

Perspectives on the Development, Evaluation, and Application of *in Silico* Approaches for Predicting Toxicity

Grace Patlewicz Center for Computational Toxicology and Exposure (CCTE), US EPA

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Conflict of Interest Statement

• No conflict of interest declared.

- Disclaimer:
- The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

Outline

- Regulatory Drivers
- Computational (in silico) Toxicology [scope for today's talk]
- Integrated Approaches to Testing and Assessment (IATA) definitions and Adverse Outcome Pathway (AOP) informed
- Decision contexts and their impact on the approaches applied
- Risk-based prioritisation
- Read-across approaches
 - Generalised Read-across (GenRA)
- Summary remarks
- Acknowledgements

Regulatory and Non-Regulatory drivers

- Societal demands for safer and sustainable chemical products are stimulating changes in toxicity testing and assessment frameworks
- Chemical safety assessments are expected to be conducted faster and with fewer animals, yet the number of chemicals that require assessment is also rising with the number of different regulatory programmes worldwide.
- In the EU, the use of alternatives to animal testing is promoted.
- Animal testing is prohibited in some sectors e.g. EU Cosmetics regulation
- The European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) legislation lays out specific information requirements, based on tonnage level triggers. However, the regulation explicitly expresses the need to use non-testing approaches to reduce the extent of experimental testing in animals.

Regulatory and Non-Regulatory drivers

- REACH-like schemes also have been established in China, South Korea, and Turkey.
- In the US, the new Frank Lautenberg Chemical Safety for the 21st Century Act (LCSA) requires that a risk based prioritisation is conducted for all substances in commerce, ~40,000, many of which are lacking sufficient publicly available toxicity information.
- EPA Administrator signed memo 10/9/19 to "direct the agency to aggressively reduce animal testing, including reducing mammal study requests and funding 30% by 2025 and completely eliminating them by 2035"
- Risk based prioritisation is also an important aspect of regulatory frameworks in Canada (the Domestics Substance List), Australia and the EU.
- Non-testing approaches offer a means of facilitating the regulatory challenges in chemical safety assessment

Computational (In Silico) Toxicology

- Databases/Dashboards of existing information
- Structure-Activity Relationships (SAR)
- Quantitative Structure-Activity Relationships (QSAR)
- Expert Systems
- Category formation (grouping) read-across
- Bioinformatics
- Chemoinformatics
- **Biokinetics (PBPK)**

6

Typical Information within an IATA: IATA elements

- Historical information on the chemical of interest
- Non-standard in vivo tests
- Information from "similar" chemicals
- Predictions from other 'non-testing' approaches such as (Q)SAR
- In chemico tests
- In vitro tests
- Molecular biology, -omics
- Exposure, (bio-)kinetics

The EPA CompTox Chemicals Dashboard: An Integration Hub for Data Supporting Computational Toxicology

Project Lead: Antony Williams

The CompTox Portal https://comptox.epa.gov/

CompTox Chemicals Dashboard

- A publicly accessible website delivering access:
 - ~875,000 chemicals with related property data
 - Experimental and predicted physicochemical property data
 - Integration to "biological assay data" for 1000s of chemicals
 - Information regarding consumer products containing chemicals
 - Links to other agency websites and public data resources
 - "Literature" searches for chemicals using public resources
 - "Batch searching" for thousands of chemicals
 - DOWNLOADABLE Open Data for reuse and repurposing

CompTox Chemicals Dashboard

SEPA United States Environmental Protection Agency	n Home Advanced Search Batch Search Lists 🛩 Predictions Downloads	Share 🔻
UNITED STATES	875 Thousand Chemicals Chemicals Product/Use Categories Assay/Gene	
HOM MENTECTION	Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChIKey	
PHOT	Identifier substring search See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here	
	Latest News	
	Read more news	
	New Article regarding the GenRA module	
	March 9th, 2019 at 1:03:58 PM	
•	A new article regarding "Generalized Read-Across (GenRA): A workflow implemented into the EPA CompTox Chemicals Dashboard" has been published in the ALTEX (Alternatives to Animal Experimentation) journal. Read the article here.	•

CompTox Chemicals Dashboard Chemicals

Share 🔻

PEPA	nited Stat nvironme gency
-------------	---------------------------------

Environmental Protection Home Advanced Search Batch Search Lists - Predictions Downloads

	875 Thousand Chemicals	
Chemica	als Product/Use Categories Assay/Gene	
Q Bisph	henol A	
đà	Bisphenol A DTXSID7020182	
-mol ^{onde}	Bisphenol A bis(2-hydroxyethyl ether) diacrylate DTXSID6066991	
hugyonit	Bisphenol A bis(2-hydroxyethyl ether) dimethacrylate DTXSID 1066992	
- da	Bisphenol A bis(2-hydroxypropyl) ether DTXSID8051592	
	Bisphenol A carbonate polymer DTXSID6027840	
Jan v	Bisphenol A diglycidyl ether DTXSID6024624	
بدرويعك	Bisphenol A glycidyl methacrylate DTXSID7044841	•
4	Bisphenol A propoxylate diglycidyl ether DTXSID 10399098	

CompTox Chemicals Dashboard Products and Use Categories

Share 🔻

Separate United States Environmental Prot Agency

United States Environmental Protection Home Advanced Search Batch Search Lists V Predictions Downloads Agency

hemicals Proc	luct/Use Categories	Assay/Gene						
hair color								
PDat PRODUCT cated	gory: personal care hair co terized as permanent	lor						
PDat PRODUCT cates ir colors and dyes charac	gory: personal care hair co terized as for professional use	lor						
PDat PRODUCT cated	gory: personal care hair co terized as temporary	lor						
PDat PRODUCT cated ir coloring products not o	gory: personal care hair co therwise categorized	lor						
PDat PRODUCT cated emical activators for hair	gory: personal care hair co coloring products	lor activator						
PDat PRODUCT cated	gory: personal care hair co r coloring products	lor developer						
PDat PRODUCT cated emical toners for hair colo	gory: personal care hair co oring products	lor toner						
	habbe prind sances	improved support for	Toxcast bioassa	av available. Th	is short video su	immarizes the	advantages o	of the dasl

CompTox Chemicals Dashboard Assays and Genes

WITED STATES	875 Thousand Chemicals	
	Chemicals Product/Use Categories Assay/Gene	
AGE ON	Q ESR]
57	ASSAY: TOX21_ESRE_BLA_ch1 Data from the assay component TOX21_ESRE_BLA_ch1 was analyzed into 1 a	
	ASSAY: TOX21_ESRE_BLA_ch2 Data from the assay component TOX21_ESRE_BLA_ch2 was analyzed into 1 a	
	ASSAY: TOX21_ESRE_BLA_ratio Data from the assay component TOX21_ESRE_BLA_ratio was analyzed into 1	
	ASSAY: TOX21_ESRE_BLA_viability TOX21_ESRE_BLA_viability used a type of growth reporter where loss-of	
	GENE: ESR1 estrogen receptor 1	
	GENE: esr1.L estrogen receptor 1 L homeolog	
	GENE: ESR2 estrogen receptor 2 (ER beta)	
•	GENE: esr2.L estrogen receptor 2 L homeolog	•
	GENE: esr2a estrogen receptor 2a	
	GENE: esr2b	

Detailed Chemical Pages: Landing page

Sepandary United States Environmenta Agency

Environmental Protection Home Advanced Search Batch Search Lists

Predictions Downloads
Agency

Bisphenol A 80-05-7 | DTXSID7020182 Searched by DSSTox Substance Id.

Wikipedia -Bisphenol A (BPA) is an organic synthetic compound with the chemical formula (CH₃)₂C(C₆H₄OH)₂ belonging to the group of diphenylmethane derivatives and bisphenols, with two hydroxyphenyl groups. It is a colorless solid that is soluble in organic solvents, but poorly soluble in water. It has been in commercial use since 1957. BPA is a starting material for the synthesis of plastics, primarily Read more Intrinsic Properties Structural Identifiers • Linked Substances • Presence in Lists • **Record Information** • Quality Control Notes •

An "Executive Summary"

United States Environmental Protection Home Advanced Search Batch Search Lists V Predictions Downloads

Bisphenol A 80-05-7 | DTXSID7020182

Searched by Expert Validated Synonym.

Сору 🔻

Share 🔻

Submit Comment Q Search all data

DETAILS

EXECUTIVE SUMMARY

PROPERTIES	Quant
ENV. FATE/TRANSPORT	No P
HAZARD	✓ Minir⊗ No R
▶ ADME	😣 IVIVE
► EXPOSURE	Quant
 BIOACTIVITY 	S No Ir ✓ Lowe ESR1 N
TOXCAST: SUMMARY	Cance
EDSP21	⊗ No c ⊗ No ir
TOXCAST/TOX21	✔ Carc Ⅹ No g
PUBCHEM	Repro

titative Risk Assessment Values values available 🗹 PRTV values RSL values available 🗹 mum RfD: 0.050 mg/kg-day (chronic, IRIS, oral, 8) 🗹 RfC calculated 'E POD not calculated titative Hazard Values imum oral POD: 3.8 mg/kg-day (reproductive, HPVIS, oral, 6) 🗹 nhalation POD values est Observed Bioactivity Equivalent Level: CYP1A1, CYP1A2, Tpo, ESR2, ESR1, NR1I3, PPARA, NR1I2, Cyp2c11, MMP3, Esr1 er Information cancer slope factor nhalation unit risk value cinogenicity data available: University of Maryland carcinogenicity warning; Ζ genotoxicity findings reported oductive Toxicology

200 Reproductive toxicity PODs available

Executive Summary

REGIONAL SCREENING

Class	THQ	Value
risk-based SSL (mg/kg)	THQ = 0.1	5.8
GIABS (unspecified)	THQ = 1	1
GIABS (unspecified)	THQ = 0.1	1
ABS (unspecified)	THQ = 0.1	0.1
RFDo (mg/kg-day)	THQ = 0.1	0.05
screening level (residential Soil) (mg/kg)	THQ = 0.1	320
screening level (industrial soil) (mg/kg)	THQ = 0.1	4100

An "Executive Summary" Quick Look Tox Info

Executiv	ve Summary			
Quantitative Risk Assessment Values PRIS values available No PPRTV values PRA RSL values available Minimum RD: 0.060 mg/kg-day (chronic, IRIS, oral, 8) No RC calculated No RC calculated VIVE POD not calculated Quantitative Hazard Values	REGIONALSCR	EENING		
⊘ Minimum oral POD: 3.8 mg/kg-day (reproductive, HPVIS, oral, 6).2 ⊗ No inhalation POD values ⊘ Lowest Observed Bioactivity Equivalent Levet: CYP1A1, CYP1A2, Tpo, ESR2, ESR1, ESR1,	Class risk-based SSL (mg/kg)	THQ = 0.1	5.8	
NR113, PPARA, NR112, Cyp2c11, MMP3, Esr1	GIABS (unspecified)	THQ = 1	1	
No cancer slope factor	GIABS (unspecified)	THQ = 0.1	1	
No inhalation unit risk value	ABS (unspecified)	THQ = 0.1	0.1	Quantitative Risk Assessment Values
No genotoxicity findings reported	RFDo mg/kg-day)	THQ = 0.1	0.05	
Reproductive Toxicology	screening level (residential Soil) (mg/kg)	THQ = 0.1	320	V IRIS values available 🗠
🔮 200 Reproductive toxicity PODs available 🕜	screening level (industrial soil) (mg/kg)	THQ = 0.1	4100	No PPRTV values
Chronic Toxicology	screening level (tap water) (ug/L)	THQ = 0.1	77	A EPA RSL values available C
340 Chronic toxicity PODs available 🗠	RFDo (mg/kg-day)	THQ = 1	0.05	C Minimum RfD: 0.050 mg/kg day (shranin IRIC, and 2)
Subchronic Toxicology 12 Subchronic toxicity PODs available	screening level (residential Soil) (moto)	THQ = 1	3200	Minimum Rib. 0.000 mg/kg-day (chronic, iRis, oral, a)
	screening level (industrial soil) (mg/kg)	THQ = 1	41000	🔀 No RfC calculated
6 Developmental toxicity PODs available	ABS (unspecified)	THQ = 1	0.1	IVIVE POD not calculated
Acute Toxicology	risk-based SSL (mg/kg)	THQ = 1	58	
391 Acute toxicity PODs available	screening level (tap water) (ug/L)	THQ = 1	770	Quantitative Hazard Values
Subacute Toxicology		\sim		Qualitative Hazard values
I subacute toxicity PODs available				Minimum oral POD: 3.8 mg/kg-day (reproductive, HPVIS, oral, 6)
Neurotoxicology		\sim	_	S No inhalation POD values
			\mathbf{i}	
Endocrine System Significant Estrogen and Androgen Receptor activity seen.				Convest Observed Bioactivity Equivalent Level: CYP1A1, CYP1A2, Tpo, ESR2, ESR1, ESR1
Chemical was positive in 21 ER assays (out of 35) and was positive in 9 AR assays (tested in 19).	PHYSCHEM PAR.	AMETERS		NR1I3, PPARA, NR1I2, Cyp2c11, MMP3, Esr1
ADME	3 35	1.64		
🔮 HTTK Css data are available 🗹		1		
Fate and Transport	-5 0 5 10 15	-5 0 5 1	10 15	
No bloaccumulation concern.	logP	log(BCF)		
Biodegradation predictions are available C	7 17			
Vapor Pressure predictions are available C		-		
Exposure	-4 -2 0	2		
Exposure estimates are available based on NHANES and SEEM 2	log(VP)			
AOP Information				
AOP Links: 13, 33, 36, 58, 60, 61, 66, 107, 124, 150, 163, 175, 187, 200				
Other Notes				
No water guality values available.				

No air quality values available. 4 14 Occupational exposure values available.

ASSAY PLOTS

Physicochemical properties

Property Summary

Share 🔻 🛛 Submit Comment

Сору 🔻

Summary

Q Search all data

Environmental Protection Home Advanced Search Batch Search Lists 🛩 Predictions Downloads

•

Bisphenol A 80-05-7 | DTXSID7020182

		ΓA	11	0
D	E	ıА	лĿ	. 3

Searched by Expert Validated Synonym.

EXECUTIVE SUMMARY

PROPERTIES

ENV. FATE/TRANSPORT

📥 Download 🔻 🛛 Columns 🗸

HAZARD	Property	Experimental average \$	Predicted average 🗘	Experimental median 🗘	Predicted median 🗘	Experimental range 🗘 🗘	Predicted range 🗘	Unit
▶ ADME	LogP: Octanol-Water	3.32 (1)	3.29		3.43	3.32	2.40 to 3.64	
	Melting Point	155 (7)	139	156	138	153 to 156	125 to 157	°C
• EXPOSORE	Boiling Point	200 (1)	363		360	200	343 to 401	°C
 BIOACTIVITY 	Water Solubility	5.26e-4 (1)	9.62e-4		1.00e-3	5.26e-4	5.35e-4 to 1.31e-3	mol/L
TOXCAST: SUMMARY	Vapor Pressure	-	8.37e-7		3.43e-7	-	6.83e-8 to 2.59e-6	mmHg
EDSP21	Flash Point	-	190		190	-	188 to 192	°C
	Surface Tension	-	46.0			-	46.0	dyn/cm
TOXCAST/TOX21	Index of Refraction	-	1.60			-	1.60	
PUBCHEM	Molar Refractivity	-	68.2			-	68.2	cm^3
TOXCAST: MODELS	Polarizability	-	27.0			-	27.0	Å^3
	Density	-	1.17		1.17	-	1.14 to 1.20	g/cm^3
SIMILAR COMPOUNDS	Molar Volume	-	200			-	200	cm^3

Detailed QSAR Prediction Reports from OPERA

QSAR Prediction Reporting Format (QPRF): Standardised template to document a prediction from a given QSAR model

QSAR Model Reporting Format (QMRF) Template to document a QSAR model itself

Underpinned by the OECD QSAR Validation Principles (2004)

Other Data: Human and Ecological Chemical Hazard Data

Agency	Home Advan	iced Search	Batch Search L	sts V Pred	ictions Downloads			Сору 🗸	Share Submit (Comment	L Search all data	
DETAILS	DataType	9										
EXECUTIVE SUMMARY	Poin	t of Departure	~									
PROPERTIES						Γ	🛉 Humar	Eco				
ENV. FATE/TRANSPORT	Column	s ~ 10 ·	•			L					Search query	
HAZARD	More 🕈	Priority +	Toxval type 🗘	Subtype 🗘	Risk assessment class 🗘	Value ^	Units 🗘	Study type 🗘	Exposure route 🗘	Species 🗘	Subsource \$	Source
▶ ADME		5	BMDL-10	-	chronic	0.609	mg/kg-day	human	-	mouse	EFSA CEF	EFSA
▶ EXPOSURE		5	NOFI	Systemic	repeat dose	3 75	ma/ka-dav	repeat dose toxicity : oral	oral	rat	-	ECHA
BIOACTIVITY		Ŭ		Cystemic	Topour dose	0.70	inging duy	repear dose toxicity . oran	oran	Tur.		LOINT
SIMILAR COMPOUNDS		6	NOAEL	-	reproductive	3.75	mg/kg-day	reproductive	oral	rat	-	HPVIS
GENRA (BETA)		5	NOEL	Systemic	repeat dose	3.75	mg/kg-day	repeat dose toxicity : oral	oral	rat	-	ECHA
RELATED SUBSTANCES		5	NOEL	Systemic	repeat dose	4.5	mg/kg-day	repeat dose toxicity : oral	oral	mouse	-	ECHA
SYNONYMS		5	NOEL	Systemic	repeat dose	4.5	mg/kg-day	repeat dose toxicity : oral	oral	mouse	-	ECHA
▶ LITERATURE		7	LEL	-	subchronic	5	mg/kg-day	subchronic	oral	rat	unpublished_submission	ToxRefDB
LINKS		7	nel	-	chronic	5	mg/kg-day	reproductive multigeneration	oral	rat	open_lit	ToxRefDB
COMMENTS		5	NOAEL	-	chronic	5	mg/kg-day	human	-	mouse	EFSAAFC	EFSA
		7	nel	-	subchronic	5	mg/kg-dav	subchronic	oral	rat	unpublished submission	ToxRefDB

Hazard Data from "ToxVal_DB"

United States Environmental Protection

- ToxVal Database contains following structured data:
 - -~30,000 chemicals
 - -~750,000 toxicity values
 - -~30 sources of data
 - -~4500 journals cited
 - -~70,000 literature citations

Sources of Exposure to Chemicals

	Bisphenol A 80-05-7 DTXSID7020 Searched by DSSTox Substance Id.	182		
DETAILS		Product and Us	e Categories (PUCs) 🚯
EXECUTIVE SUMMARY	📩 Download 🔻			
PROPERTIES	Columns v 10 v			Search query
ENV. FATE/TRANSPORT	Product or Use Categorization	Categorization ty	¢	Number of Unique Products
HAZARD	manufacturing, metals	CPCat Cassette		17
▶ ADME	adhesive	CPCat Cassette		17
▼ I	point	CPCat Cassette		16
▼ EXPOSURE		CPCat Cassette		12
		CPCat Cassette		11
PRODUCT	& USE CATEGORIES	CPCat Cassette		8
OUEMICAL		CPCat Cassette		8
CHEIMICAL	WEIGHT FRACTION	CPCat Cassette		8
CHEMICAL	FUNCTIONAL USE	CPCat Cassette		7
		CPCat Cassette		6
TOXICS RE	ELEASE INVENTORY	First << < 1 2 3 4	5 6 7 8 9 10	> >> Last
MONITORI	NG DATA			

ADME-IVIVE

SEPA United States Environmental Protection Agency	Home Advanced Search Batch Search Lists 🛩 Predictions Downloads			Copy 🔻 Share 💌 S	Submit Comment Q Search all data
	Bisphenol A 80-05-7 DTXSID7020182 Searched by Expert Validated Synonym.	D/D/	r		
DETAILS			E		
EXECUTIVE SUMMARY	L Download ▼ Columns ~				Search query
PROPERTIES					
ENV FATE/TRANSPORT	Label \$	Measured	Predicted \$	Computed 🗘	Unit +
	In Vitro Intrinsic Hepatic Clearance	19.29	-	-	uL/min/million hepatocytes
HAZARD	Fraction Unbound in Human Plasma	0.07	-	-	
✓ ADME	• Volume of Distribution	-	-	6.69	L/kg
IVIVE	Days to Steady State	-	-	8	Days
► EXPOSURE	PK Half Life	-	-	29.83	hours
	Human Steady-State Plasma Concentration	-	-	1.98	mg/L
SIMILAR COMPOUNDS		6 record	ls		
GENRA (BETA)					
RELATED SUBSTANCES					

In Vitro Bioassay Screening ToxCast and Tox21

nited States

Agency

Environmental Protection

In Vitro Bioassay Screening ToxCast and Tox21

Separation United States Environmental Protection Agency	Home Advanced Search Batch Search Lists 🛩 Predictions Downloa	ıds	Copy 🔻 Share 👻 Submit Comment 🔍 Search all data	
	Bisphenol A 80-05-7 DTXSID702018 Searched by Expert Validated Synonym.	2		Â
DETAILS			ToxCast/Tox21	
EXECUTIVE SUMMARY				
PROPERTIES	QC Data ID	Grade	Description	
ENV. FATE/TRANSPORT	Tox21_202992	Pass	Purity-90% and MW contirmed	
HAZARD	10X21_400088	Pass	Punty-sub- and www.commmed	
▶ ADME	Assay Selection 136 Selected <	Single Assay Can Have Multiple Cha	arts 📿 Representative Samples Only 🛃 Bioactivity Summary 🔻 Number of	of Charts: 136 📰
> EVROCURE	C Active U Inactive U All			
EXPOSURE	Ceetox/OnAns (2 of 24 selected)	G A CEETOX_H295R_ANDR_dn	CELTOX_HAVER_TESTO_dm	
▼ BIOACTIVITY	Odvssev Thera (6 of 17 selected)	Bisphenol A (80-05-7) DTXSID7020182 TP0001055G08	Bisphand A (80 60-57) 81 10 TXSID 7029 112 10 TXS	
TOXCAST: SUMMARY	Attagene (4 of 165 selected)	2- 1- Cutorr	J J J J J J J J J J J J J J J J J J J	
EDSP21	Toy21/NCGC (44 of 211 selected)		2-	
TOXCAST/TOX21	CellzDirect (3 of 48 selected)		, curr	
PUBCHEM	Bioseek (4 of 174 selected)	•	8	
TOXCAST: MODELS	Apredica (8 of 107 selected)	0 0 0		
SIMILAR COMPOUNDS	NHEERI Padilla I ab (1 of 1 selected)			
GENRA (BETA)	Novascreen (46 of 167 selected)	— • • • • • • • • • •	Log Concentration (AM)	
RELATED SUBSTANCES	NHEERL's Hunter Lab (0 of 4 selected)			
SVNONVMS	NCCT's Lab (4 of 4 selected)	CT_ER_ERAERb_0480 HTCALL: ACTIVE	0 T. (25, (25426), 1440) 0 T. (25, (25426),	
	ACEA Biosciences (4 of 6 selected)	DTXSID7020162 100-	2012 2012 2012 0 100001 0 0 100001 0 0 100001 0 0 0 100001 0	
	Tanguay Lab (9 of 19 selected)			-

Bioactivity: Downloadable Data

https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data

Exploring ToxCast Data: Downloadable Data

The results after processing through the Pipeline are available on the <u>ToxCast Dashboard</u>, and for most users EPA recommends accessing the data there.

- <u>ToxCast Chemicals</u>
- <u>ToxCast Assays</u>

ToxCast Data and Information

- ToxCast & Tox21 Summary Files. Data for a single chemical endpoint pair for thousands of chemicals and assay endpoints for 20 variables such as the activity or hit call, activity concentrations, whether the chemical was tested in a specific assay, etc.
 - Download ToxCast Summary Information
 - Download ReadMe
- ToxCast & Tox21 Data Spreadsheet. A spreadsheet of EPA's analysis of the chemicals screened through ToxCast and the Tox21 collaboration which includes EPA's activity calls from the screening of over 1,800 chemicals.
 - Download Data
 - Download ReadMe
- ToxCast Data Pipeline R Package. The R computer programming package used to process and model all EPA ToxCast and Tox21 chemical screening data. The files include the R programming package as well as documents that provide overviews of the data analysis pipeline used and the R package. Users will need experience with R to use these files.
 - Download Package
 - TCPL Overview

Resources

- <u>Toxicity Forecaster (ToxCast)</u>
 <u>Fact Sheet</u>
- <u>ToxCast Publications</u>
- <u>ToxCast Citation</u>
- <u>About ToxCast</u>

BUILT-IN "MODULES"

Landing page

÷

EPA United States Environmental Protection Home Advanced Search Batch Search Lists - Predictions Downloads

Bisphenol A 80-05-7 | DTXSID7020182 Searched by DSSTox Substance Id.

Related Publications

Regulatory Toxicology and Pharmacology Volume 79, August 2016, Pages 12-24

Short Communication

Generalized Read-Across (GenRA): A Workflow Implemented into the EPA **CompTox Chemicals Dashboard**

George Helman^{1,2}, Imran Shah², Antony J. Williams², Jeff Edwards², Jeremy Dunne² and Grace Patlewicz² ¹Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA; ²National Center for Computational Toxicology (NCCT), Office of Parameter and Davidson and HC Previous and Destantian Amountability of David David (DTD), MC 118 A

Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information

Contents lists availab	ble at ScienceDirect
Computationa	al Toxicology
ELSEVIER journal homepage:	www.elsevier.com

Navigating through the minefield of read-across frameworks: A commentary perspective

Grace Patlewicz^{a, *}, Mark T.D. Cronin^b, George Helman^{a, c}, Jason C. Lambert^d, Lucina E. Lizarraga^d, Imran Shah^a

^a National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency (US EPA), 109 TW Alexander Dr, Research Triangle Park (RTP), NC 27711, USA School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA National Center for Evaluation Assessment (NCEA), US Environmental Protection Agency (US EPA), 26 West Martin Luther King Dr., Cincinnati, OH 45268, USA

Available online 23 July 2018 In Press, Corrected Proof (?)

Regulatory Toxicology and Pharmacology

Extending the Generalised Read-Across approach (GenRA): A systematic analysis of the impact of physicochemical property information on read-across performance

George Helman a, b, Imran Shah b, Grace Patlewicz b a

Transitioning the generalised read-across approach (GenRA) to quantitative predictions: A case study using acute oral toxicity data

George Helman^{a,b}, Imran Shah^b, Grace Patlewicz^{b,*}

* Oak Ridge Institute for Science and Education * National Center for Computational Toxicology 27711, USA	(ORISE), Oak Ridge, (NCCT), Office of R
ARTICLE INFO	AB
Kowards	Read
Generalized read-across (GenRA)	sente
Acute oral toxicity	or in t
Quantitative predictions	est ne
	done t
	to qua
	discre
	GenR
	chem
	the en

305536	Contents lists available at ScienceDirect
	Regulatory Toxicology and Pharmacology
ELSEVIER	journal homepage: www.elsevier.com/locate/yrtph
Quantitative pr	ediction of repeat dose toxicity values using GenRA
Quantitative pr	calculor of repeat dove tomenty randes doing demar
G. Helman ^{a,b} , G. Pa	tlewicz ^b , I. Shah ^{b,*}
* Oak Ridge Institute for Science a ¹⁰ National Center for Computation	nd Education (ORISE), Oak Ridge, TN, USA al Techcology, Office of Research and Developmene, U.S. Ravironmenial Protection Agency, Research Triangle Park, NC, USA

Regulatory Toxicology and Pharmacology 109 (2019) 104480

Point of contact: Grace Patlewicz & Imran Shah

range

have recently gained popularity in the field of read-across to automatically fill data-Previously, we developed the generalized read-across (GenRA) tool, which utilizes onjunction with chemical descriptor information to derive local validity domains to in vivo toxicity studies. Here, we modified GenRA to quantitatively predict point of tained from US EPA's Toxicity Reference Database (ToxRefDB) version 2.0. To

evaluate GenRA predictions, we first aggregated oral Lowest Observed Adverse Effect Levels (LOAEL) for 1,014 chemicals by systemic, developmental, reproductive, and cholinesterase effects. The mean LOAEL values for each chemical were converted to log molar equivalents. Applying GenRA to all chemicals with a minimum

Generalised Read-Across (GenRA)

30

Read-across

- <u>Read-across</u> describes the method of filling a data gap whereby a chemical with existing data values is used to make a prediction for a 'similar' chemical.
- A <u>target chemical</u> is a chemical which has a data gap that needs to be filled i.e. the subject of the read-across.
- A <u>source analogue</u> is a chemical that has been identified as an appropriate chemical for use in a read-across based on similarity to the target chemical and existence of relevant data.

Known to be harmful

Predicted to be harmful

Read-across workflow in GenRA v1.0

GenRA tool in practice

Structured as a workflow

GenRA tool in practice

GenRA tool in practice

Names and CASRNs to Support Searches

EPA United States Environmental Protection Agency	Home Advanced Search Batch Search Lists V Predictions Downloads	Copy Share Submit Comment Q Search all data
	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.	
DETAILS	25 🗸	Search query
EXECUTIVE SUMMARY	Synonym	
PROPERTIES	Bisphenol A	Valid
ENV. FATE/TRANSPORT	4,4'-(Propane-2,2-diyl)diphenol	Valid
HAZARD	Phenol, 4,4'-(1-methylethylidene)bis-	Valid
► ADME	80-05-7 Active CAS-RN	Valid
	BPA	Valid
F EXIOSORE	4,4'-Propane-2,2-diyldiphenol	Valid
BIOACTIVITY	Phenol, 4,4'-(1-methylethylidene)bis-	Valid
SIMILAR COMPOUNDS	4-06-00-06717 Beilstein Registry Number	Beilstein
GENRA (BETA)	(4,4'-Dihydroxydiphenyl)dimethylmethane	Good
RELATED SUBSTANCES	2,2-Bis(4'-hydroxyphenyl) propane	Good
SYNONYMS	2,2'-Bis(4-hydroxyphenyl)propane	Good
	2,2-BIS-(4-HYDROXY-PHENYL)-PROPANE	Good
P ENERGIONE	2,2-Bis(4-hydroxyphenyl)propane	Good
LINKS	2,2-Bis(p-hydroxyphenyl)propane	Good
COMMENTS	2,2-Di(4-Hydroxyphenyl) Propane	Good

Literature Searching

Abstract Sifter

1) Select PubMed starting point query then 2) click on Retrieve.

Select a Query Term	Retrieve Articles
Select a Query Term	
Hazard	
Fate and Transport	
Metabolism/PK/PD	
Chemical Properties	
Exposure	
Mixtures	
Male Reproduction	
Androgen Disruption	
Female Reproduction	
GeneTox	
Cancer	
Clinical Trials	
Embryo and embryonic development	
Child (infant through adolescent)	
Dust and Exposure	
Food and Exposure	
Water and Exposure	
Algae	
Disaster / Emergency	

Optionally, edit the query before retrieving.

"57-27-2" OR "Morphine"

Literature Searching

Child (intant through adolescent) Dust and Exposure Food and Exposure Water and Exposure Algae Disaster / Emergency

Sptionally, edit the query before retrieving.

("57-27-2" OR "Morphine") AND ((water OR groundwater OR drinking water) AND Environmental Exposure)

11

Literature Searching

37 of 37 articles loaded...

То	Fo find articles quickly, enter terms to sift abstracts. 🚯										
wastewater Spectrometry		EPA Clear Terms		Clear Terms	Download / Send to 👻 🖲 Download		Sifter for Excel				
	wastewater	Spectrometry	EPA	Total	PMID	Year	Title	Authors	Journal	Rev	-
	4	2	0	6	29274731	2017	Simultaneous analysis of opioid analgesics and thei	Krizman-Matasic; Kostanjevecki; Ahel; Terzic	Journal of chromatography. A		
	0	1	0	1	25768972	2015	Evaluating external contamination of polybrominate	Poon; Aleksa; Carnevale; Kapur; Goodyer; Koren	Therapeutic drug monitoring		
	0	1	0	1	22544551	2012	Spatial distribution of illicit drugs in surface waters o	Vazquez-Roig; Andreu; Blasco; Morillas; Picó	Environmental science and pollution research inter		
	1	1	0	2	20801487	2010	Analysis of llicit and illicit drugs in waste, surface an $\! \ldots \!$	Berset; Brenneisen; Mathieu	Chemosphere		
	1	1	0	2	17935751	2007	Illicit drugs, a novel group of environmental contami	Zuccato; Castiglioni; Bagnati; Chiabrando; Grassi;	Water research		
	2	1	1	4	17607391	2007	Using environmental analytical data to estimate lev	Bones; Thomas; Paull	Journal of environmental monitoring : JEM		
	3	1	2	6	17180984	2006	Simultaneous determination of psychoactive drugs \ldots	Hummel; Löffler; Fink; Ternes	Environmental science & technology		
	6	0	0	6	30583189	2018	Assessment of drugs of abuse in a wastewater trea	Kumar; Tscharke; O'Brien; Mueller; Wilkins; Padhye	The Science of the total environment		
	0	0	3	3	30488421	2018	Effect of enriched environment during adolescence	Mohammadian; Najafi; Miladi-Gorji	Developmental psychobiology		
	3	0	0	3	29574368	2018	Estimation of the consumption of illicit drugs during \ldots	Foppe; Hammond-Weinberger; Subedi	The Science of the total environment		
	1	0	0	1	28787791	2017	Evaluation of in-sewer transformation of selected illi	Gao; Banks; Li; Jiang; Lai; Mueller; Thai	The Science of the total environment		
	9	0	0	9	28472697	2017	Occurrence and fate of illicit drugs and pharmaceuti	Causanilles; Ruepert; Ibáñez; Emke; Hernández; d	The Science of the total environment		
	0	0	0	0	28010888	2016	Dose-dependent effects of morphine on lipopolysac	Mottaz; Schönenberger; Fischer; Eggen; Schirmer;	Environmental pollution (Barking, Essex : 1987)		
	0	0	0	0	27746311	2016	Effects of voluntary exercise on the viability, prolifer	Haydari; Safari; Zarbakhsh; Bandegi; Miladi-Gorji	Neuroscience letters		
	0	0	0	0	27261879	2016	Genotoxic effects induced by the exposure to an en	Parolini; Magni; Castiglioni; Binelli	Ecotoxicology and environmental safety		
	3	0	0	3	27179320	2016	Temporal trends in drug use in Adelaide, South Aus	Tscharke; Chen; Gerber; White	The Science of the total environment		-

External Links to ~80 websites

CEPA United States Environmental Protection Agency	Home Advanced Search Batch Search Lists 🗸	Predictions Downloads		Copy 👻 Share 👻 Submit Comment	Q Search all data
	Bisphenol A 80-05-7 DTXSID702 Searched by Approved Name.	0182			
DETAILS	General			Analytical	Prediction
EXECUTIVE SUMMARY	EPA Substance Registry Service Methods Products Database	Telviceleau	Ith Perspectives	FOR-IDENT NEMI: National Environmental Methods	2D NMR HSQC/HMBC Prediction Carbon-13 NMR Prediction
PROPERTIES	Chemical Entities of Biological Interest (ChEBI)	rd″acologa	Program	Index	Caroone is invite Headdoon Proton NMR Prediction
ENV. FATE/TRANSPORT	PubChem	ACT-D	Program	A Tox21 Analytical Data	 Glenik Predikti LSERD
HAZARD	Chemspider	(a) ACTOR		MONA: MassBank North America	
ADME	DrugBank Ame HMDB	08. DrugPortal			
EXPOSURE	W Wikipedia	- Progratian			
BIOACTIVITY	Q MSDS Lookup	MICCRIS	on Profiles		
SIMILAR COMPOUNDS	Q Chemical Vendors		je		
GENRA (BETA)	Hazard Assessment	ChemView	d		
RELATED SUBSTANCES	ToxPlanet	•			
SYNONYMS	ACS Reagent Chemicals	CTD			
LITERATURE	ChemHat: Hazards and Alternatives	¥	Search Engine earch		
LINKS	🜞 Wolfram Alpha	🗶 eChemPortal			
COMMENTS	ECHA Brief Profile	Gene-Toy			
	ChemAgora	THE CHERRY TOX			
		HSDB			

CHEMICAL LISTS AND CATEGORIES

An Example List

BATCH SEARCHING

Batch Searching

- Singleton searches are useful but what if you need data on LOTS of chemicals at the same time...
- Typical questions
 - What is the list of chemicals for the formula $C_xH_yO_z$
 - Can I get chemical lists in Excel files? In SDF files?
 - Can I include properties in the download file?

REAL-TIME PREDICTIONS

Real-Time Predictions

€FPA

Agency

United States Environmental Protection

Conclusions

 Computational toxicology encompasses many types of data streams that are integrated together to address different decision contexts both regulatory and non regulatory

 The EPA CompTox Chemicals Dashboard provides access to data for ~875,000 chemicals that addresses many of these data streams

Acknowledgements

EPA-RTP

- An enormous team of contributors from CCTE, especially the IT software development team
- Our curation team for their care and focus on data quality
- Multiple centers and laboratories across the EPA
- Many public domain databases and open data contributors

Contact for the CompTox Chemicals Dashboard

Antony Williams CCTE, US EPA Office of Research and Development, Williams.Antony@epa.gov

ORCID: <u>https://orcid.org/0000-0002-2668-4821</u>

L Williams et al. J Cheminform (2017) 9:61 DOI 10.1186/s13321-017-0247-6

Journal of Cheminformatics

DATABASE

The CompTox Chemistry Dashboard: a community data resource for environmental chemistry

Antony J. Williams^{1*}[®], Christopher M. Grulke¹, Jeff Edwards¹, Andrew D. McEachran², Kamel Mansouri^{1,2,4}, Nancy C. Baker³, Grace Patlewicz¹, Imran Shah¹, John F. Wambaugh¹, Richard S. Judson¹ and Ann M. Richard¹

https://doi.org/10.1186/s13321-017-0247-6