EPA

sgspsaaass swhtlftaee gglygpcggg **Addressing Challenges in** trppqglagq es Ita dyw ypggmvsrvp rdhvlpidv fp **Cross-Species Extrapolation** hiedve of Chemical Toxicity posern **Information:** Application of the SeqAPASS Tool

Lead Instructor: Carlie A. LaLone, Ph.D. **Great Lakes Toxicology and Ecology Division Office of Research and Development U.S Environmental Protection Agency**

Instructors: Donovan Blatz Sara Vliet, PhD Oak Ridge Institute for Science and Education

ORISE

vvnfpla sgspsaaass trppqglagq esd apdvw ypggmvsrvp rdhvlpidyy fppgktclic gdeasgchyg idkfrrkncp scrlrkcyea gmtlgarklk hiegyecqpi flnvleaiep gvvcaghdnn pgfrnlhvdd qmaviqyswm glmvfamgwr qcvrmrhlsq efqwlqitpq eflcmkalll ackrknptsc srrfyqltkl ldsvqpiare glgrv yprppsktyr gafqnlfqsv aaaaets echpergcvp epgaavaask glpqqlpapp

mevqlqlqrv yprppsktyr gaignligsv qqqqqqqqq qqqqqqets prqqqqqqge echpergcvp epgaavaask glpgglpapp

ilseastmql lqqqqqeavs egsssgrare svsmqlqvea lehlspgeql rgdcmyapl1 edtaeyspfk ggytkglege slgcsgsaaa yynfplalag ppppppppp hariklenpl

> laaa enpl dd Drabedda idde pragag

> aleasgchyg

garklk

SeqAPASS Training

Training format:

•	Overview presentation (LaLone)	Video
•	How to request a user account to SeqAPASS (Blatz)	Video
•	Demonstration of SeqAPASS functionality (LaLone & Blatz)	Video
•	Case Examples (Vliet)	Video

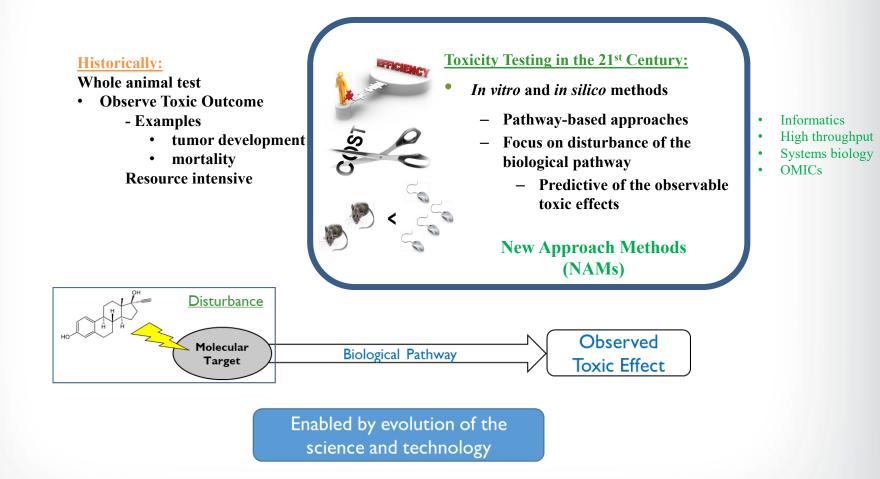
Goals for training:

- Introductory training for new/beginner SeqAPASS user
- Understand why SeqAPASS was developed
- Gain a basic understanding of how SeqAPASS evaluations work
- Understand the general workflow of SeqAPASS
- Independently submit a SeqAPASS query
- Independently collect output from SeqAPASS
- Develop box-plot visualizations

Available Knowledge

Chemical Safety Evaluation

- Protect human health and the environment
 - Ensure that chemicals in the marketplace are reviewed for safety
- Challenging mission:
 - Tens of thousand of chemicals are currently in use and hundreds are introduced annually
 - Many have not been thoroughly evaluated for potential risk to human health and the environment
 - Chemicals tested across species: Even more sparse


Reduce Animal Testing at the US EPA

- EPA Administrator Andrew Wheeler signed directive (Sept. 10th 2019) to reduce animal testing
 - Calls for the Agency to:
 - Reduce its request for, and funding of, mammal studies by 30% by 2025
 - That is ~5 years from today!
 - Eliminate all mammal study requests and funding by 2035
 - That is ~ 15 years from today

How do we get there? NAMs

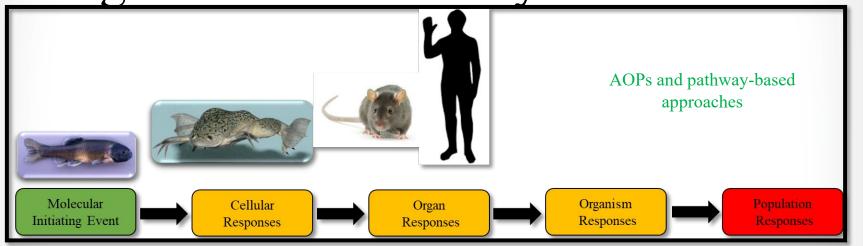
Transformation of Toxicity Testing

Model Organisms for Toxicity Testing

- <u>Assumed</u> that sensitivity of species to a chemical is a function of their relatedness

Human Health Risk Assessment

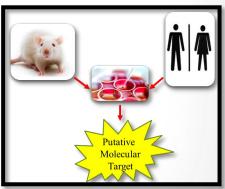
Ecological Risk Assessment



Cannot Test

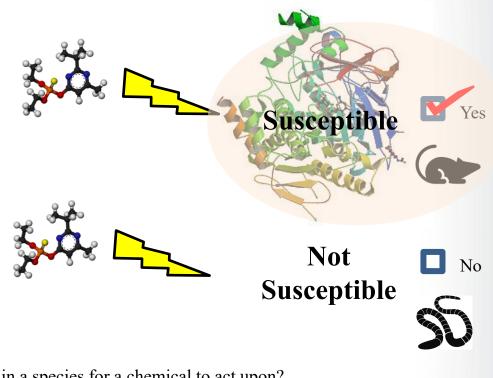
Representative species across a diversity of organism classes

Surrogates in 21st Century Chemical Safety


AI and Text Mining of Available Toxicity Literature

Is the model organism A good surrogate for the Species we are trying to protect? Maybe

Could we gather evidence rapidly to help us understand this question? Absolutely!!!


HTS

Considering chemical sensitivity?

Factors that make a species sensitive

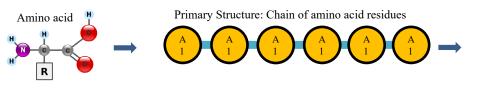
- Exposure
- Dose
- ADME
- Target receptor availability
- Life stage
- Life history
- etc.
- etc.

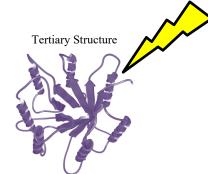
Simple question to address:

Is the known chemical target available in a species for a chemical to act upon?

Yes or No

Likely susceptible or Not likely susceptible (at least through the known mechanism)


New Approach Methods: Species Extrapolation


New tools and technologies have emerged

- Improved sequencing technologies
- Large databases of sequence data

- Focus on the molecular machine: The Protein
 - Large biomolecule assembled from amino acids encoded in genes

- Many functions (e.g., catalyze reactions, structural/mechanical functions, cell signaling, immune response, etc.)
- Evaluate protein similarity between species
 - Moving away from empirical testing and qualitative understanding of molecular target (protein) conservation to <u>quantitative measures</u>

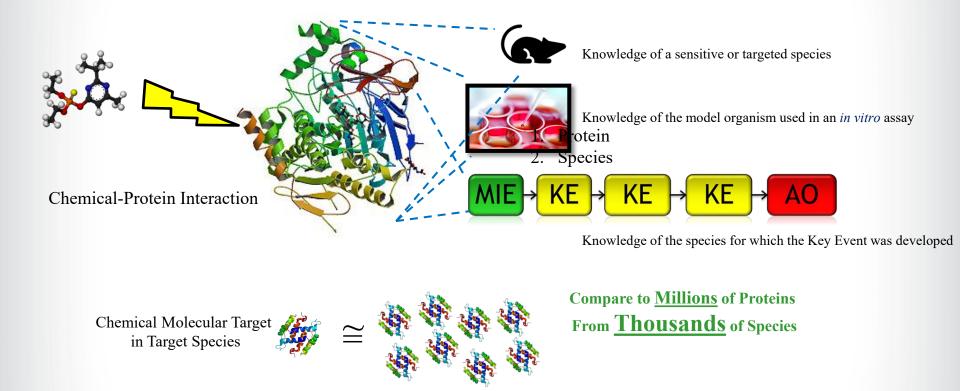
TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245

doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016 Research article

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

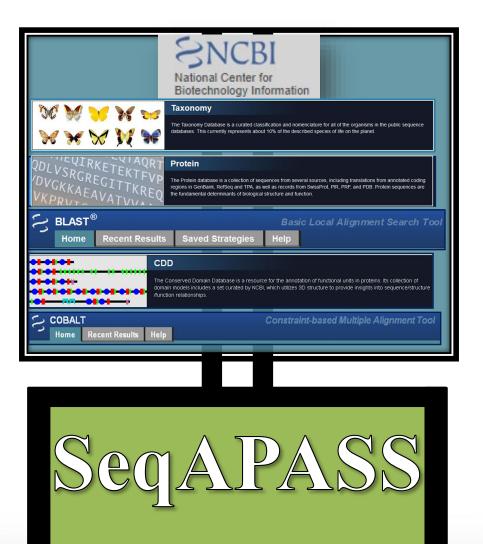
Carlie A. LaLone,^{*,1} Daniel L. Villeneuve,^{*} David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,^{*} and Gerald T. Ankley^{*}

https://seqapass.epa.gov/seqapass/


<u>Sequence Alignment to</u> <u>Predict Across Species</u> <u>Susceptibility</u>

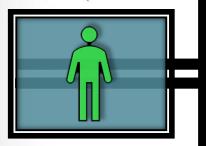
(SeqAPASS)

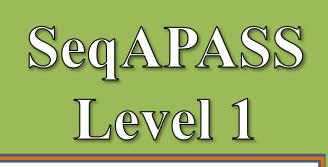
What information is required for a SeqAPASS query?

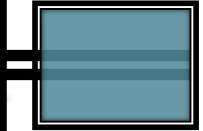


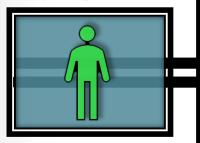
Greater similarity = Greater likelihood that <u>chemical can act on the protein</u> <u>Line of Evidence</u>: Predict Potential Chemical Susceptibility Across Species

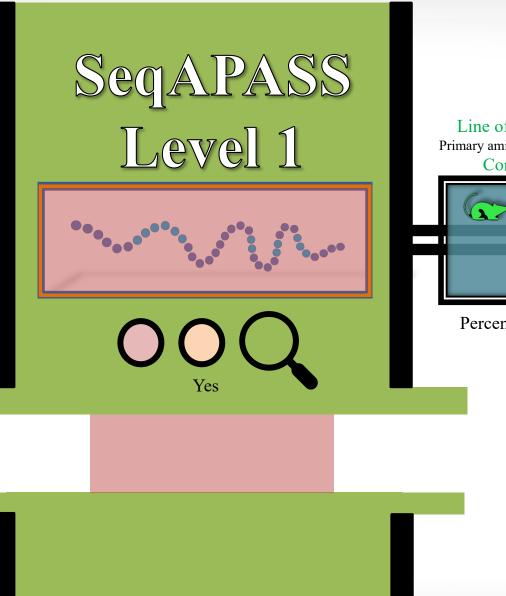
Animation by: Miguel Moravec (EPA CSS) & Andrew Patterson





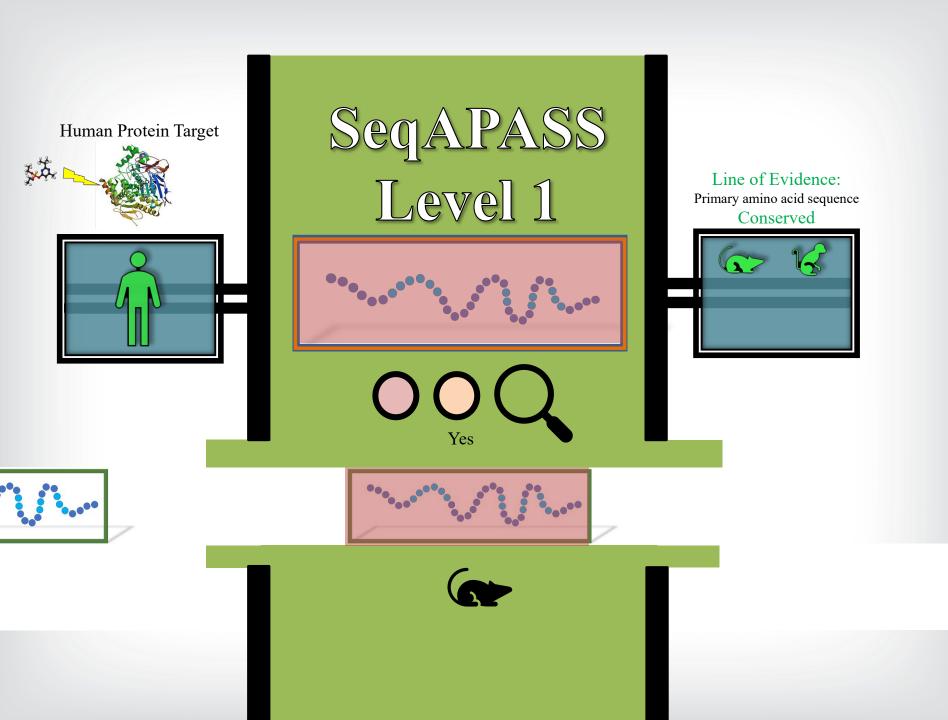

Human Protein Target

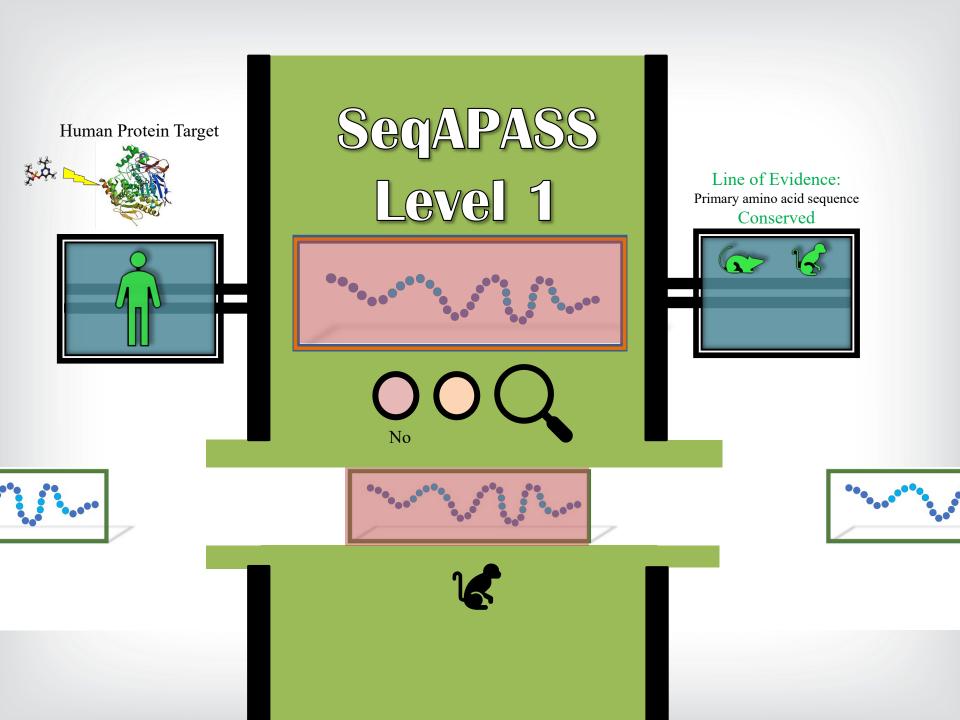




000

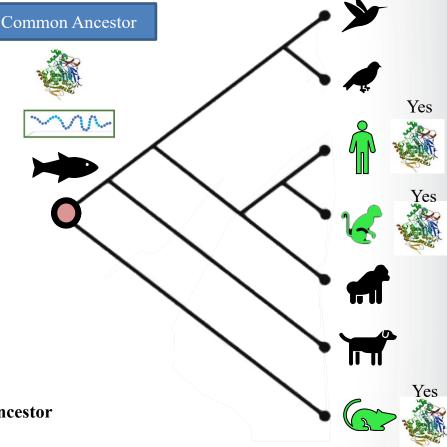
Human Protein Target





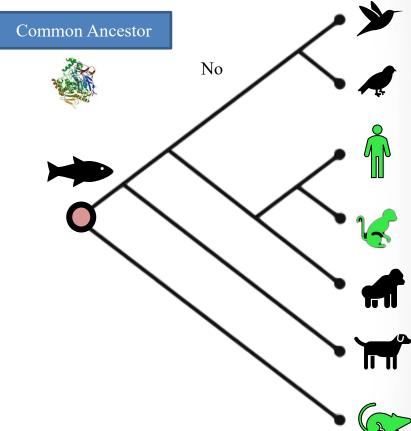
Line of Evidence: Primary amino acid sequence Conserved

Percent similarity



SegAPASS Level 1

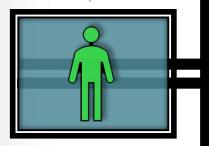
Ortholog Candidate Identification

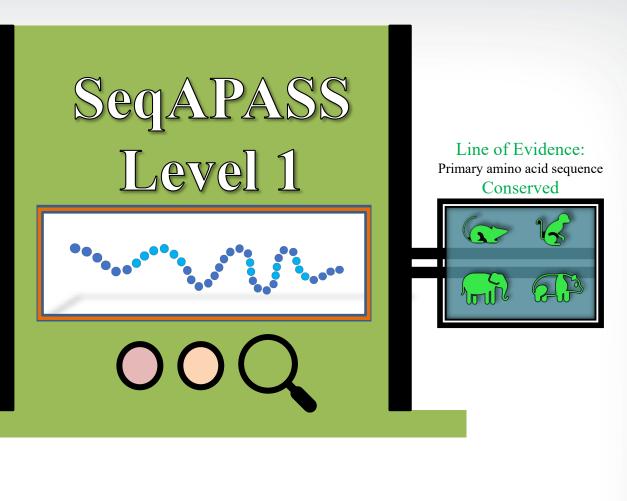

Proteins in different species that evolved from a common ancestor

Typically maintain similar function

SegAPASS Level 1

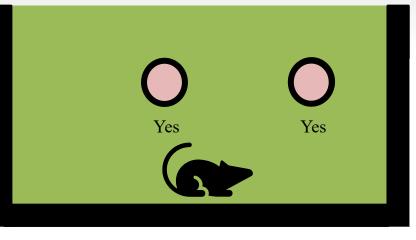
Common Name	Ortholog Candidate	Cut-off	Percent Similarity	
Human	Y	33.15	100	
Florida manatee	Y	33.15	98.8	
Mallard	Y	33.15	82.29	
Rock pigeon	Y	33.15	80.93	
Green anole	Y	33.15	80.65	
Pacific transparent sea squirt	Y	33.15	33.15 Lowe	est % Similarity that is still an ortholog
Yesso scallop	N	33.15	32.87	
Purple sea urchin	Ν	33.15	26.05	
Human whipworm	Ν	33.15	23.53	
Bed bug	Ν	33.15	21.62	

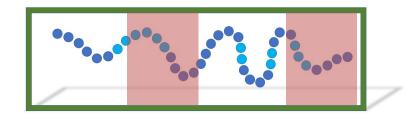

Example:

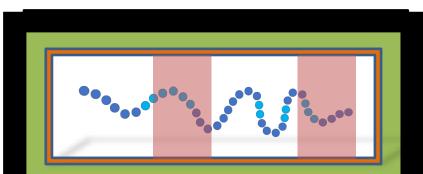

Susceptibility Cut-off: Set at 33.15

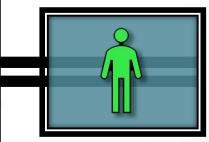
Above cut-off: More likely to be susceptible base on similar **FUNCTION**

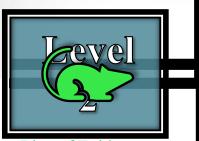
Human Protein Target

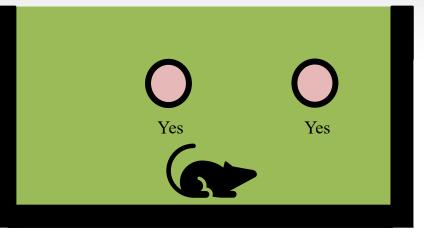


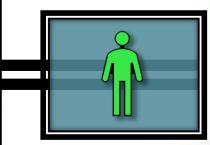



Hundreds to Thousands of Species

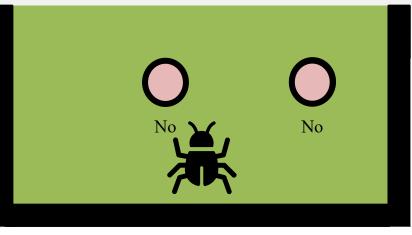


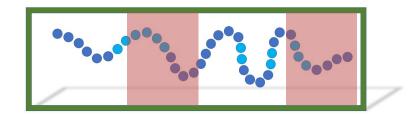

Line of Evidence: Domain Conserved

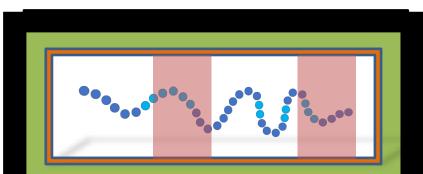


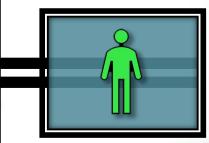


Line of Evidence: Domain Conserved

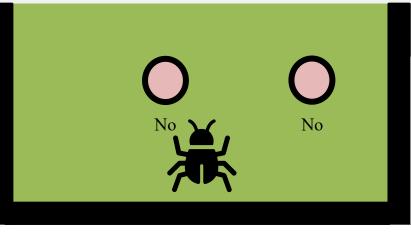


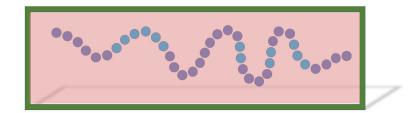


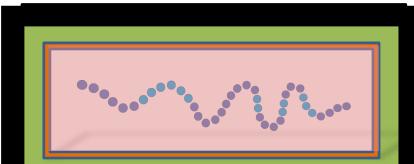


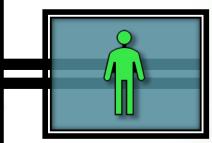


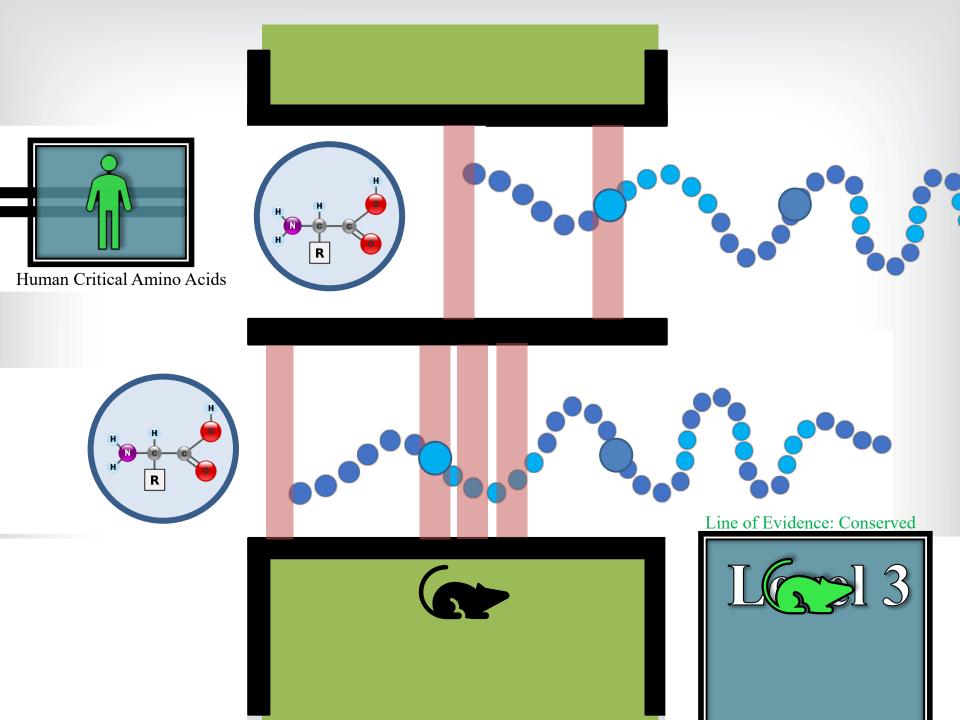

Line of Evidence: Domain Conserved

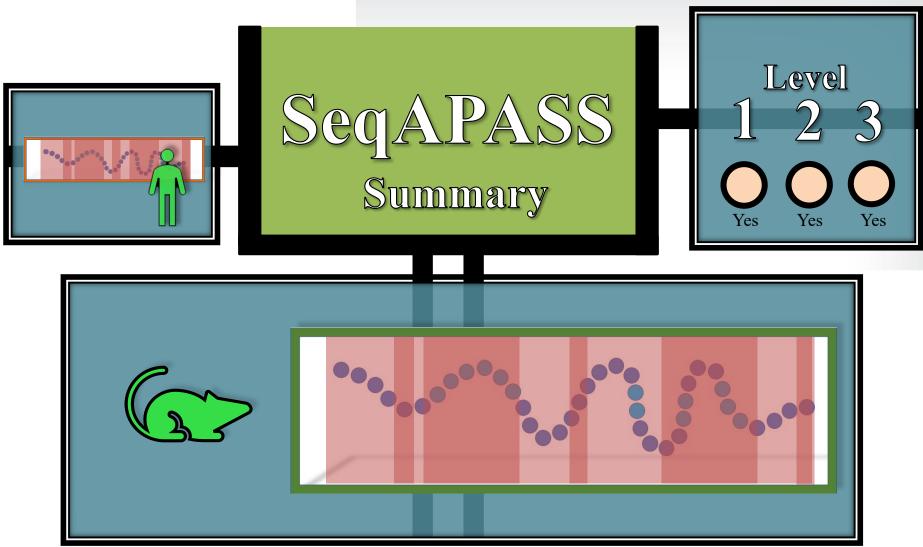


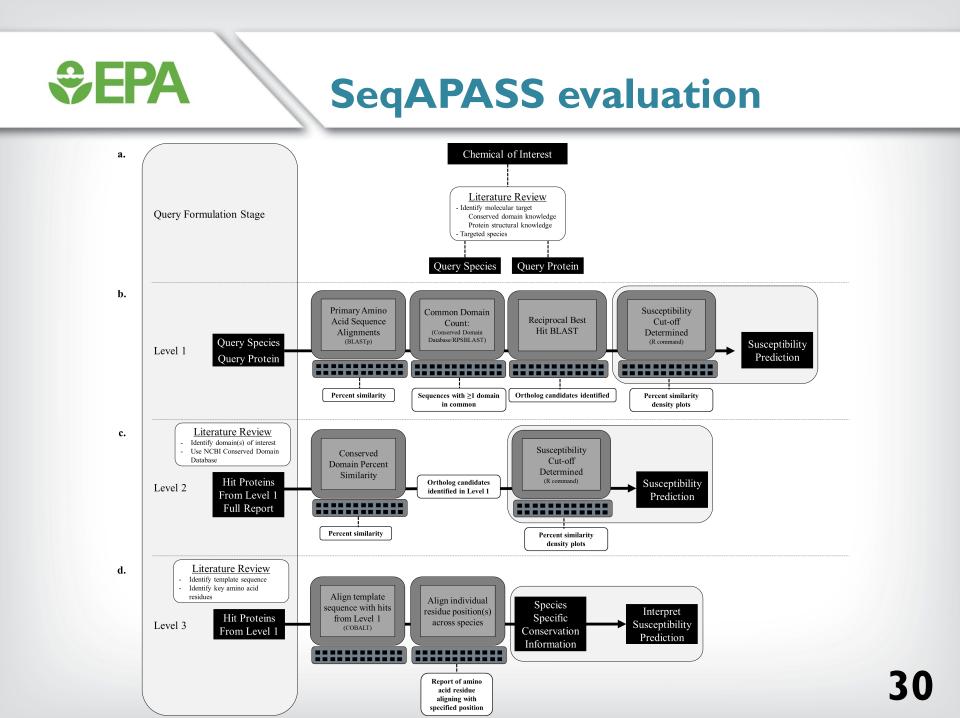




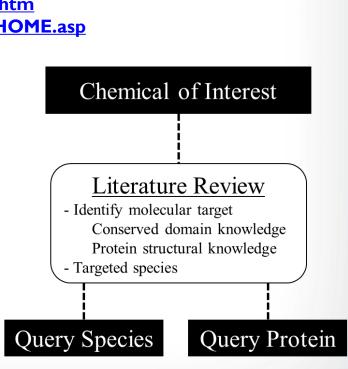


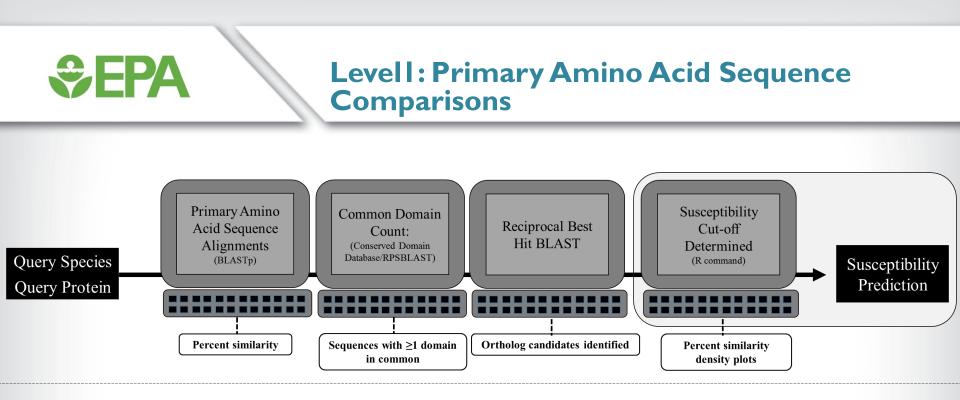

Line of Evidence: Domain Not Conserved

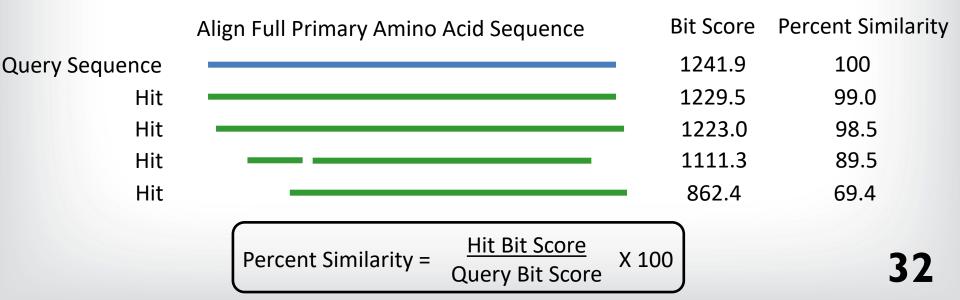


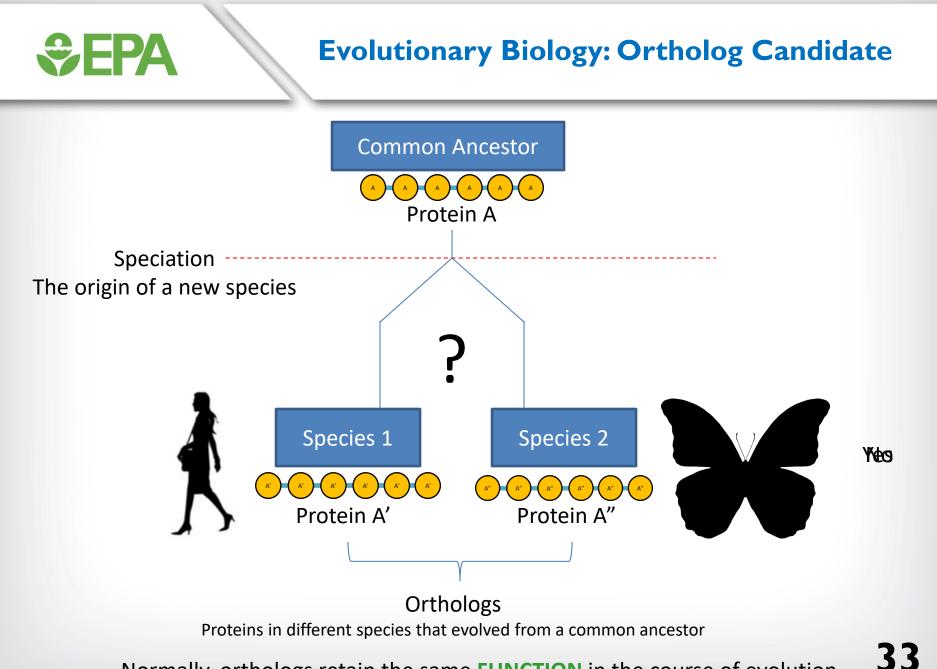


Gather Lines of Evidence for Conservation of Protein Target: Susceptibility Prediction: Yes or No



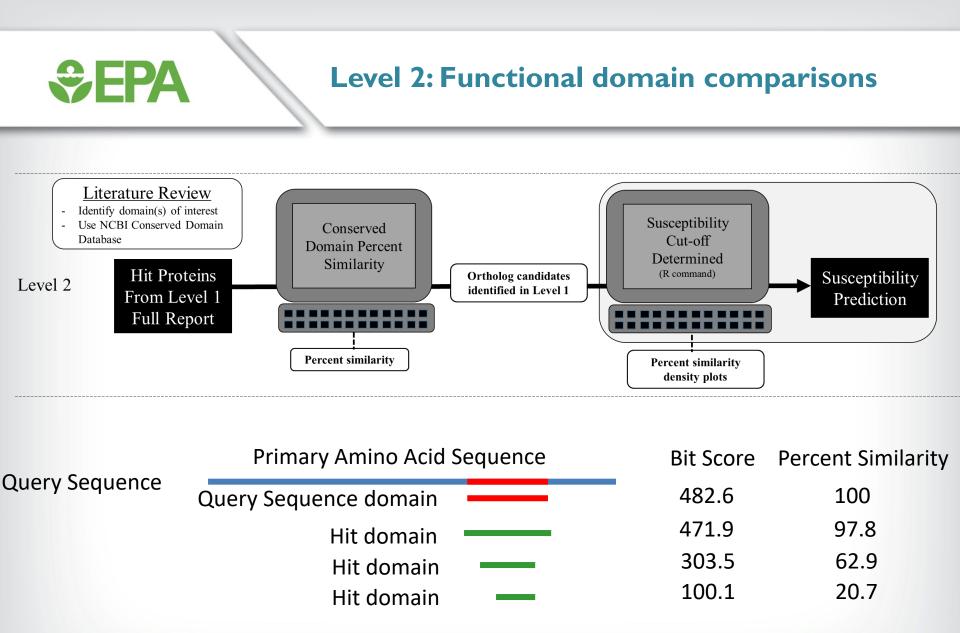

Query Formulation Stage


Needed information: Query Sequence


€EPA

- I. The chemical's molecular (protein) target:
 - Pharmaceuticals
 - » https://www.drugbank.ca/
 - » http://sitem.herts.ac.uk/aeru/vsdb/index.htm
 - » <u>http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp</u>
 - Pesticides and other chemicals
 - » http://lilab.ecust.edu.cn/ptid/index.html
 - » http://www.t3db.ca/
 - AOP initiators
 - » <u>https://aopwiki.org/</u>
 - EPA tested chemicals
 - » https://comptox.epa.gov/dashboard
 - Literature review
- 2. The target species or sensitive species
 - Case Study:
 - https://cfpub.epa.gov/ecotox/
 - Literature review

Normally, orthologs retain the same **FUNCTION** in the course of evolution


Ortholog Candidates and Predicting Susceptibility with SeqAPASS

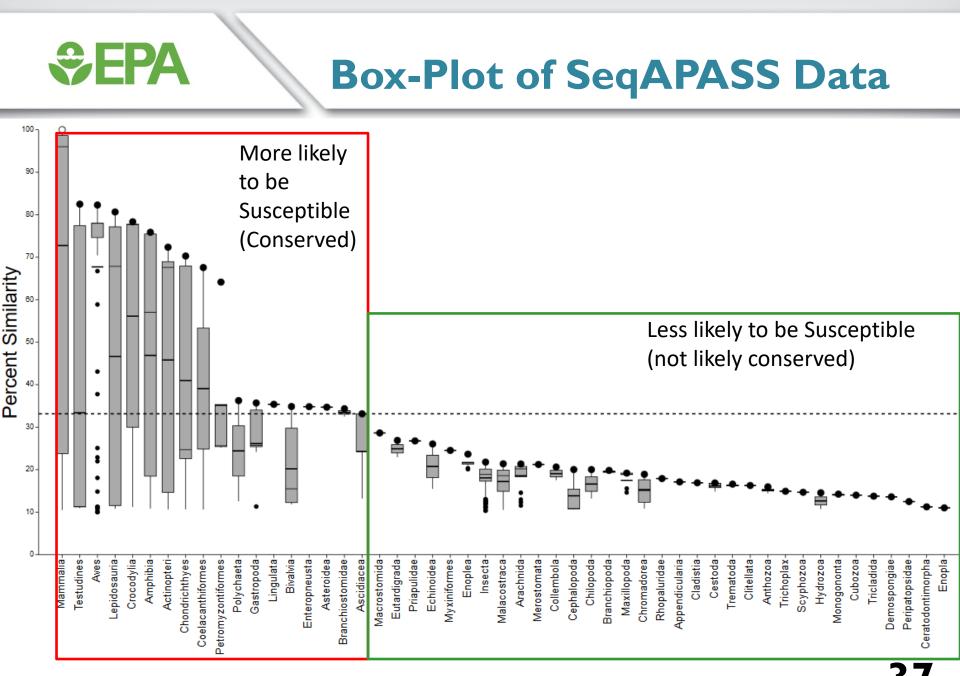
• Ortholog = likely to maintain similar FUNCTION

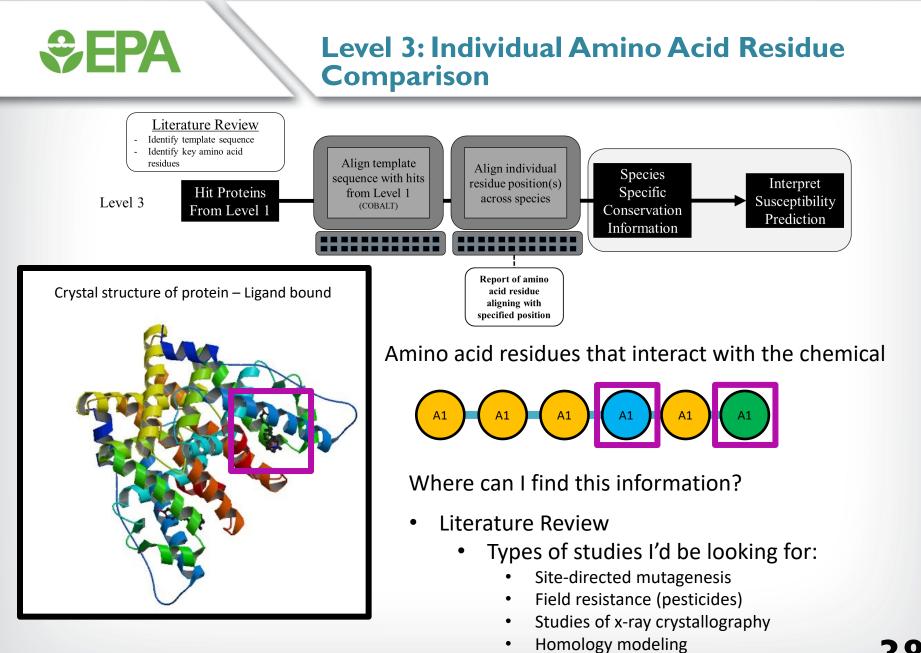
SEPA

Common Name	Ortholog Candidate	Cut-off	Percent Similarity
Human	Υ	33.15	100
Florida manatee	Υ	33.15	98.8
Mallard	Υ	33.15	82.29
Rock pigeon	Υ	33.15	80.93
Green anole	Υ	33.15	80.65
Pacific transparent sea squirt	Υ	33.15	33.15 Lowest % Similarity that is still an ortholog
Yesso scallop	N	33.15	32.87
Purple sea urchin	Ν	33.15	26.05
Human whipworm	Ν	33.15	23.53
Bed bug	Ν	33.15	21.62

Example: Susceptibility Cut-off: Set at 33.15 Above cut-off: More likely to be susceptible base on similar **FUNCTION**

Percent Similarity =	<u>Hit Bit Score</u>	X 100
	Query Bit Score	V 100




SeqAPASS output

Tables of data (csv file format)

Data Versi NCBI	Acce Protein C	Species Ta	Taxonom	i Filtered T	Scientific	Common	Protein N	BLASTp Bi	Ortholog	Ortholog	Cut-off	Percent S	i Susceptib	Analysis C Eukaryot
3 P1082	7.1 1151619	9606	Mammali	Mammali	Homo sap	Human	RecName	1014.99	Y	26	59.28	100	Y	2018 03 19 Y
3 XP_00	01088 87173	9544	Mammali	Mammali	Macaca m	Rhesus m	PREDICTE	1013.06	Y	26	59.28	99.81	Y	2018 03 19 Y
3 XP_00	32342 32342	9785	Mammali	Mammali	Loxodonta	African sa	PREDICTE	1000.35	Y	26	59.28	98.56	Y	2018 03 19 Y
3 XP_00)351(121846	10029	Mammali	Mammali	Cricetulus	Chinese h	PREDICTE	996.5	Y	26	59.28	98.18	Y	2018 03 19 Y
3 XP_01	29924	291302	Mammali	Mammali	Miniopter	Common	PREDICTE	989.56	Y	26	59.28	97.49	Y	2018 03 19 Y
3 NP_11	1239 150717	10116	Mammali	Mammali	Rattus noi	Norway ra	c-erbAalp	989.56	Y	26	59.28	97.49	Y	2018 03 19 Y
3 09771	L6.1 84581	9823	Mammali	Mammali	Sus scrofa	Pig	RecName	987.64	Y	26	59.28	97.31	Y	2018 03 19 Y
3 NP_00	0130 306159	10090	Mammali	Mammali	Mus muso	House mo	thyroid h	c 986.87	Y	26	59.28	97.23	Y	2018 03 19 Y
3 XP_00	697: 45629	230844	Mammali	Mammali	Peromysc	Prairie de	PREDICTE	985.33	Y	26	59.28	97.08	Y	2018 03 19 Y
3 XP_00	04684 29273	143302	Mammali	Mammali	Condylura	Star-nose	PREDICTE	984.17	Y	26	59.28	96.96	Y	2018 03 19 Y
3 XP_00	26203	9978	Mammali	Mammali	Ochotona	American	PREDICTE	982.25	Y	26	59.28	96.77	Y	2018 03 19 Y

SeqAPASS data (csv format) for all ToxCast Assays available through The CompTox Chemistry Dashboard <u>https://comptox.epa.gov/dashboard</u>

This is not trivial....it can take some time to identify literature and formulate the Level 3 query

SeqAPASS can **AUTOMATICALLY** predict whether an amino acid difference is likely to change protein-chemical interaction.

Amino Acid	1-Letter	Side Chain Class	Molecular Weight (g/mol)
Aspartic Acid	D	Acidic	133.104
Glutamic Acid	E	Acidic	147.131
Alanine	А	Aliphatic	89.094
Glycine	G	Aliphatic	75.067
Isoleucine	I	Aliphatic	131.175
Leucine	L	Aliphatic	131.175
Proline	Р	Aliphatic	115.132
Valine	V	Aliphatic	117.148
Asparagine	Ν	Amidic	132.119
Glutamine	Q	Amidic	146.146
Phenylalanine	F	Aromatic	165.192
Tryptophan	W	Aromatic	204.228
Tyrosine	Y	Aromatic	181.191
Histidine	Н	Basic	155.156
Lysine	К	Basic	146.189
Arginine	R	Basic	174.203
Serine	S	Hydroxylic	105.093
Threonine	Т	Hydroxylic	119.119
Methionine	М	Sulfur-Containing	149.208
Cysteine	С	Sulfur-Containing	121.154

- Automated Prediction
 - Each key amino acid is grouped into a "side chain class" and given a "size".
 - Evaluated based on Rules:
 - Same side chain class as query (Y/N)?
 - Size 30g/mol or less from query (Y/N)?
 - If 2 "N" responses for ≥1 key amino acids then SeqAPASS predicts susceptibility of that species will differ from the query species.

Example of how Level 3 Susceptibility Predictions work (hypothetical case study):

Protein	Shared Susceptibility	Position 1	Residue	Side Chain Class	Match	Size (MW)	Match
Mouse protein	Yes	101	F	Aromatic	Yes	Yes 165.192	
Human protein	Yes	101	F	Aromatic	Yes	Yes 165.192	
Bird protein	Yes	101	Y	Aromatic	Yes	181.191	Yes
Turtle protein	Yes	101	R	Basic	No	174.203	Yes
Frog protein	No	101	D	Acidic	No	133.104	No
Fish protein	No	101	Ν	Amidic	No	132.119	No
Insect protein	No	101	А	Aliphatic	No	89.094	No

This example compares protein targets from 6 different species to Mouse as the query species.

Protein	Shared Susceptibility	Position 1	Residue	Side Chain Class	Match	Size (MW)	Match	
Mouse protein	Yes	101	F	Aromatic	Yes	165.192	Yes	
Human protein	Yes	101	F	Aromatic	Yes 165.192		Yes	
Bird protein	Yes	101	Y	Aromatic	Yes	181.191	Yes	
Turtle protein	Yes	101	R	Basic	No	174.203	Yes	
Frog protein	No	101	D	Acidic	No	133.104	No	
Fish protein	No	101	Ν	Amidic	No	132.119	No	
Insect protein	No	101	А	Aliphatic	No	89.094	No	

This example has 1 key amino acid position, but most proteins have 10 to 20 key positions that are directly involved in protein-chemical interactions.

Protein	Shared Susceptibility	Position 1	Residue	Side Chain Class	Match	Size (MW)	Match
Mouse protein	Yes	101	F	Aromatic	Yes	165.192	Yes
Human protein	Yes	101	F	Aromatic	Yes	165.192	Yes
Bird protein	Yes	101	Y	Aromatic	Yes	181.191	Yes
Turtle protein	Yes	101	R	Basic	No	174.203	Yes
Frog protein	No	101	D	Acidic	No	133.104	No
Fish protein	No	101	N	Amidic	No	132.119	No
Insect protein	No	101	А	Aliphatic	No	89.094	No

SeqAPASS compares the side-chain class of each amino acid from each species and whether it is a match to the query (mouse).

Protein	Shared Susceptibility	Position 1	Residue	Side Chain Class	Match	Size (MW)	Match	
Mouse protein	Yes	101	F	Aromatic	Yes	165.192	Yes	
Human protein	Yes	101	F	Aromatic	Yes	165.192	Yes	
Bird protein	Yes	101	Y	Aromatic	Yes	181.191	Yes	
Turtle protein	Yes	101	R	Basic	No	174.203	Yes	
Frog protein	No	101	D	Acidic	No	133.104	No	
Fish protein	No	101	Ν	Amidic	No	132.119	No	
Insect protein	No	101	А	Aliphatic	No	89.094	No	

SeqAPASS compares the molecular weight of each amino acid from each species and whether the difference is less than 30 g/mol from query (mouse).

Protein	Shared Susceptibility	Position 1	Residue	Side Chain Class	Class		Match
Mouse protein	Yes	101	F	Aromatic Yes		165.192	Yes
Human protein	Yes	101	F	Aromatic	Aromatic Yes		Yes
Bird protein	Yes	101	Y	Aromatic Yes		181.191	Yes
Turtle protein	Yes	101	R	Basic	Basic No 17		Yes
Frog protein	No	101	D	Acidic No 133.104		133.104	No
Fish protein	No	101	Ν	Amidic No 132.119		No	
Insect protein	No	101	А	Aliphatic	No	89.094	No

To provide conservative predictions, two "No" matches for one or more amino acids are required for SeqAPASS to predict that the species differ in susceptibility.

Protein	Shared Susceptibility	Position 1	Residue	Side Chain Class	Match	Size (MW)	Match
Mouse protein	Yes	101	F	Aromatic Yes 165.192		165.192	Yes
Human protein	Yes	101	F	Aromatic Yes 165.192		Yes	
Bird protein	Yes	101	Y	Aromatic Yes 181.19		181.191	Yes
Turtle protein	Yes	101	R	Basic	Basic No 174.203		Yes
Frog protein	No	101	D	Acidic No 133.104		No	
Fish protein	No	101	Ν	Amidic No 132.119		No	
Insect protein	No	101	A	Aliphatic	No	89.094	No

APPLICATION OF SeqAPASS

ST ST R.S.

SUN MON MON TUE NETHURI A MON NON KE KE MIE KE AC

2856

SA

SUN

Contents lists available at ScienceDirect

Aquatic Toxicology

journal homepage: www.elsevier.com/locate/aquatox

CrossMark

TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245

doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016 Research article

Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action

Carlie A. LaLone^{a,*}, Daniel L. Villeneuve^a, Lyle D. Burgoon^b, Christine L. Russom^a, Henry W. Helgen^c, Jason P. Berninger^d, Joseph E. Tietge^a, Megan N. Severson^a, lenna E. Cavallin^e, Gerald T. Ankley^a

Case studies:

17alpha-ethinyl estradiol human Permethrin 17^β-trenbolone

estrogen receptor mosquito voltage-gated sodium channel bovine androgen receptor

Environmental Toxicology and Chemistry, Vol. 35, No. 11, pp. 2806-2816, 2016 Published 2016 SETAC Printed in the USA

EVALUATION OF THE SCIENTIFIC UNDERPINNINGS FOR IDENTIFYING ESTROGENIC CHEMICALS IN NONMAMMALIAN TAXA USING MAMMALIAN TEST SYSTEMS

GERALD T. ANKLEY,*† CARLIE A. LALONE,† L. EARL GRAY,‡ DANIEL L. VILLENEUVE,† and MICHAEL W. HORNUNG† †Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota ‡Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina

Case study:

Human estrogen receptor alpha

Cite This: Environ. Sci. Technol. 2018, 52, 13960–13971

pubs.acs.org/est

Article

Evidence for Cross Species Extrapolation of Mammalian-Based High-Throughput Screening Assay Results

Carlie A. LaLone,*[†][©] Daniel L. Villeneuve,[†][©] Jon A. Doering,[‡] Brett R. Blackwell,[†][©] Thomas R. Transue,[§] Cody W. Simmons,[§] Joe Swintek,[¶] Sigmund J. Degitz,[†] Antony J. Williams,[|] and Gerald T. Ankley^{†@}

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

Carlie A. LaLone,*,1 Daniel L. Villeneuve,* David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,* and Gerald T. Ankley*

Case studies:

Diacylhydrazines and bisacylhydrazine Neonicotinoids Strobilurin fungicides

tobacco budworm honey bee corn rust

ecdysone receptor nicotinic acetylcholine receptor cvtochrome b

doi: 10.1093/toxsci/kfv186 Dryad Digital Repository DOI: https://doi.org/10.5061/dryad.2tg6967 Advance Access Publication Date: July 27, 2018

TOXICOLOGICAL SCIENCES, 166(1), 2018, 131-145

In Silico Site-Directed Mutagenesis Informs Species-Specific Predictions of Chemical Susceptibility Derived From the Sequence Alignment to Predict Across Species Susceptibility (SegAPASS) Tool

Jon A. Doering,^{*,†} Sehan Lee,^{‡,§} Kurt Kristiansen,[¶] Linn Evenseth,[¶] Mace G. Barron,[‡] Ingebrigt Sylte,[¶] and Carlie A. LaLone^{*,1}

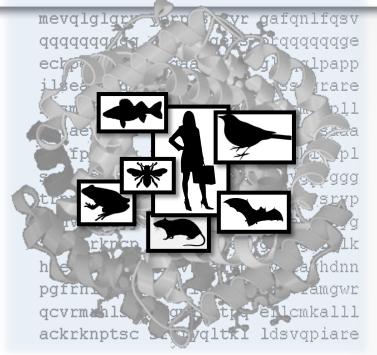
Case studies:

Mouse acetylcholinesterase Tobacco budworm ecdysone receptor

Case studies: All mammalian-based ToxCast Targets (484)

SETAC Europe 30th Annual Meeting Open Science for Enhanced Global Environmental Protection

SETAC EU Posters: Applications and future directions for the SeqAPASS tool


ID	Title	Presenter	Туре	Session	Session Room	Time
1.10P.4	A Weight-of-Evidence Approach for Androgen Receptor Conservation Across Vertebrate Species	Sara M Vliet	Poster	Novel Tools and Bioassays for the 21st Century Environmental Toxicology (P)		Wednesday 8:30 AM
4.19P.2	Capitalizing on existing knowledge of pesticide-CYP9 enzyme interactions to understand chemical susceptibility across bee species using the SeqAPASS tool	Donovan Blatz	Poster	Environmental Risks of Neonicotinoid Insecticides: Are They the Outliers? (P)		Wednesday 8:30 AM
1.10P.3	Protein structural similarity for extrapolation of toxicity knowledge across species	Carlie LaLone	Poster	Novel Tools and Bioassays for the 21st Century Environmental Toxicology (P)	Exhibition Hall	Wednesday 8:30 AM

Demo SeqAPASS

- <u>https://seqapass.epa.gov/seqapass/</u>
- Getting started

EPA

- Download user guide

Terms

- **Query protein sequence/species** the initial sequence/species submitted to SeqAPASS
- Hit protein sequence/species all sequences/species that align with the query sequence/species
- Protein Accession A unique identification tag given to every protein in the NCBI databases (e.g., ACD123211.2; NP_0000116.2)
- Domain Accession A unique identification tag given to every protein domain in the NCBI Conserved Domain Databases (e.g., cd00891; pfam00067)

Thank you for attending Introduction to SeqAPASS Contact with any questions:

LaLone.Carlie@epa.gov; Blatz.Donovan@epa.gov; or Vliet.Sara@epa.gov

50