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ORD Facility in
Research Triangle Park, NC

•The Office of Research and Development (ORD) is the scientific research arm of EPA
•562 peer-reviewed journal articles in 2018

•Research is conducted by ORD’s four national centers, and three 
offices organized to address:
•Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

•13 facilities across the United States

US EPA Office of Research and Development

•Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees
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Introduction

• We have used an in vitro disposition model and a high-
throughput, physiologically based toxicokinetic (PBTK) model 
to relate in vitro bioactivity (ToxCast) and endpoint specific rat 
in vivo toxicity data. 

• For every possible comparison of in vitro and in vivo endpoint, 
the concordance between the in vivo and in vitro data was 
evaluated by a regression analysis. Exposure

Hazard

Chemical Risk 

The NRC (1883) outlined three components for determining chemical risk.

Dose-Response
(Toxicokinetics 

/Toxicodynamics)

• To use high-throughput screening (HTS) assays as an alternative to traditional 
animal studies we must link in vitro bioactivity concentrations and toxic 
doses via IVIVE. 

• Previously, it has not been clear whether the use of IVIVE even improves the 
observed association between in vitro bioactivity and in vivo toxicity data. 
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In vitro Assay AC50

Concentration (µM)

Assay AC50
with Uncertainty

High-Throughput Bioactivity Screening 
Projects

 Tox21:  Examining >8,000 chemicals using ~50 assays intended to 
identify interactions with biological pathways (Schmidt, 2009)

 ToxCast (Toxicity Forecast): For a subset (>3000) of Tox21 chemicals 
EPA has measured >1100 additional assays-endpoints (Kavlock et 
al., 2012)

 Most assays conducted in dose-response format (identify 50% 
activity concentration – AC50 – and efficacy if data described by a 
Hill function, Filer et al., 2016)

All data are public: http://comptox.epa.gov/dashboard/

 We attempt to estimate points of departure in vitro using high 
throughput screening (HTS) for bioactivity as a surrogate for hazard data
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In Vitro - In Vivo Extrapolation (IVIVE)
What do we do with an in vitro concentration? -- IVIVE is the use of in vitro experimental data to predict 
phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 

• Effect of molecules/chemicals at 
biological target in vivo

• Assay design/selection important
• Perturbation as adverse/therapeutic 

effect, reversible/ irreversible effeccts

• Both contribute to in vivo effect prediction

NRC (1998)
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Comparing on the Basis of Concentration

Aylward and Hays (2011) 

The five chemicals (as of 2011) with plasma biomonitoring AND ToxCast data… what do we do about the other 1000’s?

Estimated or measured 
average concentrations 
associated with the LOAEL 
in animal studies

Humans with chronic 
exposure reference values 
(solid circles)

NOAEL in animal studies

Bio-monitored occupational 
populations

Volunteers using products 
containing the chemical

General populations

x

+

Range of bioactive concentrations 
across ToxCast assays
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

... .
.. . .. ..1 2

Metabolism

Renal Clearance
Gut Lumen

Primary
Compartment

Oral Absorption

httk

Most chemicals lack public toxicokinetic-related data (Wetmore et al., 2012):
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Comparing IVIVE Predictions with 
Toxic Doses

Wetmore et al. (2013) 

Rat-specific HTTK data were collected in vitro for ~50 chemicals, allowing IVIVE with ToxCast Data
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Media/Air 
Exchange

Plastic 
Binding

Chemical

Cell Binding

Media 
Lipid 
and 
Protein 
Binding

[Cfree,invitro]≈fup[Cnominal]

[Cnominal]

[Ccellular]=Kc[Cnominal]

How do you select the appropriate in vitro and in vivo concentrations for extrapolation?

in vitro
(nominal testing concentration)

[Conc.] In Vitro

[C
on

c.
] I

n 
Vi

vo

?

? ?

?
[Cfree,plasma]

=
fup[Cplasma]

[Ctissue]
=

Kp[Cfree,plasma]

Red 
Blood 
Cells

Plasma Tissue

[Cblood]
[Cplasma]

=
[Cblood]/Rb:p

in vivo
(mg/kg bodyweight/day)

Renal Clearance
fup*QGFR*[Ckidney,plasma]

Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

OR Non-Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

There Are Many Considerations When 
Doing IVIVE
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A General Physiologically-based 
Toxicokinetic (PBTK) Model

• R package “httk” includes a generic PBTK model

• Can be tailored to a chemical using in vitro data and predictions from 
chemical structure

• Some tissues (e.g. arterial blood) are simple compartments, while others 
(e.g. kidney) are compound compartments consisting of separate blood and 
tissue sections with constant partitioning (i.e., tissue specific partition 
coefficients)

• Some specific tissues (lung, kidney, gut, and liver) are modeled explicitly, 
others (e.g. fat, brain, bones) are lumped into the “Rest of Body” 
compartment.

• The only ways chemicals “leave” the body are through metabolism (change 
into a metabolite) in the liver or excretion by glomerular filtration into the 
proximal tubules of the kidney (which filter into the lumen of the kidney). 

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood

Gut Lumen

QGFR
Kidney Tissue

Liver Blood

Liver Tissue

Qrest

Lung Blood
Lung Tissue Qcardiac

Qmetab

Body Blood

Rest of Body

Qkidney

Arterial  BloodVe
no

us
  B

lo
od

Pearce et al. (2017)



12 of 33 Office of Research and Development

ToxRefDB

Martin et al. (2009)

• In vivo data for rat were accessed from the 
Toxicity Reference (ToxRef) database version 1

• Much of the data in ToxRefDB v1 was derived 
from studies or study summaries for study 
designs compliant with or similar to the EPA 
OCSPP 870 series guidelines 

• ToxRefDB v1 is a “positives-only” database, and in 
vivo data were reported as the nominal dose at 
which an effect (not necessarily critical) was 
observed for a particular endpoint

• The analysis in this work included chronic (2 
year), subchronic (90 day), and developmental 
(parental and fetal generations) study types
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Honda et al. (2019)

Honda et al. (2019)

• New rat-specific HTTK data collected for ~80 
chemicals in addition to ~50 from Wetmore 
et al. (2013) 

• For each ToxRef endpoint (mg/kg/day) we 
did a forward dosimetry calculation 
(predicted µM concentration)

• For each ToxCast endpoint (µM) we did a 
reverse dosimetry IVIVE calculation 
(predicted mg/kg/day dose)

• We compared each ToxRef and ToxCast 
endpoint on both µM and mg/kg/day scales

• Calculated Orthogonal Root Mean Squared 
Error (ORMSE) – lower is better

Honda et al. (2019)

Example for a single ToxCast assay and ToxRef
endpoint, each point is a chemical:
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endpoint, each point is a chemical:
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endpoint, each point is a chemical:



16 of 33 Office of Research and Development

Honda et al. (2019)

Honda et al. (2019)

• New rat-specific HTTK data collected for ~80 
chemicals in addition to ~50 from Wetmore 
et al. (2013) 

• For each ToxRef endpoint (mg/kg/day) we 
did a forward dosimetry calculation 
(predicted µM concentration)

• For each ToxCast endpoint (µM) we did a 
reverse dosimetry IVIVE calculation 
(predicted mg/kg/day dose)

• We compared each ToxRef and ToxCast 
endpoint on both µM and mg/kg/day scales

• Calculated Orthogonal Root Mean Squared 
Error (ORMSE) – lower is better

Honda et al. (2019)

We compared the ORMSE for dose vs. AC50 with 
using PBTK to perform IVIVE:
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“Significance”

• >1000 ToxCast assay endpoints

• 106 specific ToxRef endpoints (68 
pathological responses and 3 study types)

• 80 chemicals with observed effects in 
ToxRef and bioactivity in ToxCast
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“Significance”

• >1000 ToxCast assay endpoints

• 106 specific ToxRef endpoints (68 
pathological responses and 3 study types)

• 80 chemicals with observed effects in 
ToxRef and bioactivity in ToxCast

https://xkcd.com/882/
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“Significance”

https://xkcd.com/882/

• >1000 ToxCast assay endpoints

• 106 specific ToxRef endpoints (68 
pathological responses and 3 study types)

• 80 chemicals with observed effects in 
ToxRef and bioactivity in ToxCast
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“Significance”

https://xkcd.com/882/
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ToxRef and bioactivity in ToxCast
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Honda et al. (2019)

Honda et al. (2019)

• New rat-specific HTTK data collected for ~80 
chemicals in addition to ~50 from Wetmore 
et al. (2013) 

• For each ToxRef endpoint (mg/kg/day) we 
did a forward dosimetry calculation 
(predicted µM concentration)

• For each ToxCast endpoint (µM) we did a 
reverse dosimetry IVIVE calculation 
(predicted mg/kg/day dose)

• We compared each ToxRef and ToxCast 
endpoint on both µM and mg/kg/day scales

• Calculated Orthogonal Root Mean Squared 
Error (ORMSE) – lower is better

Honda et al. (2019)

As a sanity check, we also performed IVIVE using 
PBTK for a randomly selected chemical:
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Distribution of ORMSE

Honda et al. (2019)

Lower values 
indicate lesser error
)

For each in 
vitro-in vivo
endpoint 
pair, we 
calculate 
the ORMSE 
across all 
available 
chemicals
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Distribution of ORMSE

Honda et al. (2019)

Lower values 
indicate lesser error

Randomly selecting 
the chemical for the 
IVIVE increases 
error (on average)

For each in 
vitro-in vivo
endpoint 
pair, we 
calculate 
the ORMSE 
across all 
available 
chemicals
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Distribution of ORMSE

Honda et al. (2019)

Lower values 
indicate lesser error

Randomly selecting 
the chemical for the 
IVIVE increases 
error (on average)

Using PBTK lowers 
the error

For each in 
vitro-in vivo
endpoint 
pair, we 
calculate 
the ORMSE 
across all 
available 
chemicals
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What About In Vitro Distribution?
(Please Stop Discussing PBTK!)

• Armitage et al. (2014) suggest that in vitro 
partitioning relates strongly to logKow and 
serum in the medium

• Sorption to plastic played a smaller role in 
determining the cellular concentration

• We can check to see if using an in vitro 
disposition model improves IVIVE (that is, 
reduces error in comparisons between in 
vivo and in vitro endpoints)

• Note, Armitage model expanded to 
ionizable compounds by Fischer et al. 
(2017)

Mass-balance model: 
DMSO (dimethyl sulfoxide, a typical 

solvent), OM (organic matter)

Armitage et al. (2014)
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Impact of IVIVE Assumptions
Forw

ard Dosim
etry

Different combinations of assumptions, 
for example:

res-tot-vein-mean = restrictive 
metabolism, total chemical, venous 
concentrations, mean concentration 
during tox study
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Impact of IVIVE Assumptions
Forw

ard Dosim
etry

Different combinations of assumptions, 
for example:

res-tot-vein-mean = restrictive metabolism, 
total chemical, venous concentrations, mean 
concentration during tox study
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Impact of IVIVE Assumptions
Forw

ard Dosim
etry

Reverse Dosim
etry

Different combinations of assumptions, 
for example:

res-tot-vein-mean = restrictive metabolism, 
total chemical, venous concentrations, mean 
concentration during tox study
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Impact of IVIVE Assumptions
Forw

ard Dosim
etry

Reverse Dosim
etry

Different combinations of assumptions, 
for example:

res-tot-vein-mean = restrictive metabolism, 
total chemical, venous concentrations, mean 
concentration during tox study



30 of 33 Office of Research and Development

Impact of IVIVE Assumptions
Forw

ard Dosim
etry

Reverse Dosim
etry

Different combinations of assumptions, 
for example:

res-tot-vein-mean = restrictive metabolism, 
total chemical, venous concentrations, mean 
concentration during tox study

nres-tot-tis-max = non-restrictive 
metabolism, total chemical, tissue 
concentrations, max conc. during tox 
study
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Impact of IVIVE Assumptions
Forw

ard Dosim
etry

Reverse Dosim
etry

Different combinations of assumptions, 
for example:

res-tot-vein-mean = restrictive metabolism, 
total chemical, venous concentrations, mean 
concentration during tox study

nres-tot-tis-max = non-restrictive metabolism, 
total chemical, tissue concentrations, max conc. 
during tox study

Several IVIVE combinations using the 
Armitage model decreased error, but no 
single ideal approach
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Comparing Points of Departure and IVIVE

Wetmore et al. (2013) Honda et al. (2019)
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• We tested various sets of IVIVE assumptions and demonstrate 
that the combination of PBTK and in vitro disposition modeling 
improves our ability to observe the association between in vitro
bioactivity and in vivo toxicity data.

• Potency values from in vitro screening should be transformed 
IVIVE to build better machine learning and other statistical 
models for predicting in vivo toxicity in humans

Summary

The views expressed in this presentation are those of the author and 
do not necessarily reflect the views or policies of the U.S. EPA

Exposure

Hazard

Chemical Risk 

Dose-Response
(Toxicokinetics 

/Toxicodynamics)

• NAMs for TK allow risk-based prioritization of large numbers of chemicals

• In vitro disposition modeling and PBTK enable improved via in vitro-in vivo
extrapolation (IVIVE)
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