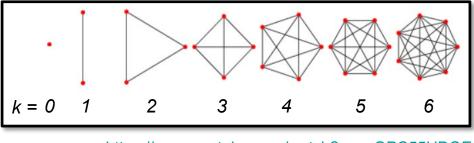


www.epa.gov

DATA DRIVEN SELECTION OF BIOLOGICALLY DIVERSE CELL LINES FOR CHEMICAL BIOACTIVITY SCREENING USING CONTENT MAXIMIZATION

Joshua Harrill¹, Clinton Willis², Sophie Malcomber³, Andy White³, Russell Thomas¹, Nisha Sipes⁴, R. Woodrow Setzer¹


¹USEPA Center for Computational Toxicology and Exposure (CCTE), RTP, NC, ²Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, ³Unilever SEAC, Colworth, UK, ⁴NIEHS NTP, RTP, NC

Background

- The US EPA Computational Toxicology Roadmap advocates the use of high-throughput profiling (HTP) assays (i.e. transcriptomics, phenotypic profiling) as a first tier approach for evaluating the biological activity of environmental chemicals.
- However, no single in vitro model will be capable of capturing the entirety of human biological space that may be perturbed upon exposure to environmental chemicals.
- Instead of a single in vitro model, panels of biologically-diverse cell lines may be used to increase the amount of biological space addressed during Tier 1 screening.
- The universe of cell lines for potential use in Tier 1 screening is vast and the number of cell lines that can be tested will be constrained by available time and resources.
- Data driven approaches for cell line selection provide a systematic way to incrementally incorporate as much biological diversity as possible into an vitro testing panel in an efficient manner.
- The proposed approach uses baseline gene expression as a proxy for biological diversity

Content Maximization

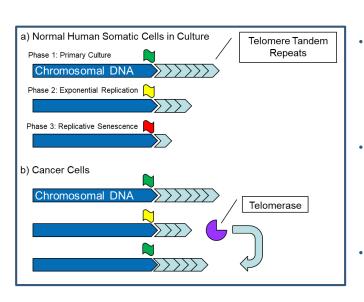
- In geometry, a simplex is the generalization of a tetrahedral region of space to **n** dimensions.
- The boundary of a k-simplex has:
- k+1 vertices
- $\frac{k(k+1)}{k}$ edges
- $\left(\frac{k+1}{i+1}\right)$ faces, where $\left(\frac{n}{k}\right)$ is a binomial coefficient.

- https://www.youtube.com/watch?v=uuOPC55HDQ
- The content (i.e. hypervolume) of a simplex can be computed using the Cayley-Menger determinant

If S is a *j*-simplex in real coordinate space (\mathbb{R}^n) with vertices v_1, \dots, v_{j+1} and $\mathbf{B} = (\beta_{ik})$ denotes the $(j + 1) \times (j + 1)$ matrix given by $\beta_{ik} = |v_i - v_k|_2^2$, then the **content** V_i is given by:

$$V_j^2 = \frac{(-1)^{j+1}}{2^j (j!)^2} \det(\widehat{B})$$

where \widehat{B} is the (j + 2) \times (j + 2) matrix obtained from **B** by bordering **B** with a top row (0, 1, ..., 1) and a left column $(0, 1, ..., 1)^{T}$.


For the Cell Line Selection, Euclidean Distance is used as edge lengths for calculation of content.

Implementation

- Select a "seed" cell line \rightarrow example: MCF7 cells.
- Find the cell line "furthest" from the seed
- Find a third cell line that maximizes the **area** between the three points
- Find a fourth cell line that maximizes the **volume** between four points.
- Continue until the required number of cell lines are identified using content.

U.S. Environmental Protection Agency Office of Research and Development

This work does not necessarily reflect USEPA policy. Mention of tradenames or products does not represent endorsement for use.

Analysis of CCLE Gene Expression Data

Step 1: Transcriptomic Data Analysis

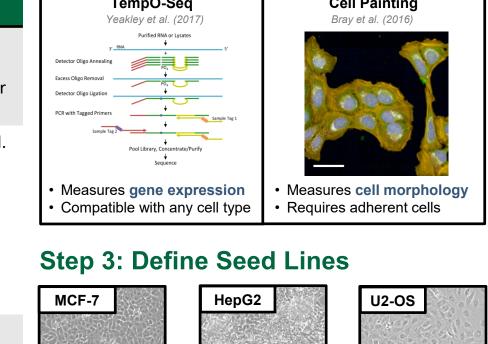
-		
Process	Description	TempO-SeqCell PaintingYeakley et al. (2017)Bray et al. (2016)
Source Data	 Cancer Cell Line Encyclopedia (CCLE) Affymetrix Database (Barretina et al. 2012) National Cancer Institute 60 (NCI60) Affymetrix Database (Shoemaker et al 2006) 	Purified RNA or Lysates
Annotation	 Cross reference sample names with ExPasy CallOSaurus (Bairoch et al. 2018) Harmonize cell name abbreviations Annotate according to: Growth mode (adherent, suspension, mixed) Tissue-of-origin Evidence of contamination / misidentification Commercial availability 	 Measures gene expression Compatible with any cell type Measures adherent cells McF-7 HepG2 U2-OS
Filtering	 Exclude lines with evidence of contamination / misidentification Exclude lines that are not commercially available 	
Data Normalization	 RMA normalization remaining cell lines Log2 transform Mean log2 expression for probe sets targeted the same gene 20,992 HUGO genes for each cell line 	Three cell lines used in L1000 Connectivity Map or Cell Painting (Lamb et. al 2006)
Dimensionality Reduction:	• Singular value decomposition (Alter et al. 200) to 40 eigengenes	Step 4: Define Selection Goals
Similarity Scoring:	Calculate Pairwise Euclidean Distance Matrix	 10 cell lines for TempO-Seq → any growth mode 10 cell lines for Cell Painting → adherent cells only

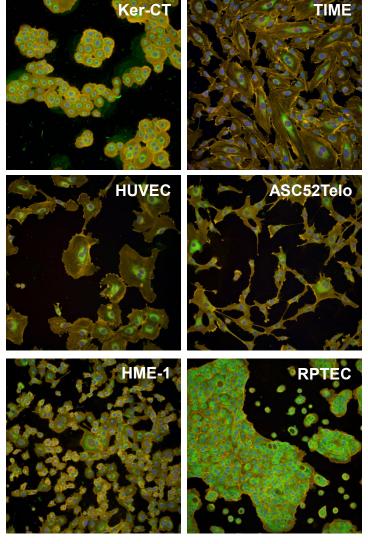
- **Telomeres** are structures that cap the end of chromosomes and contain a sequence of 6 bp tandem repeats (i.e.TTAGGG)
- Utilized to prevent degradation at the ends of chromosomes
- Shortening of telomeres depictive of aging cells
- Each cell division results in approx. 50 bp of telomeric material being removed
- Telomerase is an enzyme responsible for adding the telomeric repeats and making up for the sequences lost during cell division Consists of two components
- RNA component containing the template for telomere DNA synthesis (hTR)
- Protein catalytic component: human telomerase transcriptase (hTERT)
- In normal adult tissues, telomerase activity is typically low or below detectable limits
- Ectopic expression of hTERT in normal somatic cells can prevent replicative senescence.

hTERT Immortalized Cell Line Panel (ATCC[™])

Name	Tissue	Germ Lineage	ATCC Number	Disease State	Morphology
TeloHAEC	Aorta	Endothelial	CRL-4052	Normal	endothelial
TIME	Foreskin; Dermal Microvascular Endothelium	Endothelial	CRL-4025	Normal	endothelial-like
UVEC/TERT2	Umbilical Vascular Endothelium	Endothelial CRI-4053 Normal		endothelial-like	
HSAEC-1-KT	Lung, Small Airway	Epithelial	CRL-4050	Normal	epithelial, packed cuboidal
HBEC3-KT	Lung, Bronchial	Epithelial	CRL-4051	Normal	epithelial, packed cuboidal
TERT-HME1	Breast; Mammary Gland	Epithelial	CRL-4010	Normal	epithelial-like
PTEC/TERT1	Renal cortex, proximal tubules	Epithelial	CRL-4031	Normal	epithelial-like
TERT RPE-1	Retina, Eye	Epithelial	CRL-4000	Normal	epithelial-like
CHON-001	Long Bone, Cartilage	Epithelial	CRL-2846	Normal	fibroblast-like
TERT-HPNE	Pancreas, Duct	Fibroblast	CRL-4023	Normal	epithelial-like
Ker-CT	Foreskin	Intermediary	CRL-4048	Normal	epithelial
ASC52telo	Adipose-derived mesenchymal stem cell	Keratinocyte	SCRC-4000	Normal	fibroblast-like
BJ-5ta	Foreskin	Fibroblast	CRL-4001	Normal	Fibroblast-like

Acquired a variety of cell lines immortalized using hTERT from American Tissue Culture Collection (ATCC[™]). Derived from normal (i.e. non-cancerous) tissue


Cells maintain phenotypic characteristics of source tissue in vitro.


Karyotypes are more "normal" compared to analogous cancer cell lines.

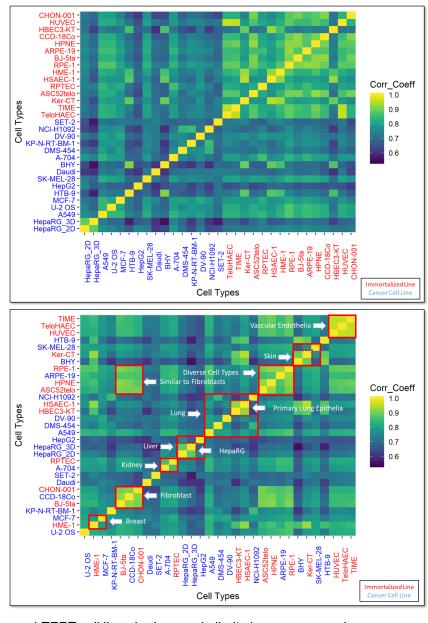
Most require cocktails of media supplements to support growth in vitro

Cell Painting fluoroprobes illustrate morphological heterogeneity in hTERT cell lines

Joshua Harrill | harrill.joshua@epa.gov | https://orcid.org/0000-0003-4317-6391

Pick 10 CelloSaurus Disease Growth Mode Tissue Origin Cell Line Billary Tract Bone Colon Cancer Haematopoletic And Pick 10 (Adherent) A-704 Renal cell carcinoma

RESULT: Identified 13 cell lines with selected across a large variety of tissue origins and disease states.


Data Driven Ranking of Cell Line Collection

High-Throughput Transcriptomics (HTTr) with TempO-Seq Application: **Input Cell Line Set:** All Cell Lines, All Growth Modes (except HepaRG-3D)

Cells were acquired, cultured and TempO-Seq whole transcriptome profiles were generated - 16 Cancer Cell Lines (i.e. data-driven selections + 3 others)

TempO-Seq Gene Expression

- 13 hTERT Immortalized Primary Cell Lines
- HepaRG 2D Differentiated, HepaRG 3D Differentiated**

hTERT cell lines had more similarity in gene expression compared to cancer cell lines.

Clusters of similarity observed in cell lines of similar tissue origin

Highlighted=

Anchor Cell Line

Blue =

Euclidean Distances

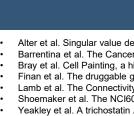
Based on

Whole Transcriptome

Red = Euclidean Distances

Based on Druggable Genome

Normal Font = Cancer Cell Lines


Bold Italicized Font =

Immortalized Cell LInes

	Cell_Type	Tissue_Origin											
	MCF-7	Breast	MCF-7	Breast	HepaRG_2D	Liver	HepaRG_2D	Liver	MCF-7	Breast	MCF-7	Breast	
	BHY	Skin	HepaRG_2D	Liver	Daudi	Immune	Daudi	Immune	HepaRG_2D	Liver	HepaRG_2D	Liver	
	HepG2	Liver	Daudi	Immune	CHON-001	Fibroblast	CHON-001	Fibroblast	BHY	Skin	Daudi	Immune	
Highlighted =	Daudi	Immune	CHON-001	Fibroblast	HepG2	Liver	HepG2	Liver	Daudi	Immune	CHON-001	Fibroblast	
Anchor Cell Lines	CHON-001	Fibroblast	HepG2	Liver	BHY	Skin	BHY	Skin	HepG2	Liver	HepG2	Liver	
	NCI-H1092	Lung	BHY	Skin	NCI-H1092	Lung	NCI-H1092	Lung	CHON-001	Fibroblast	BHY	Skin	
Blue =	DV-90	Lung	SK-MEL-28	Skin	SK-MEL-28	Skin	SK-MEL-28	Skin	NCI-H1092	Lung	SK-MEL-28	Skin	
Euclidean Distances	SET-2	Immune	DMS-454	Lung	DV-90	Lung	DV-90	Lung	SET-2	Immune	DMS-454	Lung	
	HepaRG_2D	Liver	SET-2	Immune	SET-2	Immune	SET-2	Immune	DV-90	Lung	SET-2	Immune	•
Based on	SK-MEL-28	Skin	DV-90	Lung	TeloHAEC	Vascular	TeloHAEC	Vascular	SK-MEL-28	Skin	DV-90	Lung	
Whole Transcriptome	U-2 OS	Bone	KP-N-RT-BM-1	CNS	A-704	Kidney	A-704	Kidney	U-2 OS	Bone	KP-N-RT-BM-1	CNS	
	A-704	Kidney	TeloHAEC	Vascular	DMS-454	Lung	DMS-454	Lung	A-704	Kidney	TeloHAEC	Vascular	
Red =	TeloHAEC	Vascular	A-704	Kidney	U-2 OS	Bone	U-2 OS	Bone	TeloHAEC	Vascular	A-704	Kidney	
	KP-N-RT-BM-1	CNS	U-2 OS	Bone	KP-N-RT-BM-1	CNS	KP-N-RT-BM-1	CNS	KP-N-RT-BM-1	CNS	U-2 OS	Bone	
Euclidean Distances	DMS-454	Lung	RPTEC	Kidney	MCF-7	Breast	MCF-7	Breast	DMS-454	Lung	RPTEC	Kidney	
Based on	HBEC3-KT	Lung	A549	Lung	RPTEC	Kidney	RPTEC	Kidney	HBEC3-KT	Lung	A549	Lung	•
Druggable Genome	RPTEC	Kidney	NCI-H1092	Lung	A549	Lung	A549	Lung	RPTEC	Kidney	NCI-H1092	Lung	
	A549	Lung	HBEC3-KT	Lung	HBEC3-KT	Lung	HBEC3-KT	Lung	A549	Lung	HBEC3-KT	Lung	
Normal Font =	HPNE	Pancreas											
	ARPE-19	Retina											
Cancer Cell Lines	HTB-9	Urinary Bladder	CCD-18Co	Fibroblast	CCD-18Co	Fibroblast	CCD-18Co	Fibroblast	HTB-9	Urinary Bladder	CCD-18Co	Fibroblast	
	CCD-18Co	Fibroblast	HTB-9	Urinary Bladder	HTB-9	Urinary Bladder	HTB-9	Urinary Bladder	CCD-18Co	Fibroblast	HTB-9	Urinary Bladder	
Bold Italicized Font =	Ker-CT	Skin	ASC52telo	Mesenchymal Stem Cell	ASC52telo	Mesenchymal Stem Cell	ASC52telo	Mesenchymal Stem Cell	Ker-CT	Skin	ASC52telo	Mesenchymal Stem Cell	•
Immortalized Cell Lines	ASC52telo	Mesenchymal Stem Cell	Ker-CT	Skin	Ker-CT	Skin	Ker-CT	Skin	ASC52telo	Mesenchymal Stem Cell	Ker-CT	Skin	
inition talized cell Elles	BJ-5ta	Fibroblast											
	HME-1	Breast	RPE-1	Retina	RPE-1	Retina	RPE-1	Retina	HME-1	Breast	RPE-1	Retina	
	RPE-1	Retina	HME-1	Breast	HME-1	Breast	HME-1	Breast	RPE-1	Retina	HME-1	Breast	
	TIME	Vascular											
	HUVEC	Vascular											
	HSAEC-1	Lung											
							•						

High-throughput Phenotypic Profiling w/ Cell Painting Application Input Cell Line Set: hTERT Cell Lines + U-2 OS + HepaRG 2D + MCF-7

Cell_Type	Tissue_Origin	Cell_Type	Tissue_Origin
U-2 OS	Bone	U-2 OS	Bone
MCF-7	Breast	MCF-7	Breast
HepaRG_2D	Liver	HepaRG_2D	Liver
НВЕСЗ-КТ	Lung	CHON-001	Fibroblast
CHON-001	Fibroblast	НВЕСЗ-КТ	Lung
TeloHAEC	Vascular	TeloHAEC	Vascular
RPTEC	Kidney	RPTEC	Kidney
ARPE-19	Retina	ARPE-19	Retina
HPNE	Pancreas	HPNE	Pancreas
Ker-CT	Skin	CCD-18Co	Fibroblast
CCD-18Co	Fibroblast	Ker-CT	Skin
ASC52telo	Mesenchymal Stem Cell	ASC52telo	Mesenchymal Stem Cell
BJ-5ta	Fibroblast	BJ-5ta	Fibroblast
HME-1	Breast	RPE-1	Retina
RPE-1	Retina	HME-1	Breast
TIME	Vascular	TIME	Vascular
HUVEC	Vascular	HUVEC	Vascular
HSAEC-1	Lung	HSAEC-1	Lung

	HepG2	CVCL_0027	Liver	Hepatoblastoma	adherer
	Daudi	CVCL_0008	Peripheral Blood (B lymphoblast)	Burkitt's Lymphoma	suspensi
	CCD-18Co	CVCL_2379	Colon	none	adherer
	NCI-H1092	CVCL_1454	Lung	Small cell lung cancer (stage E carcinoma)	suspensi
•	HCC-1588	CVCL_A351	Lung	Squamous cell carcinoma	adherer
	UT-7	CVCL_2233	Bone Marrow	Acute Myeloid Leukemia	suspensi
	ВНҮ	CVCL_1086	Upper Aerodigestive Tract	Oral Squamous call carcinoma	adherer
	SK-MEL-28	CVCL_0526	Skin	Melanoma	adherer
	KP-N-RT- BM-1	CVCL_1339	CNS	Neuroblastoma	adherer
	DMS 454	CVCL_2438	Lung	Small cell lung carcinoma	adherer
	. 704			Denel cell consistent	م والم م

Data Driven Selection of CCLE Cell Lines

Morphology	Media Formulation	Source	Reason Picked		
epithelial	DMEM + 10% FBS	ATCC (HTB-22™)	Seed Line		
epithelial	DMEM + 10% FBS	ATCC (HTB-96 [™])	Seed Line		
epithelial	DMEM + 10% FBS	ATCC (HB-8065 [™])	Seed Line		
lymphoblast	RPMI-1640 + 10% FBS	ATCC (CCL-213 [™])	Pick 10 (all)		
fibroblast	EMEM + 10% FBS	ATCC (CRL-1459 [™])	Pick 10 (all)		
n/a	HITES + 5% FBS	ATCC (CRL-5855 [™])	Pick 10 (all)		
epithelial	RPMI-1640 + 10% FBS	Creative Bioarray (CSC-C9399L)	Pick 10 (all)		
singlets	alpha-MEM 20% FBS 5 ng/mL GM-CSF	DSMZ (ACC 137)	Pick 10 (all)		
epithelial	DMEM + 10% FBS	DSMZ (ACC 404)	Pick 10 (all)		
polygonal	EMEM + 10% FBS	ATCC (HTB-72 [™])	Pick 10 (all)		
Neuroblast-like	RPMI-1640 10% FBS	JCRB / XenoTech (IFO50432)	Pick 10 (adherent)		
polygonal	Waymouth's MB 752/1 2 mM glutamine 10% FBS	ECACC / Millipore (95062832)	Pick 10 (adherent)		
epithelial	EMEM 10% FBS	ATCC (HTB-45 [™])	Pick 10 (adherent)		

- Rank order of cell lines varies slightly depending upon which anchor cell line(s) are chosen.
- Rank order of cell lines also varies slightly based on gene input into Euclidean distance matrix calculations.
- Cancer cell lines highly represented at the top of ranked lists as compared to hTERT lines.
- Rank order of hTERT cell lines consistent regardless of inclusion of cancer cell lines

Conclusions

• Content maximization of pair-wise Euclidean distance can be used as a data-driven approach to select sets of cell lines with high biological diversity

Selection of cancer cell lines using this approach resulted in a collection of cells with diverse tissue origins. Similarity in baseline gene expression among hTERT-immortalized cell lines was greater than amongst cancer cell lines selected from a database using the data-driven approach.

Content maximization can be used as a data-driven approach for ranking cell lines that represent incrementally increasing amounts of biological space for incorporation into screening panels.

Use of whole genome versus druggable genome as input had little impact on data-driven ranking of cell lines.

References

Alter et al. Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 2000; 97(18) doi: 10.1073/pnas.97.18.10101 Barrentina et al. The Cancer Cell Line Encyclopedia enables predictive modellling of anticancer drug sensitivity. Nature 2012; 565(7738) doi: 10.1038/nature11003 Bray et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protoc 2016; 11(9) doi: 10.1038/nprot.2016.105 Finan et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med 2017; 9(383) doi: 10.1126/scitranslmed.aag110 Lamb et al. The Connectivity Map: using gene expression signatures to connect small molecules. Science 2006; 313(5795) doi: 10.1126/science.1132939 Shoemaker et al. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006: 6(10) doi: 10.1038/nrc195 Yeakley et al. A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One 2017; 12(5) doi: 10.1371/journal.pone.0178302