

www.epa.gov

Abstract

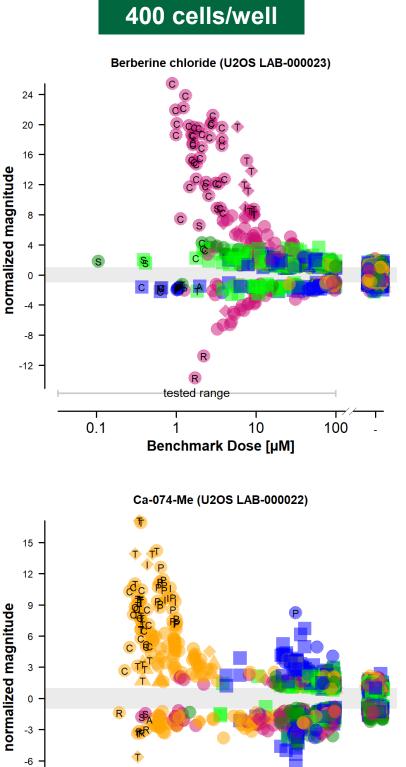
The recently released Next Generation Blueprint for Computational Toxicology at the USEPA advocates the use of broad-based high-content profiling assays as a first step for characterizing the biological activity of environmental chemicals. Two such high-throughput profiling approaches being evaluated are whole transcriptome targeted RNA-Seq (i.e. TempO-Seq) and high content imaging-based phenotypic profiling (i.e. Cell Painting), both of which can be applied to a variety of human-derived cell types. This work describes the optimization of the U-2 OS human osteosarcoma cell model for combination screening with TempO-Seq and Cell Painting. First, a time course experiment was performed in 384-well format to identify an initial seeding density (i.e. 3,000 cells/well) that would yield enough cells / well to satisfy TempO-Seg lysate requirements (i.e. 0.25x10⁶ – 2x10⁶ cells / mL lysate) and not result in overly-confluent monolayers for Cell Painting at 48 h, post-seeding. Next, a set of eleven chemicals with known molecular modes-of-action were screened in concentration-response mode (n = 7 concentrations, $\frac{1}{2}$ log10 spacing) in order to identify a set of three phenotypic / gene expression reference chemicals for use in evaluating TempO-Seq and Cell Painting assay performance during large-scale screening campaigns. Following 24 h of treatment, each candidate reference chemical produced concentration-dependent changes in phenotypic profiles in the Cell Painting assay that were similar to those previously observed in experiments using lower initial seeding densities (400 cells / well). The benchmark concentration for onset of phenotypic changes was similar between low and high density cultures whereas benchmark concentrations for cytotoxicity were right-shifted at the higher cell density. Baseline gene expression profiling of U-2 OS cells with whole transcriptome TempO-Seq confirmed expression of the glucocorticoid (NR3C1) and retinoic acid (RARA) receptors. Well-characterized agonists of these receptors (dexamethasone and all-trans-retinoic acid, respectively) produced concentration-dependent changes in the mitochondrial and endoplasmic reticulum morphology. These chemicals, plus the topoisomerase II inhibitor etoposide, were selected as reference chemicals for high-throughput screening studies in the U-2 OS cell

U.S. Environmental Protection Agency

Office of Research and Development

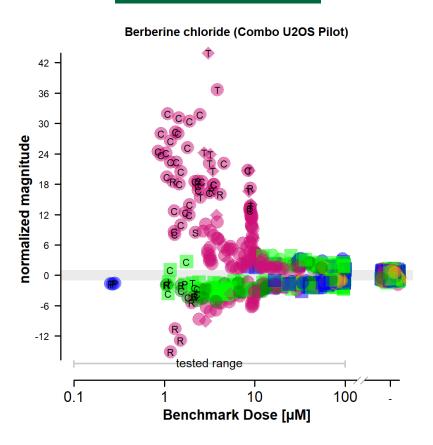
DT) DTXSID 2 DTXSID 3 DTXSID 4 DTXSID 5 DTXSID 6 DTXSID6 7 DTXSID 8 DTXSID50 9 DTXSID8 10 DTXSID5 11 DTXSID5

Optimization of culture conditions and identification of reference chemicals for combination screening using TempO-Seq and Cell Painting

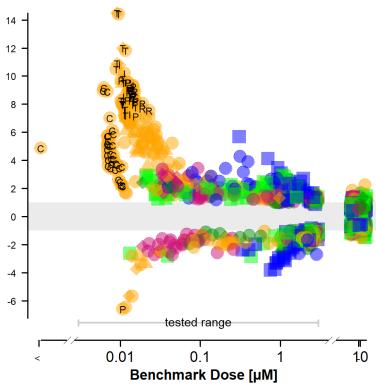

Megan Culbreth¹, Johanna Nyffeler^{1,2}, Clinton Willis^{1,3}, Joshua Harrill¹

¹USEPA CCTE, RTP, NC^{; 2} ORISE, Oak Ridge, TN; ³ORAU, Oak Ridge, TN

Reference Chemicals

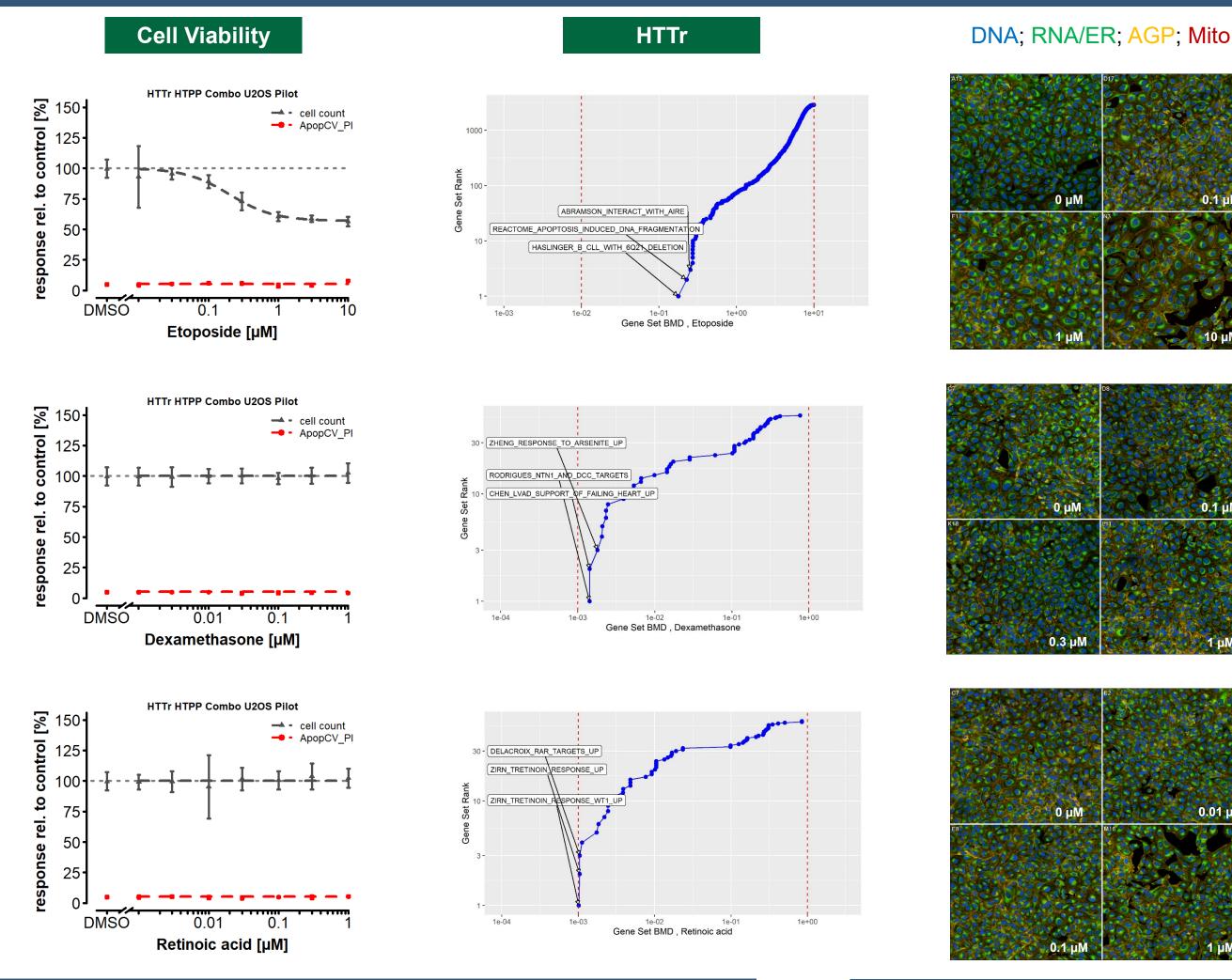

XSID	Chemical Name	Rationale	Mechanism/Target	Concentration Range (µM)
03020384	Dexamethasone	Evidence for effects on gene expression in osteosarcoma cells	Glucocorticoid receptor (NR3C1)	0.001-1
06024882	Cycloheximide	Large HTTr effects (in MCF7 cells)	Protein translocation	0.01-10
09020031	Actinomycin D	Large magnitudes (RNA channel)	RNA polymerase	0.0001-0.1
05023035	Etoposide	HTPP reference chemical	DNA topoisomerases	0.01-10
07021239	Retinoic acid	Evidence for effects on gene expression in osteosarcoma cells	Retinoic acid pathway	0.001-1
06037063	Trichostatin A	HTTr reference chemical	HDACs	0.003-3
00040464	Docetaxel	Large magnitudes (DNA channel)	Microtubule stabilization	0.00003-0.03
501015546	Cucurbitacin I	Large magnitudes (AGP channel)	STAT3/JAK	0.0001-0.1
08024602	Berberine chloride	HTPP reference chemical	Mitochondrial toxicant	0.1-100
50881386	Ca-074-Me	HTPP reference chemical	Cathepsin B	0.003-3
05023582	Rapamycin (Sirolimus)	HTPP reference chemical	mTOR	0.001-1

Higher cell density yields similar phenotypic profiles



tested range 0.001 0.01 0.1 Benchmark Dose [µM]

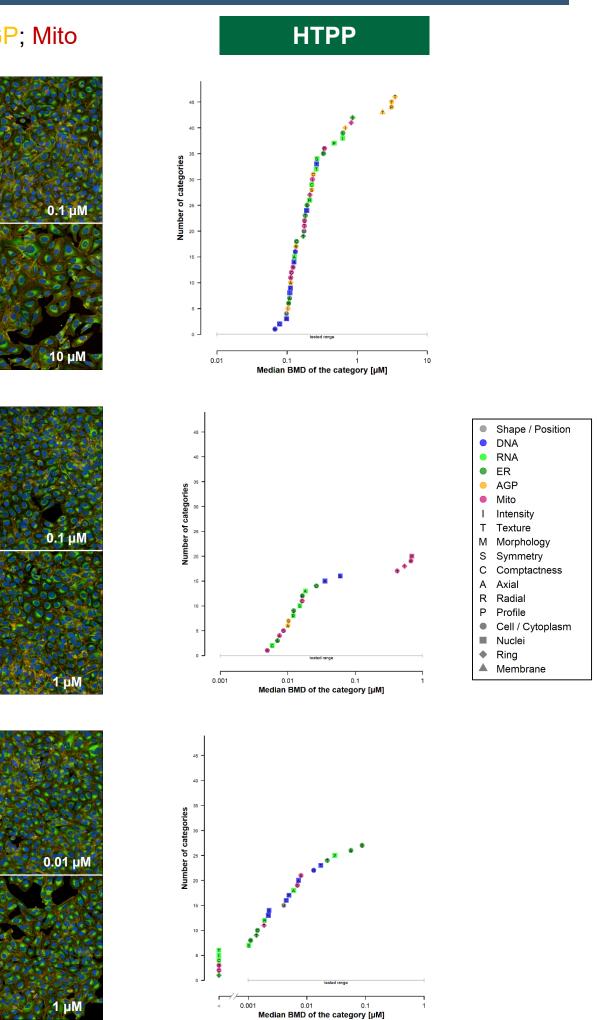
3000 cells/wel



Ca-074-Me (Combo U2OS Pilot)

Chemical Name	Cell Viability (uM)	HTTr (uM)	HTPP (uM)	POD Ratio (HTPP / HTTr)
Dexamethasone	n/a	1.42E-03	5.01E-03	0.3
Cycloheximide	n/a	1.40E-01	1.04E-01	1.3
Actinomycin D	2.34E-02	9.62E-04	5.37E-04	1.8
Etoposide	n/a	1.78E-01	6.76E-02	2.6
Retinoic Acid	n/a	1.01E-03	3.16E-04	3.2
Trichostatin A	2.26E-01	1.02E-01	2.32E-02	4.4
Docetaxel	7.08E-03	2.04E-03	1.66E-04	12.3
Cucurbitacin I	6.61E-02	1.22E-02	6.92E-04	17.6
Berberine chloride	n/a	4.45E+01	1.81E+00	24.5
Ca-074-Me	n/a	3.30E-01	7.85E-03	42.0
Rapamycin (Sirolimus)	n/a	8.18E-02	3.16E-04	258.8

Chemicals selected as in-plate reference chemicals for High-Throughput Screening in U-2 OS cells



Points of Departure (PODs)

- Dexamethasone: BURTON_ADIPOGENESIS_1
 - Retinoic acid: DELACROIX_RAR_TARGETS_UP
- The phenotypic profile of each reference chemical was distinct

Concentration-response screening of ToxCast chemicals in U-2 OS cells using both HTTr and HTPP

Megan Culbreth I culbreth.megan@epa.gov I 919-541-1193

Conclusions

• Cucurbitacin I cell viability concentration-response curve was right-shifted at the higher cell seeding density, possibly indicating reduced sensitivity; all other cell viability concentration-response curves were similar at the lower and higher cell seeding densities

• HTPP concentration-response profiles were similar at the lower and higher cell seeding densities

• Etoposide, dexamethasone, and retinoic acid were selected as in-plate reference chemicals for high-throughput screening in U-2 OS

• None of the reference chemicals had a cell viability POD in the concentration range tested; however, etoposide reduced cell number

 The most sensitive gene sets for each reference chemical were consistent with their known biological activity Etoposide: REACTOME APOPTOSIS INDUCED DNA FRAGMENTATION

• HTPP was more-sensitive at detecting the biological activity of the chemicals as compared to HTTr, in most cases

Future Directions

• Exploring potential alternative methods for concentration-response modeling and POD determination

This work does not necessarily reflect USEPA policy. Mention of tradenames or products does not represent endorsement for use.