093/toxsci/kfz201

For 448 substances, ~89% of the time, the point-of-departure based on ToxCast (POD-NAM) was less than the NOAEL/LOAEL values available from animals.

