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Chemical Database = DSSTox
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MS-Ready Structures
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Dashboard Access
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EPA NTA WebApp
Feature Removal:
1) Duplicate features 
2) Non-reproducible features 
3) Blank features (sample:blank)
4) Non-responsive features (dilutions)

Feature Flagging:
1) Multi-mode hits (+ and -)
2) Meas. precision (CV threshold)
3) Formula match (score ≥ threshold)
4) Negative mass defect
5) Halogenation
6) Has/is adduct
7) Has/is neutral loss
8) Has/is multimer

Dashboard Integration:
1) Data source & pub counts
2) Bioactivity & exposure levels
3) Presence on lists
4) Product & use categories
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McEachran, Andrew D., et al. Scientific data 6.1 (2019): 1-9 
Allen, Felicity, et al. Metabolomics 11.1 (2015): 98-110.

Fragmentation 
Prediction 

Model

Training Set:
Metlin MS2 spectra 

and structures 

Machine Learning

DSSTox MS-Ready 
Structures
(~765,000)

DSSTox MS2 
spectra

(10, 20, 40v)

Generation of in silico Spectra
CFM-ID v2.0
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MGF file
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… … … …
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spectra

CFM-ID Scores
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CFM-ID Scoring Approaches



10 Mixtures ranging from 95 to 365 compounds
(Total: 1,269 unique compounds)

“Pass” compounds = 377 with MS2 data

The Trial Mixtures:

Agilent 1290 UPLC
Agilent 6530B Q-TOF with ESI source

EPA Setup:

Ulrich, Elin M., et al. Analytical and bioanalytical chemistry 411.4 (2019): 853-866.
Sobus, Jon R., et al. Analytical and bioanalytical chemistry 411.4 (2019): 835-851.

EPA’S Non-Targeted Analysis Collaborative Trial
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MS2 Library 
% of “Pass” 
Compounds 

Identified

Agilent PCDL 53%

CFM-ID Top Hit 50%

PCDL and/or 
CFM-ID Top Hit 73%

Reference vs. in silico Library Coverage

PCDL  Agilent reference MS2 library

“Pass” compounds (n=377)  ENTACT 
chemicals observed with MS2 data



NTA Workflows: Using CFM-ID Results as Filters

MS2 Spectrum 1

MS2 Spectrum 2

Candidate Scores

Candidate Scores

Candidate Scores

Candidate Scores

MS2 Spectrum 1

MS2 Spectrum 2

Score
Filter out candidates 
below score cutoff

Variability in score 
distribution

Rank
Filter out candidates 

above rank cutoff

Variability in number of 
candidate compounds

Filter by Top 20

n = 500

n = 10



Normalizing CFM-ID Results Values

Score Quotient
Normalize score to the 

highest candidate 
compound score

Score Percentile
Normalize rank to the 
number of candidate 

compounds

Score Quotient = Score / Maximum Score

Rank CFM-ID Score Maximum Score Score Quotient Score Percentile

Candidate Compound 1 1 0.5 0.5 1 100

Candidate  Compound 2 2 0.4 0.5 0.8 80

Candidate Compound  3 3 0.39 0.5 0.78 60

Candidate Compound  4 4 0.1 0.5 0.2 40

Candidate Compound  5 5 0.05 0.5 0.1 20



NTA Workflows: Using CFM-ID Normalized Results as Filters

MS2 Spectrum 1

MS2 Spectrum 2

Candidate Scores

Candidate Scores

Candidate Scores

Candidate Scores

MS2 Spectrum 1

MS2 Spectrum 2

Score Quotient
Filter out candidates 
below score quotient 

cutoff

Score Percentile
Filter out candidates 

below percentile cutoff

Score quotient cutoff = 0.5
Keep candidates scoring at least half of max score

Score percentile cutoff = 0.5
Keep the top 50% of candidates



Applying Cut-off Filters to Data
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Applying Cut-off Filters to Data
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Applying Cut-off Filters to Data
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Applying Cut-off Filters to Data

CFM-ID Score Maximum Score Score Quotient

Candidate 
Compound 1 0.5 0.5 1

Candidate  
Compound 2 0.4 0.5 0.8
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Compound  3 0.39 0.5 0.78

Candidate 
Compound  4 0.1 0.5 0.2

Candidate 
Compound  5 0.05 0.5 0.1

True Compound

Other Candidate Compounds

True Positives 0

False Negatives 1

True Negatives 3

False Positives 1
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1
Score Quotient 

Cut-off = 0.9



Balancing Cut-offs

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑇𝑇𝑇𝑇𝑇𝑇) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐹𝐹𝐹𝐹𝐹𝐹) =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

How many of the true 
compounds are we keeping?

How much of the junk are 
we getting rid of?



Quotient Vs. Percentile Cutoffs
Global ROC Curves (All ENTACT Mixtures)



Quotient Vs. Percentile Cutoffs
Global ROC Curves (All ENTACT Mixtures)
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Quotient Vs. Percentile Cutoffs
Global ROC Curves (All ENTACT Mixtures)
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Quotient Vs. Percentile Cutoffs

Cut-off value

Quotient (by formula) 0.18

Percentile (by formula) 38

Quotient (by mass) 0.13

Percentile (by mass) 32

Global ROC Curves (All ENTACT Mixtures)

Cut-off Values for Global TPR = 0.9

Apply to 
individual 
ENTACT mixtures



CFM-ID Cut-off Filtering: Individual ENTACT Mixtures



DSSTox Database1

(~875,000 Substances)

DSSTox MS-Ready Structures2

CFM-ID Database4

(in silico MS2 Spectra)

DSSTox MS-Ready Formulae

LC-QTOF/MS

Sample Extracts

MS1 
Acquisition

Agilent PCDL.csv
(DSSTox MS-Ready Formulae)

Agilent PCDL
(Reference MS2 Spectra)

MS2 Exported .mgf Files

MS2 Acquisition .d Files

Database/Library MatchingExperimental Acquisition

MS2 
Acquisition

B) Agilent MassHunter Data Acquisition
C) Agilent MassHunter Qualitative Analysis

D) Agilent Profinder (peak picking & alignment)
E) Agilent Mass Profiler Professional (formula matching)

Data Analysis

MS1 Feature Table

Filtered Feature Table

Chemical Candidate Table
(Dashboard MetaData)

CFM-ID Results Table
(Percentiles & Quotients)

PCDL Results Table
(Manually Reviewed)

Aggregated Match Table

A

BB

C

F) Python Script

A) Excel Macro (naming & randomization)
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I) EPA NTA WebApp

G) CompTox Chemicals Dashboard3
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1Grulke et al. https://www.sciencedirect.com/science/article/pii/S2468111319300234

4McEachran et al. https://www.nature.com/articles/s41597-019-0145-z

3Williams et al. https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0247-6

2McEachran et al. https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0299-2

Sobus et al. https://link.springer.com/article/10.1007%2Fs00216-018-1526-4

Hedgespeth et al. https://www.sciencedirect.com/science/article/pii/S004896971933298X?via%3Dihub

Newton et al. https://www.sciencedirect.com/science/article/pii/S026974911732691X?via%3Dihub
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Questions?

sobus.jon@epa.gov

The views expressed in this presentation are 
those of the authors and do not necessarily 
represent the views or policies of the U.S. 

Environmental Protection Agency.
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