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* The Office of Research and Development (ORD) is the scientific research arm of EPA
*562 peer-reviewed journal articles in 2018

* Research is conducted by ORD’s four national centers, and three
offices organized to address:
* Public health and env. assessment; comp. tox. and exposure;
env. measurement and modeling; and env. solutions and
emergency response.

* 13 facilities across the United States

* Research conducted by a combination of Federal
scientists (including uniformed members of the
Public Health Service); contract researchers; and
postdoctoral, graduate student, and post-
baccalaureate trainees

Credit: the Research Triangle Foundaig

ORD Facility in
Research Triangle Park, NC

Office of Research and Development
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GIVE A DOG A PHONE
Technology for our furry friends

 Parketal (2012): At least 3221 chemical

signature.s in pooied human blood samples, many NEWSCIentISt

WEELY Vayortar 5 Dot L X6

appear to be exogenous We've made

150,000 new chemicals
* Atapestry of laws covers the chemicals people

are exposed to in the United States (Breyer, 2009) ' a i

* Chemical safety testing is primarily for food We T}uch them, 1
additives, pharmaceuticals, and pesticide active it
ingredients (NRC, 2007) But which ones should

we worry about?

SPECIAL REPORT, page 34

» Different levels depending on category

THE GOOD FIGHT CHAMBER OF ‘.'rE( RETS t.‘- IT ALNE? ]
Mot violence The greatest ever find ificial worm could
is a5 virtuous of earty human bones bel" st digital animal

Office of Research and Development November 29, 2014
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* Most other chemicals, ranging from industrial waste
to dyes to packing materials, are covered by the Toxic

Substances Control Act (TSCA)

e Thousands of chemicals on the market were

“grandfathered” in without assessment
Judson et al. (2009), Egeghy et al. (2012), Wetmore et al. (2015)

“Tens of thousands of chemicals are listed with the
Environmental Protection Agency (EPA) for commercial
use in the United States, with an average of 600 new
chemicals listed each year.”

U.S. Government Accountability Office

Office of Research and Development

United States Government Accountability Office

GAO

Report to Congressional Requesters

March 2013

TOXIC SUBSTANCES

EPA Has Increased
Efforts to Assess and
Control Chemicals but
Could Strengthen Its
Approach

GAO-13-249

March, 2013
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Risk
Assessment

in the Federal
Government:
Managing

the Progress

B Chemical Risk

- OM

Dose-Response Exposure

NRC (1983) (Toxicokinetics

/Toxicodynamics)

The National Academy of Sciences, Engineering and Medicine (1983)
IEEEA Office of Research and Development  gutlined three components for determining chemical risk.
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TSCA 2.0

Agency Control Act (TSCA) A New Era in
, _ Chemical Risk Management
* TSCA was updated in June, 2016 to allow more rapid —
evaluation of chemicals (Frank R. Lautenberg

Chemical Safety for the 21st Century Act)

 New approach methodologies (NAMs) are being
considered to inform prioritization of chemicals for
testing and evaluation (Kavlock et al., 2018)

 EPA has released a “A Working Approach for
|dentifying Potential Candidate Chemicals for
Prioritization” (September, 2018)

Schmidt, C. W. (2016). TSCA 2.0: A new era in
chemical risk management”, Environmental
Health Perspectives, A182-A186.

Office of Research and Development
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 There are roughly 10,000 TSCA-relevant
chemicals in commerce
* Traditional methods are too
resource-intensive to address all of
these

* NAMs include:
e High throughput screening (ToxCast)
* High throughput exposure estimates
(ExpoCast)
e High throughput toxicokinetics
(HTTK)

Chemical

Researchin
Toxicology

& Cite This: Chem. Res. Toxicol. 2018, 31, 287-290 pubs.acs.org/t

Accelerating the Pace of Chemical Risk Assessment
Robert J. Kavlock,T Tina B:].h:ldori,-r Tara S. B:]rton-MacIaIen,T:' Maureen R. G‘.'uinn;r Mike Rase11berg,§

and Russell S. Thomas*!

ABSTRACT: Changes in chemical regulations worldwide have
increased the demand for new data on chemical safety. New
approach methodologies (NAMs) are defined broadly here as
including in silico approaches and in chemico and in vitro assays,

as well as the inclusion of information from the exposure of
chemicals in the context of hazard [Buropean Chemicals
Agency, “New Approach Methodologies in Regulatory Science”,

2016]. NAMs for toxicity testing, including alternatives to
animal testing approaches, have shown promise to provide a
large amount of data to fill information gaps in both hazard
and exposure. In order to increase experience with the new
data and to advance the applications of NAM data to evaluate
the safety of data-poor chemicals, demonstration case studies

Accelerating the Pace of Chemical Risk Assessment

* TSCA Proof of concept: Examine ~200 chemicals with ToxCast, ExpoCast and HTTK
e HTTK was rate limiter on number of chemicals
* “A Proof-of-Concept Case Study Integrating Publicly Available Information to Screen Candidates for

Chemical Prioritization under TSCA”

Office of Research and Development
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Administrator of the EPA: “To aggressively pursue a
reduction in animal testing, | am directing leadership and
staff in the Office of Chemical Safety and Pollution
Prevention and the Office of Research and Development
[ORD] to prioritize ... the reduction of animal testing while
ensuring protection of human health and the
environment.”

“These new approach methods (NAMs), include any

technologies, methodologies, approaches or combinations

thereof that can be used to provide information on

chemical hazard and potential human exposure that can

avoid or significantly reduce the use of testing on animals”
* NAMs for filling information gaps for decision-making
* integrating data steams into chemical risk assessment
* making the information publicly available

Office of Research and Development

Replacing Animal Testing with NAMs

: A UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

¥ M. ? WASHINGTON, D.C. 20460
L K
4

September 10, 2019

MEMORANDUM

SUBJECT: Directive to Prioritize Efforts to Reduce Animal 4'esting

‘ /| /
FROM: \rlxirg\\ R. Wheeler /77}\% "Lu & ‘\./(“ 1‘,7("- i
Administrator )

TO: Associate Deputy Administrator
General Counsel
Assistant Administrators
Inspector General
Chief Financial Officer
Chief of Staff
Associate Administrators
Regional Administrators

During my March 2019 all-hands address, | reiterated the U.S. Environmental Protection
Agency’s commitment to move away from animal testing. We are already making significant
efforts to reduce, replace and refine our animal testing requirements under both statutory and
strategic directives. For example, the Toxic Substances Control Act. amended June 22, 2016. by
the Frank R. Lautenberg Chemical Safety for the 21" Century Act, requires the EPA to reduce
U.S. EPA Strategic Plan

outlines a commitment to further reduce the reliance on animal testing within five years. More

reliance on animal testing. Also, Objective 3.3 of the FY 2018-2022

than 200,000 laboratory animals have been saved in recent years as a result of these collective
cliorts

Scientific advancements exist today that allow us to better predict potential hazards for risk
assessment purposes without the use of traditional methods that rely on animal testing. These new
approach methods (NAMs), include any technologies, methodologies, approaches or combinations
thereof that can be used to provide information on chemical hazard and potential human exposure
that can avoid or significantly reduce the use of testing on animals. The benefits of NAMs are
extensive, not only allowing us to decrease animals used while potentially evaluating more
chemicals across a broader range of potential biological effects, but in a shorter timeframe with
fewer resources while often achieving equal or greater biological predictivity than current animal
models




vEPA Chemical Risk = Hazard x Exposure
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« The U.S. National Research Council (1983) identified
chemical risk as a function of both inherent hazard
and exposure

mg/kg BW/day

Potential Hazard
from in vitro with
Reverse

» Therefore, high throughput risk prioritization needs: Toxicokinetics

1. High throughput hazard characterization
(Dix et al., 2007, Collins et al., 2008)

2. High throughput exposure forecasts botentia
(Wambaugh et aI., 2013, 2014) Exposure Rate

3. High throughput toxicokinetics (i.e., dose-
response relationship) linking hazard and
exposure

(Wetmore et aI., 2012, 2015) Lower Medium Higher
Risk Risk Risk

Office of Research and Development
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High throughput screening
(HTS) for in vitro bioactivity
potentially allows
characterization of thousands
of chemicals for which no
other testing has occurred

TOXICITY TESTING IN THE 21ST CENTURY
A VISION AND A STRATEGY

High-Throughput
Risk
Prioritization

Dose-Response Exposure
NRC (2007) (Toxicokinetics

/Toxicodynamics)

To perform high throughput risk prioritization, we need all three components
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Hertzberg and Pope (2000):

* “New technologies in high-throughput screening have significantly increased throughput and reduced
assay volumes...”

Kaewkhaw et al. (2016)

 “..new fluorescence
methods, detec;tlo.n Positive
platforms and liquid- Control
handling technologies.”

* Typically assess many
chemicals with a signal
readout (e.g., green
fluorescent protein).

Titration of =2

Potential Hits >

Office of Research and Development



wEPA High-Throughput Bioactivity

United States

Agengy o oeenen Screening Projects FDA ) oot .
= We attempt to estimate points of departure in vitro using Tox 7 /
high throughput screening (HTS) "8G C %6_} o AL -

= Tox21: Examining >8,000 chemicals using ~50 assays
intended to identify interactions with biological pathways
(Schmidt, 2009)

In vitro Assay AC50 \

l

~

= ToxCast: For a subset (>2000) of Tox21 chemicals ran
>1100 additional assays (Kavlock et al., 2012)

Response

Concentration

= Most assays conducted in dose-response format (identify
50% activity concentration — AC., — and efficacy if data | with Uncertainty

described by a Hill function, Filer et al., 2016)
onc;ntra;on (;M) /

107
1% 107
1x107"1
0
0
10°
1x10°

= All data are public: http://comptox.epa.gov/dashboard/

1% 10
0O

Office of Research and Development




EPA The Margin Between Exposure and Hazard
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Range of bioactive concentrations
1000 1000 across ToxCast assays
4 L = Estimated or measured
\ 4

100 L] 100 % ¢ average concentrations
. | r = associated with the LOAEL
% 10 10 E in animal studies

m
:: ' E <> NOAEL in animal studies
= A
E 1 ® * 1 E . Humans with chronic
E % & E exposure reference values
it . .
T 014 % Lo1 S (solid circles)
= A » E X Volunteers using products
St A 0.01 ;?.. containing the chemical
. = L. =
A
A = + Bio-monitored occupational
0.001 <4 0.001 populations
Triclosan MEBP MEHP PFOA 2,4-D
(90/615) (8/615) (35/615) (24/615) (10/615) A General populations

The five chemicals (as of 2011) with plasma biomonitoring AND ToxCast data... what do we do about the other 1000’s?

Office of Research and Development Aylward and Hays (2011)
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“Translation of high-throughput data into risk-
based rankings is an important application of

exposure data for chemical priority-setting.
Recent advances in high-throughput

toxicity assessment, notably the ToxCast
and Tox21 programs... and in high-

21ST CENTURY

SCIENCE throughput computational exposure
EI%I%EIFA?[\E{E assessment [ExpoCast] have enabled
EVALUATIONS High-Throughput first-tier risk-based rankings of

chemicals on the basis of margins
of exposure” - National Academies
of Sciences,
Engineering, and
Medicine (NASEM)

Risk
Prioritization

NASEM (2017) Toxicokinetics Exposure

In order to perform risk-based ranking we need data on hazard,
Office of Research and Development toxicokinetics, and exposure...



< EPA Chemical Prioritization NAMs
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High throughput in vitro
screening can estimate doses
' needed to cause bioactivity

$ |$I ‘ EI;. LI éﬁ% (e.g., Wetmore et al., 2015)

| mg/kg BW/day

10 -
%'é'ﬁl%*é e Exposure intake rates can
be inferred from
biomarkers
(e.g., Ring et al., 2018)

{1}

—(T
-I]]—_n]_q
-
i
-

-4
&

10-3 .

(mg/kg BW/day)
_I
.

10-7 d

Potential
Hazard from
in vitro with

Reverse
Toxicokinetic

Potentia
Chemicals Monitored by CDC NHANES Exposure
Rate

Estimated Equivalent Dose or Predicted Exposure

Lower Medium Higher

Office of Research and Development Ring et al. (2017) Risk Risk Risk
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IVIVE is the use of in vitro experimental data to predict phenomena in vivo

* |VIVE-PK/TK (Pharmacokinetics/Toxicokinetics):

* Fate of molecules/chemicals in body

* Considers absorption, distribution, metabolism, excretion (ADME)
» Uses empirical PK and physiologically-based (PBPK) modeling

* |VIVE-PD/TD (Pharmacodynamics/Toxicodynamics):

» Effect of molecules/chemicals at biological
target in vivo
» Assay design/selection important

Rodents: in vivo

Normalization of dose NRC (1998)

PBPK models

* Perturbation as adverse/therapeutic effect,

reversible/ irreversible effeccts

e Both contribute to in vivo effect prediction

Testable predictions

Rodents: in vitro

Comparative testing

Office of Research and Development

.

= |Humans: in vivo

Extrapolation
using PD and
PBPK models

Humans: in vitro




<EPA High Throughput Toxicokinetics (HTTK)

United States

In vitro toxicokinetic data + generic toxicokinetic model

= high(er) throughput toxicokinetics
\\
= j;‘ CLmemb
- Primary —
Compartment —
Claer

g™ T w =

REm
+ Gut Lumen
kabs

.-.':".-":-:‘::-":.-"5 - 12-: _
L o =

= httk

Office of Research and Development
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* To evaluate a chemical-specific TK model for “chemical x” you can
compare the predictions to in vivo measured data

* Can estimate bias

* Can estimate uncertainty

* Can consider using model to extrapolate to other situations

(dose, route, physiology) where you don’t have data

<EPA Building Confidence in TK Models

Chemical
Specific
- X Model

Observed Concentrations
X

»
>

Predicted Concentrations

Office of Research and Development Cohen Hubal et al. (2018)
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* To evaluate a chemical-specific TK model for “chemical x” you can
compare the predictions to in vivo measured data

* Can estimate bias

* Can estimate uncertainty

* Can consider using model to extrapolate to other situations

(dose, route, physiology) where you don’t have data

<EPA Building Confidence in TK Models

Chemical
Specific
- X Model

Observed Concentrations
X

»
>

* However, we do not typically have TK data Predicted Concentrations

Office of Research and Development Cohen Hubal et al. (2018)
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* To evaluate a chemical-specific TK model for “chemical x” you can
compare the predictions to in vivo measured data

* Can estimate bias
* Can estimate uncertainty

* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

Building Confidence in TK Models

Observed Concentrations

* However, we do not typically have TK data

* We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data
* We do expect larger uncertainty, but also greater confidence in

model implementation

 Estimate bias and uncertainty, and try to correlate with

chemical-specific properties

Office of Research and Development

Observed Concentrations

Chemical
Specific
Model

»
>

Predicted Concentrations

X

Generic
Model

»
>

Predicted Concentrations

Cohen Hubal et al. (2018)
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* To evaluate a chemical-specific TK model for “chemical x” you can
compare the predictions to in vivo measured data

* Can estimate bias
* Can estimate uncertainty

* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

Building Confidence in TK Models

Observed Concentrations

* However, we do not typically have TK data

* We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data
» We do expect larger uncertainty, but also greater confidence in

model implementation

 Estimate bias and uncertainty, and try to correlate with

chemical-specific properties

* Can consider using model to extrapolate to other situations

(chemicals without in vivo data)

Office of Research and Development

Observed Concentrations

Chemical
Specific
Model

»
>

Predicted Concentrations

Generic
Ly Model

»
>

Predicted Concentrations

Cohen Hubal et al. (2018)
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* To evaluate a chemical-specific TK model for “chemical x” you can
compare the predictions to in vivo measured data

* Can estimate bias
* Can estimate uncertainty

* Can consider using model to extrapolate to other situations
(dose, route, physiology) where you don’t have data

Building Confidence in TK Models

Observed Concentrations

* However, we do not typically have TK data

* We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data
» We do expect larger uncertainty, but also greater confidence in

model implementation

 Estimate bias and uncertainty, and try to correlate with

chemical-specific properties

* Can consider using model to extrapolate to other situations

(chemicals without in vivo data)

Office of Research and Development

Observed Concentrations

Chemical
Specific
Model

»
>

Predicted Concentrations

Z Generic
y Model

»
>

Predicted Concentrations

Cohen Hubal et al. (2018)



o)
\"IUEI?SA Evaluation Example

Environmental Protection

Agency E 1{]3
. . ~
 The HTTK model estimates chemical =~
clearance from the body by two = Ati’gc
processes: —
) - ol 5 10 @
hepe?tlc metabolism -(I|ve|t) E BF'N:’E'&%
* passive glomerular filtration &) E%E#D y
kidne [e. AL
( y) 3 | Nova _ 1 Wi Uiaz
@ 10 -
* This appears to work better for = f
pharmaceuticals than other 7 Other Chemicals
chemicals: @ PFOZ 5
 ToxCast chemicals are L‘_E_ 1072 Pharm:MSE = 2.44, HE =0.19
overestimated = Other:MSE = 293, R =0.5
.y L
* Non-pharmaceuticals may be 107° 10°° 10 10°
subject to extrahepatic metabolism In vitro predicted CL,[m (mg;Uh}

and/or active transport

Office of Research and Development Wambaugh et al. (2018)
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Wambaugh et al. (2015)

. . . 150 140
= Through comparison to in vivo data, a cross-

validated (random forest) predictor of success or
failure of HTTK has been constructed

100+
= All chemicals can be placed into one of seven

confidence categories

80

* Added categories for chemicals that do not
reach steady-state or for which plasma binding
assay fails

MNumber of HTTK Chemicals
T

= Plurality of chemicals end up in the “on the order”
bin (within a factor of 3.2x) which is consistent
with Wang (2010)

Office of Research and Development Triage Category



< EPA Chemical Prioritization NAMs
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High throughput in vitro
screening can estimate doses
' needed to cause bioactivity

$ |$I ‘ EI;. LI éﬁ% (e.g., Wetmore et al., 2015)

| mg/kg BW/day

10 -
%'é'ﬁl%*é e Exposure intake rates can
be inferred from
biomarkers
(e.g., Ring et al., 2018)

{1}

—(T
-I]]—_n]_q
-
i
-

-4
&

10-3 .

(mg/kg BW/day)
_I
.

10-7 d

Potential
Hazard from
in vitro with

Reverse
Toxicokinetic

Potentia
Chemicals Monitored by CDC NHANES Exposure
Rate

Estimated Equivalent Dose or Predicted Exposure

Lower Medium Higher

Office of Research and Development Ring et al. (2017) Risk Risk Risk
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* Wambaugh et al. (2014) made steady-
state inferences of exposure rate
(mg/kg/day) from NHANES data for
various demographic groups

-0.5 0 05

Change in Exposure
Relative to Total Population

Office of Research and Development
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rlc
h
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an

* Ring et al. (2017) made demographic-
specific predictions of change in plasma
concentrations for a 1 mg/kg bw/day
exposure

hlanpyrifoe-math
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Office of Research and Development ?_E,Q"G Ring et al. (2017)

NHANES Chemicals
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Life-stage and Demographic Variation in Risk

mg/kg BW/day

* Can calculate
margin between
. . . Potential Hazard
bloaCtIVIty and from in vitro with
Reverse
exposure fO r Toxicokinetics
specific
populations
Potential Exposure
from ExpoCast
o e ]
-05 0 05

Change in Risk Relative to
Total Population

Office of Research and Development
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EPA Open Source Tools and Data for HTTK
Evironmental Protection https://CRAN.R-project.org/package=httk

Agency
= O >
R CRAMN - Package httk x +
&« & @ cranr-project.org/web/packages/httk/index.htmil Q +« OB *

i Apps @ Absence Request §  Travel Request For... =. REMD-HTTK (8 Confluence W Bitbucket (2! CompTox Dashboard -4 EHP @ Change Password

httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokinetics ("TE") as in Pearce et al. {2017) <do1:10.18637 753, v079.104> Chemical-specific in vitro data have been obtained from relatively high
throughput experiments. Both physiologically-based ("PBTK") and empirical {e.g., one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently,
often using compiled (C-based) code. A Monte Carlo sampler is included for sunulatmg biclogical variability (Ring et al., 2017 <dod: 10,1016/, ent rint. "01? Oﬁ CIEI—l::} and measurement limltatlous Cahbrated methods are included

for predicting tissue:plasma partition coefficients and volume of distribution (Pearce et al., 2017 <dod:10.1007/:10828-0y—=="=—=——=* = p———
high throughput screening data (e.g., Tox21, ToxCast) to real-world exposures via reverse dosunetn {alzo known as "RT

S “™ R package “httk”

Depends: RE210)
Imports: deSolve, mem, data.table. survey. myvtnonm, truncnorm. stats, graphics, utils, magrittr, purrr, methods

Suggests: goplot?, knitr, rmarkdown, Forsp. GGally, gplots, scales, EnvStats, MASS RColorBrewer, Teaching, i O pe N sou rce’ tra nsS p are nt, an d p eer- reV| ewe d

garepel. dplyr, forcats, smatr, gtools, gridExtra

Published: 20200217 tools and data for high throughput

Author: John \‘»’ambaugh_ [aut, cre], Fiobert Pearce [aut], Careline Ring [aut], Greg Honda [ . . .
Mustaser: ot Wanbaugh vambavgh oba at epators toxicokinetics (httk)
pueRepori: s sihub.com LSERA Comp lon-ExpoCastiuk * Available publicly for free statistical software R
Ei;compilaﬂnn: ?—:—55: wwwepa. gov/chemical-research rapid-chemical-exposure-and-dose-research ° AI IOWS in Vitro_in ViVO eXt ra po I ati on ( IVIVE) an d
Crtation: hitk citation info . . . . .
Materials: NEWS physiologically-based toxicokinetics (PBTK)
CRAN checks: hitk results downloads 989/m0nth o[ .

° - -
o Human-specific data for 944 chemicals and rat

Reference manval: Bt pdf | o specific data for 171 chemicals
o ial (2019, Uptated Amage et o (018 Mode « Described in Pearce et al. (2017)

Linakis ef al. (Submitted): Analysiz and Figure Generation
q Pearce et al. (2017): Creating Partition Coefficient Evaluation Plots

Ring et al (2017): Generating subpopulations
R atal 73071 7% Fioahinating HTTE snodale For erbsmarn] ot mae



https://cran.r-project.org/package=httk

EPA Risk = Hazard x Exposure

United States
Environmental Protection
Agency

High throughput screening (Dix et al.,
2006, Collins et al., 2008) + in vitro-in
vivo extrapolation (IVIVE, Wetmore et
al., 2012, 2015) can predict a dose
(mg/kg bw/day) that might be
adverse

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

NRC (1983)
Office of Research and Development



EPA Risk = Hazard x Exposure

United States
Environmental Protection

Agency

High throughput screening (Dix et al.,
2006, Collins et al., 2008) + in vitro-in
vivo extrapolation (IVIVE, Wetmore et
al., 2012, 2015) can predict a dose
(mg/kg bw/day) that might be
adverse

Need methods to forecast exposure for
thousands of chemicals
(Wetmore et al., 2015)

High throughput models exist to
make predictions of exposure via
specific, important pathways such
as residential product use and diet

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

NRC (1983)
Office of Research and Development



EPA Understanding Exposure is a Systems

United States
Environmental Protection

Agency PI‘Oble IP
Consumer Other Industry
Products and

USE and RELEASE ~ Durable Goods

Environmental
Release

(e.g., surface cleanef)  (e.g.,flooring) Occupati
Use

MEDIA Indoor Air, Dust, Surfaces

Waste \
Food | Drinking ’& Outdoor Air, Soil, Surface
Water and Ground Water

|

Ecological

TARGET

Flora and Fauna

Office of Research and Development Figure from Kristin Isaacs



wEPA :
U s Exposure event is often unobservable

Environmental Protection
Agency

Chemical Manufacturing and Processing
Consumer Other Industry =

Products and

USE and RELEASE Durable Goods

Environmental
Release

(e.g., surface cleanef)  (e.g.,flooring) Occupati

M

MEDIA Drinking Outdoor Air, Soil, Surface
and Ground Water
EXPOSURE MEPEGIEL] - B REARES o Ecological
(MEDIA + TARGET)
TARGET

Ecological
Flora and Fauna

e Can try to predict exposure by characterizing pathway
* Some pathways have much higher average exposures: In home “Near field” sources significant (Wallace, et al., 1987)

Office of Research and Development Figure from Kristin Isaacs



£
- mg/kg BW/day
wEPA :

United States
Environmental Protection
Agency

High Throughput
Screening +
Toxicokinetics

High

Throughput

Exposure

Exposure Pathways Rate
:Elcé:u: Sl i Lower Medium Higher
— < Relesse | Risk Risk Risk

Use Residential Use
surface cleaner)  (e.g. ,flooring) cupationa

Indoor Air, Dust, . Outdoor Air, Soil, Surface

and Ground Water

Target Populations

Apply calibration and estimated
uncertainty to other chemicals

Calibrate
models

Estimate
Uncertaintvl

.
>

Subset of —
Chemicals with “Exposure

Biomonitoring Inference
Data [GEE R

Dataset 1 )
7 Dataset 2
i Model 1 - Available Exposure Predictors :
Model 2
cZYJ iV Office of Research and Development

Different
Chemicals

Inferred Intake Rate

Evaluate Model Performance
and Refine Models

NAMs for Exposure Science

Available online at www.sciencedirect.com
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New approach methodologies for exposure science

Kathie L. Dionisio”, Robin E. Dodson”, Olivier Jolliet®,
Xiaoyu Liu’, David E. Meyer”, Seth R. Newton®,

John F. Wambaugh', Jane C. Bare”, Courtney C. Carignan®,

Current O?hlon in
Toxicology

e

Kristin K. Isaacs”

Abstract

Chemical risk assessment relies on knowledge of hazard, the
dose-response relationship, and exposure to characterize
potential risks to public health and the environment. A chemical
with minimal toxicity might pose a risk if exposures are exten-
sive, repeated, and/or occurming during critical windows across
the human life span. Exposure assessment involves under-
standing human activity, and this activity is confounded by
interindividual variability that is both biological and behavioral.
Exposures further vary between the general population and
susceptible or occupationally exposed populations. Recent
computational exposure efforts have tackled these problems
through the creation of new tools and predictive models. These
tools include machine learning to draw inferences from existing
data and computer-enhanced screening analyses to generate
|__new data. Mathematical models provide frameworks describina

Katherine A. Phillips®, Paul S. Price”, Caroline L. Ring®,
Hyeong-Moo Shin”, Jon R. Sobus®, Tamara Ta
Elin M. Ulrich?, Daniel A. Vallero®, Barbara A. Wetmore® and

10
ot

® Department of Earth and Environmental Sciences, University of
Texas, Arlington, TX 76019, USA

'0 National Health and Environmental Effects Research Laboratory,
Office of Research and Development, United States Environmental
Protection Agency, Research Triangle Park, NC 27711, USA

Corresponding author: Wambaugh, John F. (Wambaugh.john@epa
gov)

Current Opinion in Toxicology 2019, 15:76-92

This review comes from a themed issue on Risk Assessment in
Toxicology

Edited by Anne Marie Vinggaard and Richard Judson
Available online 31 July 2019

For a complete overview see the Issue and the Editorial
https://doi.org/10.1016/j.cotox.2019.07.001




\?’EPA New Approach Methodologies for Exposure Science

Descriptors
Machine
Learning

Exposure NAM Class | Description Traditional Approach
Measurements New techniques including screening analyses  Targeted (chemical-specific) analyses
capable of detecting hundreds of chemicals

present in a sample
Toxicokinetics High throughput methods using in vitro data to Analyses based on in vivo animal studies ° - ° °

generate chemical-specific models

Measurement
(3 Toxicokinetics

HTE Models Models capable of making predictions for Models requiring detailed, chemical- and ° ° - °
thousands of chemicals scenario-specific information

Chemical Descriptors Informatic approaches for organizing chemical Tools targeted at single chemical analyses by - °
information in a machine-readable format humans
Statistical approaches that use the data from  Comparison of model predictions to data on a ° ° ° ° - °

many chemicals to estimate the uncertainty in per chemical basis
a prediction for a new chemical
Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data ° ° ° -

Prioritization Integration of exposure and other NAMs to Expert decision making ° ° ° ° ° °
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al. (2019)



EPA What Do We Know About Exposure?

United States
Environmental Protection

Agency Biomonitoring Data

* Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey
(NHANES) provides an important tool for monitoring public health

* Large, ongoing CDC survey of US population: demographic, body measures, medical exam,
biomonitoring (health and exposure), ...

* Designed to be representative of US population according to census data

» Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

* |ncludes measurements of: \’

* Body weight
* Height
*  Chemical analysis of blood and urine

iNanes

MNational Health and Nutrition Examination Surve
Office of Research and Development y



wEPA What Do We Know About Exposure?

United States
Environmental Protection

Roency Exposure Models

* Human chemical exposures can be coarsely grouped into “near field” sources that are close to the
exposed individual (consumer or occupational exposures) ‘far-field’ scenarios wherein individuals are
exposed to chemicals that were released or used far away (ambient exposure) (Arnot et al., 2006).

A model captures knowledge and a hypothesis of how the world works (MaclLeod et al., 2010)

 EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from within
government, industry, academia, and the general public with assessing exposure
* Includes many, many models
https://www.epa.gov/expobox

“Now it would be very remarkable if any system existing in the real world could be exactly represented by
any simple model. However, cunningly chosen parsimonious models often do provide remarkably useful
approximations... The only question of interest is ‘Is the model illuminating and useful?’” George Box

Office of Research and Development



\"IUEI?SA Models to Predict Exposure

Environmental Protection

Agency
Predictive
Modelin Chemical Manufacturing and Processin
g Consumer Other Industry = 8 8
Products and
USE and RELEASE Durable Goods Environmental
Release
Direct Us
(e.g., surface cleanef)  (e.g.,flooring) Occupati Waste \
MEDIA Drinking Outdoor Air, Soil, Surface
Water and Ground Water
EXPOSURE EHAEE "'I a;_'F'e"" oc Ecological
(MEDIA + TARGET) ndirect
TARGET

Ecological

We can try to predict exposure by describing the process leading to exposure

Office of Research and Development Figure from Kristin Isaacs



\"IUEESA Monitoring Data

Environmental Protection
Agency

7 Chemical Manufacturing and Processing

Consumer Other Industry
Products and

USE and RELEASE Durable Goods

Environmental
Release

(e.g., surface cleaner) (e.g. ,flooring) Occupati

MEDIA Food Drinking Outdoor Air, Soil, Surface
) ] and Ground Water
EXPOSURE D Ecological
(MEDIA + TARGET) Indirect
TARGET

Ecological

Media Samples

MONITORING DATA _
We can also infer Biomarkers
of Exposure )
exposure from monitoring data Sampling

Biomarkers
of Exposure

Office of Research and Development Figure from Kristin Isaacs



o)
VUEESA Models to Infer Exposure

Environmental Protection

Agency
7CihemicaITVI;m;‘a7ct;r?ni ;nd Processin
Consumer Other Industry SEEg— 8 8
Products and
USE and RELEASE Durable Goods Environmental
Release
Direct Us
(e.g., surface cleanef)  (e.g.,flooring) Occupati Waste \
MEDIA Food Drinking Outdoor Air, Soil, Surface
| T and Ground Water

EXPOSU RE Near-Field N al'.-FIE|C| Oc Ecological
(MEDIA + TARGET) Direct Indirect

TARGET

Ecological

Media Samples

MONITORING DATA
Inference Biomarkers
of Exposure .
(“Reverse Modeling”) Sampling

Biomarkers
of Exposure

Office of Research and Development Figure from Kristin Isaacs



EPA

United States
Environmental Protection
Agency

Predictive
Modeling

Consumer
Products and

USE and RELEASE Durable Goods

(e.g., surface cleanef)  (e.g.,flooring) Occupati

MEDIA
EXPOSURE Near-Field N ar:FieId Oc
(MEDIA + TARGET) Direct Indirect
TARGET

MONITORING DATA
Inference

(“Reverse Modeling”)

Biomarkers
of Exposure

Office of Research and Development

Other Industry

Food

Evaluating Models with Monitoring Data

7 Chemical Manufacturing and Processing

Environmental
Release
Waste \

Drinking Outdoor Air, Soil, Surface
}Nat'er and Ground Water

Ecological

Ecological

Media Samples

Biomarkers
of Exposure

Sampling

Figure from Kristin Isaacs



wEPA Evaluation NAMs: The SEEM Framework

United States
Environmental Protection
Agency

* We use Bayesian methods to incorporate multiple models into consensus predictions for
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM)

(Wambaugh et al., 2013, 2014; Ring et al., 2018) ( .
Apply calibration and estimated uncertainty to
ﬁ other chemicals
o] Estimate ; F
&| Uncertainty Calibrate AW 20 ‘.':..-:r"'-r'r ; \M
2 models : L5778 | Hurricane path
Chemicals - £ x prediction is.an
with G 3 < Diff example 6?
Monitoring Inference o . Di er.ent : p :
Data Q@ * Chemicals {L integrating
= JBUN-4 multiple models
Dataset 1 > T O
' Dataset 2 V(L[N BN Available Exposure Predictors : : R
Model 2
Evaluate Model Performance _
and Refine Models —— 3
L

Office of Research and Development



\%UEESA SEEM is a Linear Regression

Environmental Protection
Agency

Multiple regression models:

Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + €

1

€~ N(0, o)
Residual error,
unexplained by
the regression

model

Inferred Exposure

Weighted HTE Model Predictions

Office of Research and Development



\eIUEI?SA SEEM is a Linear Regression

Environmental Protection
Agency

Multiple regression models:

Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + €

1

Not all models have predictions
for all chemicals
* We can run SHEDS-HT
(Isaacs et al., 2014) for
~2500 chemicals

Inferred Exposure

What do we do for the rest?
e Assign the average value?
e Zero?

Weighted HTE Model Predictions

Office of Research and Development



EPA SEEM Analysis of NHANES Data

Environmental Protection
Age

1e.03 - Wambaugh et al. (2014) _ - //

1e-05 -

N

1e-07 -

1e-09 -

Estimated Parental Exposure (mg / kg body weight / day)

R?2= 0.5

1e108 19105 1e102
Predicted Parental Exposure (mg / kg body weight / day)

Office of Research and Development

R?= 0.5 indicates that we can predict
50% of the chemical to chemical
variability in median NHANES
exposure rates

Same five predictors work for all
NHANES demographic groups
analyzed — stratified by age, sex, and
body-mass index:

Industrial and Consumer use
Pesticide Inert

Pesticide Active

Industrial but no Consumer
use

Production Volume



EPA

United States
Environmental Protection
Agency

Wambaugh et al. (2014)

I ﬂ‘n i

N
l

—_
I

Regression Coefficient
o

Office of Research and Development

Heuristics of Exposure

Total

== Female

== Male

== ReproAgeFemale

== 6-11_years

== 12-19 years

== 20-65_years
66+years
BMI LE 30
BMI_GT 30

R?= 0.5 indicates that we can predict
50% of the chemical to chemical
variability in median NHANES
exposure rates

Same five predictors work for all
NHANES demographic groups
analyzed — stratified by age, sex, and
body-mass index:

* Industrial and Consumer use

* Pesticide Inert

* Pesticide Active

* Industrial but no Consumer

use
* Production Volume



wEPA Correlation is Not Causation

United States
Environmental Protection
Agency

« Wambaugh et al. (2014) found that “pesticide inerts”

had higher than average levels in biomonitoring data,
while “pesticide actives” had lower than average

* In World War I, there Royal Air Force (UK) wanted to

) .. ) i s, v -ll,' ,l:l}\f'_' - ;E':.‘.‘::_-':
armor planes against anti-aircraft fire g N Yy 7 -IIAL""T.'*/ At
* Initial proposal was to place armor wherever ; ""‘_’, :.:',:' e
bullet holes were most common oA
* Mathematician Abraham Wald pointed out that "'i-l—" |
they were looking at the planes that had returned ' / “
e See Drum, Kevin (2010) “The Counterintuitive

World”

* Pesticide inerts have many other uses, but there are
more stringent reporting requirements for pesticides
* Exposure is occuring by other pathways

Office of Research and Development
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vEPA The Six Degrees of Kevin Bacon

United States
Environmental Protection
Agency

"Accpssibla and engaging A good introduction to the topic.” —Nature

.

On the Solvability of the Six Degrees
of Kevin Bacon Game
A Faster Graph Diameter
and Radius Computation Method ! !

DEGREES"

Kevin Bacon and Graph The

KEVIN BACON
AND GRAPH THEORY

Michele Borassi', Pierluigi Crescenzi®, Michel Habib®

Walter Kosters®, Andrea Marino™*, and Frank Takes*
Brian Hopkin

IMT I te of Advanced Studies, Lucca, Italy
Diy ! mi ¢ Informatica, Universiti di Firenze, Italy
LIAFA, UMR 7089 CNRS & Univ Paris Diderot - Paris 7, France
DRES D { v Saint F ( ge, Jersey
Y Leid: ite of Advanced Computer Science - City NJ 07306 USA. bhopkins@snc . ed
msity, The Netherlands y bhopk ins@spc . edu
Dig li Informatica, Universita di Milano, Italy
STRA I world of a
This pa
e will propose a new algorithm that com I . A
2 graph G = (V, E), by finding : b
ving them until exact values can be . -
case running time is O(|V|-|E]), we will { e avera ¢ e the
ase of real-world networks, it performs I with addit tudent activitie
id diameter value after 10-100 ateria
lent of the value of |V|), and thus
! 1 efficiency, compared to other = - F |
d In this paper has three other advan Yy WORDS: (¢ h, fir r culture

the worst cases, the number of BFSes
s able to simultaneously compute radius
unning time whenever both values are

is with very A ' : \ N . 1 INTRODUCTION

rected and undirected g

xample, we use our new algorithm

THE SCIENCEOF

Kevin Bacon

1 Introduction J e RS ']"
The six degrees of separation game is a trivia game which has been inspired by A C O N N E C T E D A G E b thanks to a We

the well-known | experiment of Stanley Milgram [11], which was in turn mputer Science. The Ora
a contim rical study of the structure of social networks by Be Database (3], w 2
Michael tion of six degrees of separation has been WITH A'TNEW,CHAPTER

formulate Karinthy in 1929, who conjectured that tw

any two i zh at most five acquaintances. This . b
conjecture has sc -en experimentally verified by Milgram and extremely ' . .

popularized by a the
by Fred Schepisi. T

' : matics major
 play of John Guare, successively adapted to the cinema ] e isiastically
same refers to a social network, such as the 3

* The fifth author was supported by the EU-FET grant NADINE (GA 288956)

Office of Research and Development



\eIEPA Kevin Bacon

United States
Environmental Protection
Agency

HE'S A BIG-CITY KID IN A SMALL TOWN.
THEY SAID HE'D NEVER WIN. HE KNEW HE HAD TO.

JACK
NICHOLSON

MEN

L4

ARD COMING SOON |

Office of Research and Development



\eIEPA Kevin Bacon

United States
Environmental Protection
Agency

They say theres nothing new under the sun.
But under the ground...

-
-

SaeE
_—
- g

- JACK
Py . | NICHOLSONS

TREMORS

OOD MEN

Office of Research and Development



\“"IEPA Michael B. Jordan

United States
Environmental Protection
Agency

GACY IS MORE THAN A NAME

AEL B. JORDAN 'MIEHAEL SHANNON

;)
3 A%

ZACEFRON MILEY

MOMENT

WHEN You ReALIZE GETTING SOME
means WANTING MORE

Office of Research and Development
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IEPA Connectedness to Michael B. Jordan

United States
Environmental Protection
Agency

| Gl Joe: Retaliation

Hail Caesar ! .
Tatum & Bruce Willis

McDormand &
Channing Tatum

¥ A

Frances McDormand
Best Actress Winner 2018

Expendables 'f;;'-”‘ :
Willis &
Sylvester Stallone

i

EXPENDABLES | (pooq

Stallone & Jordan

Office of Research and Development
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\"IEPA Connectedness to Michael B. Jordan

United States
Environmental Protection

Agency Black Panther
Avengers: Boseman & Jordan
Infinity War
Paltrow &
Chadwick

Boseman

PRIL 27

i e 5 5

0896 080"

Marlon Brando
Best Actor 1954 and 1972
Died 2004

You'it BeLIEVE AINARIPAN FLY \

AL The Royal Tenenbaums

. Superman = % |Hackman & Gwyneth Paltrow
with Gene Hackman

Office of Research and Development



EPA

United States

Environmental Protection

Agency

Watts and Strogatz (1998)

letters to nature
N

typically slower than ~1kms™') might differ significantly from
what is assumed by current modelling efforts”. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to performa
mote comprehensive analysis.

The exploratory simulations presented here suggest that when a
, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accusate shape models and rheologics, could shed light on

]
Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,

Comell University, Ithaca, New Yark 14853, USA

Networks of coupled dynamical systems have been used to model
biological oscillators'™, Josephson junction nrnyx s excitable

media’, neural netwurks’ *, spatial games", genetic control
networks” and many other self-organizing systems. Ordinarily,

how asteroid collisional response depends o internal
and shape, and hence on how planetesimals evolve. Detailed
required | predict the

effects of nuclear exp]osmns on Earth-crossing comets and
asteroids, either for hazard mitigation™ through disruption and

internal structure of the targeted object.

Received 4 Febeusry, accepted 18 Mardh 1998

the ion topology is assumed m h: mljmr mmplmly
1 letely random. But many b
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘smallworld" networks, by analogy with the small-world
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e

as six degrees of sep
The neural nelwork of rjme worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-workd networks.
Models of dynamical systems mm small-world coupling display
enhanced si peed, 1 power, and
symhmnmbdny In pmmdu. infectious diseases spread more
casily in small-world networks than in regular lattices.

To interpolate between regular and random netwarks, we con
sider the following random rewiring procedure (Fi Starting
from a ring lattice with 1 vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p = 0) and disorder (p = 1),
and thereby to probe the intermediate region 0< p< 1, about
which little is known.

‘We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C[p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two verllces m the graph tag]ab.stpmperw] whereas Clp)
measures the ghb (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we  require
n% k2 In(n) = 1, where k2 In(m) guarantees that a random
graph will be connected®. In this regime, we find that
L~u/2k 2 1 and C~3/4 as p—0, while L=, ~In(m/In(k)
and € = €, ~k/n < Las p— 1. Thus the regular latticeat p = 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p = 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large Cis always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
aver wlnch Lp) i almost as small a5 Lryniom YU CP) % Cntn
T s result from the immediate drop in L(p)
cavsed by lhe mlmduclmu of a few long-range edges. Such ‘short
cuts” connect vertices that would otherwise be much farther apart
tha Ly o For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge

Prescat address: Panl F. Lazarateld Genter for the Sochl Selences, Colushia Usiversiy, 812 SIPA
Building, 20W113 5, New York, New Yok 1

Nsture © Macmillan Publichers Lid 1898

NATURE|VOL 3934 JUNE 1998
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Small World Networks

Travers and
Milgram (1977):

296 arbitrary
individuals in
Nebraska and
Boston were
asked to give a
letter to an
acquaintance
most likely to
help it reach a
target personin
Massachusetts.
64 reached the
target person,
average number
of intermediaries
was 5.2

Collins and C

I"s a small
world

how (1998)

James J. Collins and Carson C. Chow

ﬂ.;e concept af sn: D.gr-u of Sepal

tion has been formalized in

lled ‘small-world

in settings as diverse as Impmhg networks of ¢

involved could be of use
lular phones and

the spread of

few years ago, on American campus-

s, it was popular to play Six Degrees
£ \ofKevin Bacon. In this game, partici-
ts attempt to link the actor Kevin Bacon
to any other actor through as few common
films and co-stars as possible. Links are
formed directly between Bacon and another
actor if they appeared in the same film
ot indirectly through a chain of co-stars in
different films (Fig. 1).

In the world of mathematics, a similar
amusement involves assessing one’s Erdos
number, which measures the number of
links needed to connect one to the prolific
mathematician Paul Erdos through jointy
authored papers. For example, individuals
have an Erdos number of 1 if they co-
authored a paper with Erdés. If one of their
co-authors wrote a paper with Erdos, then
theyhavean Erdos number of 2, and so forth.
It has been pointed out' that Dan Kleitman
has a combined Erdis/Bacon number of 3
because he wrote a paper with Erdos and
appeared in Good Will Hunting with Minnie
Driver, whoappeared with Bacon in Sleepers.

These games are related to the popular
concept of Six Degrees of Separation’, which
is based on the notion that everyone in the
world is connected to everyone else through
achain of at most six mutual acquaintances.
Iftwo people have one mutual acquaintance,
then they have one degree of separation. The
estimate of six degrees of separation, which is
related to the small-world phenomenon
arises from pioneering empirical work by
Milgram® and can be understood heuristi-
cally from a somewhat unrealistic assump-
tion of random connectivity. That is, if each
person knows about one hundred individu-
als, and given that there are about a billion
people on the Earth, then seven connections
or six degrees of separation are enough to
link everyone together.

On page 440 of this issue’, Watts and
Strogatz formalize this idea in what they
call small-world networks. They d rate

two measures. The first is a characteristic
path length. This is the smallest number of
links it takes to connect one node to another,
averaged over all pairs of nodes in the net-
work. The second measure is the clustering
coefficient. This measures the amount of
cliquishness of the network, that is, the
fraction of neighbouring nodes that are also
connected to one another. Forexample, in an
all-to-all connected network, the clustering
coefficientisone.

An example of a large-world network is
one that is regularly and locally connected
like a crystalline lattice. Such a network is
highly clustered and the characteristic path
length is large, scaling with the typical linear
dimension of the network. On the other
hand, a completely random network is
poorly clustered and the characteristic path

news and views

length is short, scaling logarithmically with
the size of the network.

‘What Watts and Strogatz® do is to shift
gradually from a regular network to a ran-
dom network by increasing the probability
of making random connections from 0 to 1
(seeFig. 1, page 441). They then measure the
characteristic path length and the amount of
clustering of the network as a function of the
amount of randomness. They find that path
length and clustering depend differently on
the amount of randomness in the network.
The characteristic path length drops quickly,
whereas the amount of clustering drops
rather slowly. This leads to a small-world
network in which the amount of clustering is
high and the characteristic path length is
short. So a small world can exist even when
the cliquishness is imperceptibly different
from thatofalarge world.

The explanation for this effect is that it
only takes a few short cuts between cliques to
turn 4 Lm.e world into a small world. In the

alogy, it only takes a small

ber of well-connected peaple to make aworld
small. The interesting and surprising thing is
that it is impossible to determine whether or
fiot you live in a small world or a large world
from local information alone. The average
person (node) is not directly associated with
thekey people (the clique-inkers).

Small-world connectivity has con-
sequences that could be good or bad,

B

Figure | Three degrees. Because Kevin Bacon has appeared in many films, most actors have low Bacon
be

through numerical simulations that a net-
work need not be very random to get this
small-world effect. They consider a connect-
ed network with nodes and links. In the
frendship analogy, each node represents &

d ix Degrees of Kevin Bacon has declined in popularity. It is possible to centre
the game around a newer star such as Leonardo DiCaprio. These film stills, running clockwise, show
that in this case there are at most three degrees of separation between DiCaprio and Helena
Bonham-Carter, through Kate Winslet (Titanic, Columbia TriStar; Sense and Sensibility, Columbia

TriStar), Emma Thompson (Sense and Sens

ity Much Ado About Nothing, Entertainment Films)

mi Kenneth Branagh (Much Ada About Nothing; Frankenstein; Columbia TriStar). Short cuts

person and each link rep
nection toan acquaintance. They then define

NATURE|VOL 393 |4 TUNE 1998

lig Id be created in this game through some of DiCaprio’s well-connected co-stars
such asSMrnnSlnnt The Quick and the Dead; TriStar; not shown).

Nature © Macmilian Publishers Lid 1998
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“In particular, the
assumption that 100%
of [quantity emitted,
applied, or ingested] is
being applied to each
individual use scenario
IS @ very conservative
assumption for many
compound / use
scenario pairs.”
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High Throughput Exposure Models

This is an open access article published under an ACS AuthorChaice License, which permits
capying and redistribution of the article ar any adaptations for non-commercial purposes,
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Risk-Based High-Throughput Chemical Screening and Prioritization
using Exposure Models and in Vitro Bioactivity Assays

H}rmng—Munlﬂhin,*'{ Alexi Em.sl:::-ﬁ",i'ﬁ Jon A ﬁm::-t,lu"# Barbara A Tlr'll.ﬂlei:mu:lr-:,."7 Susan A. Csiszar,”
Peter Fantke,* Xianming Zhang,® Thomas E. McKone,®'1 Olivier Jolliet,* and Deborah H. Bennett'




EPA

United States
Environmental Protection
Agency

>2000 chemicals with Material Safety Data Sheets
(MSDS) in CPCPdb (Goldsmith et al., 2014)
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Near field sources have been known to be important at least since 1987 —

Office of Research and Development see Wallace, et al.
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Development of a consumer product ingredient database for chemical @Cmm,k

exposure screening and prioritization

M.-R. Goldsmith**, C.M. Grulke *, R.D. Brooks", T.R. Transue®, Y.M. Tan?, A. Frame**, P.P. Egeghy *,
R. Edwards“, D.T. Chang?, R. Tornero-Velez?, K. Isaacs®, A. Wang *%, J. Johnson?, K. Holm?, M. Reich’,
J. Mitchell 5, D.A. Vallero®, L. Phillips %, M. Phillips %, |.F. Wambaugh °, R.S. Judson ?,

T.J. Buckley®, C.C. Dary*®
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chemical composition
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Measured
Data
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Goldsmith et al. (20f4):

e ~20,000
product-

CPCPdb: Material Safety Data Sheets

o N

|
4

I | Product: X SOAP SCUM REMOVER & DISINFECTANT R ;

Material Safety
' Data Sheet

(OM-35604

specific

Description:

PALE 2LUE TO ELUE/GREEN LIQUID WITH HERBAL PINE ODOR

Material l

Other Designations

Manufacturer

Emergency Telephone No.

Safety Data

Sheets (MSDS)

curated
 ~2,400

{ SOAP SCUM REMOVER

Il Health Hazard Data

For Mecical Emergencies, call
Rocky Mountain Poison Center: 1-800-426-1014
For Transporiation Emergencies, ca!ll:
Chemtrec: 1-800-424-9300

lll Hazardous Ingredients

chemicals

Product-specific
uses determined
using web spider
to click through

Eye imitant. Prolonged inhalation of vapors or mist may cause respiratory
iritation, There are nu kriown medical corcitons aggiavated by exposure
to this product.

FIRST AID: EYE CONTACT: Immediately lush eyes with plenty of water

for 15 minutes. If imtation persists, call a physician. INHALATION: If
breathing is affected, breathe fresh air. SKIN CONTACT:  Remove
contaminated clothing., Flush skin with water, If irritaticn persists, call a
physician. IF SWALLOWED: Drink a glassiul of water and immediately
call a physician.

Ingredient Concentration Worker Exposure Limit
Tetrasodium ethylenediaming < 10% necne estaslishzd
tetra acetate (EDTA)
CAS #64-02-8
Glycol ether solvent < 8% none esiablishad
Caticnic/nonionic surfactants < 5% none estabiishad
Trisodium nitrilotriacstate 0.14¢%% ncne establishad

CAS #8064-31-3

This product contains trisodium nitrilotriacetate. [ARC and NTP list
nitrilotriacetic acid (NTA) and its sodium salts as potential carcincgens.

categories (e.g.,

IV Special Protection and Precautions

V Transportation and Regulatory Data

home goods, bath
soaps, baby) to
find each product

Office of Research and Development

Do nat get in eyes, on skin, of ¢n clothing.

Avoid contact with food.

U.S. DOT Hazard C'ass: Not restricted

U.S. DOT Proper Shipping Name: Cempound, cleaning, licuid

EPA CERCLA/SARA TITLE IIl:
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Chemistry Dashboard

Use Data

Ingredient
Lists

Measured

Data
Dccurrence

slide from Kristin Isaacs ~ https://lcomptox.epa.gov/dashboard



o
\"IEPA How Can we Know Chemical Use?

United States

Arooomentel Protection  Chemical Property NAMs

. - 3
Contents lists available at ScienceDirect Fpod and

Food and Chemical Toxicology

Occurrence and
quantitative
chemical composition

ELSEVIER journal homepage: www.elsevier.com/locate/foodechemtox

Development of a consumer product ingredient database for chemical @Cmm
exposure screening and prioritization

M.-R. Goldsmith**, C.M. Grulke *, R.D. Brooks", T.R. Transue®, Y.M. Tan?, A. Frame**, P.P. Egeghy *,
R. Edwards“, D.T. Chang?, R. Tornero-Velez?, K. Isaacs®, A. Wang *%, J. Johnson?, K. Holm?, M. Reich’,
J. Mitchell 5, D.A. Vallero®, L. Phillips %, M. Phillips %, |.F. Wambaugh °, R.S. Judson ?,

T.J. Buckley®, C.C. Dary*®

Broad “index” of chemical uses

Contents lists available at ScianceDirect -

Toxicology Reports b o

SEPA e

ELSEVIER journal homepage: www.elsevier.com/locate/toxrep

Functional

Use Data

m“ca& ac “ “qu # Cite This: Environ. Sci. Technod. 2018, 52, 3125-3135 pubs.acs.org/fest

Suspect Screening Analysis of Chemicals in Consumer Products

Katherine A. Phi]lipsl. Alice Yau,¢ Kristin A. Favela,” Kristin K. Isaacs,’ Andrew McEachmn,§'||
Measu red Christopher Grullm:,I Ann M. Richa.rd,” Antony J. Williams,” Jon R. Sobus,” Russell S. Thamas,”

and John F. Wambaugh*'"
Data

Exploring consumer exposure pathways and patterns of use @Cm,m
for chemicals in the environment

Kathie L. Dionisio?, Alicia M. Frame" !, Michael-Rock Goldsmith =2,
John F. Wambaugh®, Alan Liddell ~-*, Tommy Cathey*, Doris Smith®,
James Vail?, Alexi S. Ernstoff¢, Peter Fantke®, Olivier Jolliet!,

Ingredient

.
Joumnal of Exposure Sclence and Environmental Epidemiclogy (2018) 28, 216—222 LI Sts
© 2018 Mature America, Inc, par of Springer Mature. All rights reserved 1359-D631/18

www.nature.com/jes

ORIGINAL ARTICLE
Consumer product chemical weight fractions from
ingredient lists

Kristin K. Isaacs’, Katherine A. Phillips’, Derya Biryol'?, Kathie L. Dionisio' and Paul S. Price’

L . .
ccurrence Measurement of chemicals in

consumer products

Office of Research and Development  S|ide from Kristin Isaacs https://com ptOX.epa.gOV/daSh board



o
\"IEPA How Can we Know Chemical Use?

United States

Arooomentel Protection ~ Chemical Property NAMs

Contents lists available at ScienceDirect

Food and Chemical Toxicology

Occurrence and
quantitative
chemical composition

ELSEVIER journal homepage: www.elsevier.com/locate/foodechemtox

Development of a consumer product ingredient database for chemical @mmm
exposure screening and prioritization

M.-R. Goldsmith**, C.M. Grulke *, R.D. Brooks", T.R. Transue®, Y.M. Tan?, A. Frame**, P.P. Egeghy *,
R. Edwards“, D.T. Chang?, R. Tornero-Velez?, K. Isaacs®, A. Wang *%, J. Johnson?, K. Holm?, M. Reich’,
J. Mitchell 5, D.A. Vallero®, L. Phillips %, M. Phillips %, |.F. Wambaugh °, R.S. Judson ?,

T.J. Buckley®, C.C. Dary*®

Green Chemistry "

View Article Onli
PAPER ieisidie

®9‘ose_M{nj‘_t High-throughput screening of chemicals as
= functional substitutes using structure-based
Cite this: Green Chem,, 2017, 19, e -

1063 classification models}

Broad “index” of chemical uses

Contents lists available at ScienceDirect N N
Katherine A. Phillips,*** John F. Wambaugh,” Christopher M. Grulke,
Kathie L. Dionisio® and Kristin K. Isaacs®

Functional

Toxicology Reports

ELSEVIER journal homepage: www.elsevier.com/locate/toxrep

The roles that
Use Data chemicals serve in
products

“ca& ac “ “qu # Cite This: Environ. Sci. Technod. 2018, 52, 3125-3135 pubs.acs.org/fest

Suspect Screening Analysis of Chemicals in Consumer Products
Katherine A. Phi]lip«slf Alice ‘.{’au,¢ Kristin A. Favela,” Kristin K. Isaacs,’ Andrew McEachmn,§'||
Measu red Christopher Grullm:,I Ann M. Richa.rd,” Antony J. Wi]liams,” Jon R. Sobus,” Russell S. Thamas,”
and John F. Wambaugh*'"
Data

Chemistry Dashboard

Exploring consumer exposure pathways and patterns of use @Cm,m
for chemicals in the environment

Kathie L. Dionisio?, Alicia M. Frame" !, Michael-Rock Goldsmith =2,
John F. Wambaugh®, Alan Liddell ~-*, Tommy Cathey*, Doris Smith®,
James Vail?, Alexi S. Ernstoff¢, Peter Fantke®, Olivier Jolliet!,

Ingredient

.
Joumnal of Exposure Sclence and Environmental Epidemiclogy (2018) 28, 216—222 LI sts
© 2018 Mature America, Inc, par of Springer Mature. All rights reserved 1359-D631/18

www.nature.com/jes

ORIGINAL ARTICLE
Consumer product chemical weight fractions from
ingredient lists

Kristin K. Isaacs’, Katherine A. Phillips’, Derya Biryol'?, Kathie L. Dionisio' and Paul S. Price’

L . .
ccurrence Measurement of chemicals in

consumer products

Office of Research and Development  S|ide from Kristin Isaacs https://com ptOX.epa.gOV/daSh board



EPA

United States
Environmental Protection

[ ]
Ar=== _ Chemical Proper ..
SR Contents lists available at ScienceDiract £ a ] :
: Food and Chemical Toxicology | | Occurrence and
: l M.._\ T R‘- journal homepage: www.ealsevier.com/flocate/foodchemtox quantitative | :

chemical composition

Development of a consumer product ingredient database for chemical
exposure screening and prioritization

@ Crosshark

M.-R. Goldsmith**, C.M. Grulke *, R.D. Brooks", T.R. Transue®, Y.M. Tan?, A. Frame**, P.P. Egeghy *,
R. Edwards“, D.T. Chang?, R. Tornero-Velez?, K. Isaacs®, A. Wang *%, J. Johnson?, K. Holm?, M. Reich’,
J. Mitchell 5, D.A. Vallero®, L. Phillips %, M. Phillips %, |.F. Wambaugh °, R.S. Judson ?,

T.J. Buckley®, C.C. Dary*®

Green Chemistry

PAPER

®0'055M.1r|e
Sy

Cite this: Green Chem,, 2017, 19,
1063

Broad “index” of chemical uses

Contents lists available at ScianceDirect

Toxicology Reports
Functional

Use Data

ELSEVIER journal homepage: www.elsevier.com/locate/toxrep

Chemistry Dashboard

Exploring consumer exposure pathways and patterns of use
for chemicals in the environment

@ CrossMark

Kathie L. Dionisio?, Alicia M. Frame" !, Michael-Rock Goldsmith =2,
John F. Wambaugh®, Alan Liddell ~-*, Tommy Cathey*, Doris Smith®,
James Vail?, Alexi S. Ernstoff¢, Peter Fantke®, Olivier Jolliet!,

How Can we Know CI SCIENTIFIC DAT

Accepted: 30 April 2018 - A !
cepte P ‘' Antony Williams®, Derya Biryol™*, Tao Hong" & Kristin K. Isaacs"
Published: 10 July 2018 *

High-throughput screening of chemicals as
functional substitutes using structure-based
classification models}

Katherine A. Phillips,*** John F. Wambaugh,” Christopher M. Grulke,”
Kathie L. Dionisio® and Kristin K. Isaacs®

11011

0111104
1101117
01119’

Data Descriptor: The Chemical and

. Products Database, a resource for
. exposure-relevant data on
. chemicals in consumer products

Kathie L. Dionisio®, Katherine Phillips!, Paul 5. Price?, Christopher M. Grulke?,

MUTAL s T
&CI{METEY

View Article Online

Wiew Journal | View lssue

The roles that
chemicals serve in
products

Article

Ingredient
Lists

Joumnal of Exposure Sclence and Environmental Epidemiology (201E) 28, 216—-222
© 2018 Mature America, Inc, par of Springer Mature. All rights reserved 1359-D631/18

www.nature.com/jes

Katherine A. Phillips

Measured
Data

ORIGINAL ARTICLE
Consumer product chemical weight fractions from
ingredient lists

Kristin K. Isaacs’, Katherine A. Phillips’, Derya Biryol'?, Kathie L. Dionisio' and Paul S. Price’

and John F. Wambaugh*'"

Uccurrence

consumer products

Office of Research and Development  S|ide from Kristin Isaacs

nce & lechnology

Suspect Screening Analysis of Chemicals in Consumer Products

l, Alice ‘.{’au,¢ Kristin A. Favela,” Kristin K. Isaacs,’ Andrew McEachmn,§'||
Christopher Grullm:,I Ann M. Richa.rd,” Antony J. Wi]liams,” Jon R. Sobus,” Russell S. Thamas,”

Measurement of chemicals in

pubsacs.orgfest

https://comptox.epa.gov/dashboard



o)
'IUEtEéS Exposure NAM: Machine Learning to Fill Data Gaps

Environmental Protection

Agency EXAMPLE: Predicting Function Based on Structure

Use Database (FUSE)

B4

additive_for_liquid_system additive_for, antimicrobial antioxidant antistatic_agent

0.6

04 addltive additive adhesion anti- anti- antistatic
additive for liquid B

02| B ste for rubber promoter microbial oxidant agent

0.0

emulsifier

crosslinker
06
04
buffer HI catalyst chelator || colorant I| crosslinker II emollient emuIS|fier
02
00

emul iﬂ\_labﬂhe film, rwmm_mm nu foam_boosting_agent . .
> film foam Predlctlon Of
:2 ::: ;:Isl Iz‘:r‘ forming reft?rr::nt flavorant boosting foamejﬂfgrance .
I A | I I PRI Of Potential

:j hair condi- (et i . h;:;t (et lubricating masking e A I te r n a t i Ve S fro m
oz tioner M stabilizer II II agent ageni ”

e e e — L—_ Chemical Libraries

: ; 06 ]
ey s s f £ e 0.4 I organic || I photo-
3 . B - wz] © [==re I pigment oxidizey perfurv‘a—«l s blllzer initiator plasticizer
i BT T e B cime i 041 pre- rheology skin condi- skin soluble
=) ) reducer solvent
rrrrr e 5 e 5| 024 servative mod|f|er tioner protectant dye
0.0

Chemical Structure and ) "‘Jlj“' abso,be, i J "1 "ZZ‘:'; Jﬂ uhhergs
Property Descriptors )

Machine Learning Based Classification Models

Office of Research and Development (Random Forest, Breiman, 2001) Phillips et al. (2017)
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* Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been
developed so far that can run that fast

e ToxCast: ~1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring
concentration for toxicokinetics or exposure requires chemical-specific methods...

 ExpoCast: Ring et al. made in silico predictions for ~480,000 chemicals from structure, but based on
NHANES monitoring for ~120 chemicals

* Quantitative non-targeted analysis (NTA) may eventually provide greater evaluation data to
reduce uncertainty

e HTTK: In vitro data on 944 chemicals collected for humans, starting with Rotroff et al. (2010)
* Work continues to develop in silico tools, e.g. Sipes et al. (2016)

Office of Research and Development Our Work iS not done---



United States

EPA Summary

Environmental Protection
Agency

mg/kg BW/day
= A tapestry of laws covers the chemicals people are exposed to
in the United States (Breyer, 2009) Potential hazard

from in vitro

) . . ) converted to dose
= Many chemicals, ranging from industrial waste to dyes to by HTTK

packing materials, are covered by the recently updated Toxic
Substances Control Act (TSCA) and administered by the EPA

Potential
= New approach methodologies (NAMs) are being developed to Exposure Rate
prioritize these existing and new chemicals for testing
= All data are being made public: Lower  Medium Higher
* The CompTox Chemicals Dashboard (A search engine for Risk Risk Risk

chemicals) http://comptox.epa.gov/
* R package “httk”: https://CRAN.R-project.org/package=httk

The views expressed in this presentation are those of the authors
. and do not necessarily reflect the views or policies of the U.S. EPA
XY Office of Research and Development y P
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