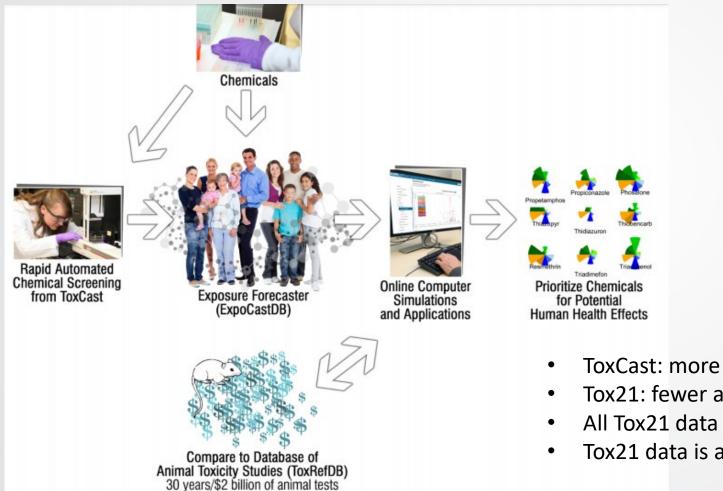
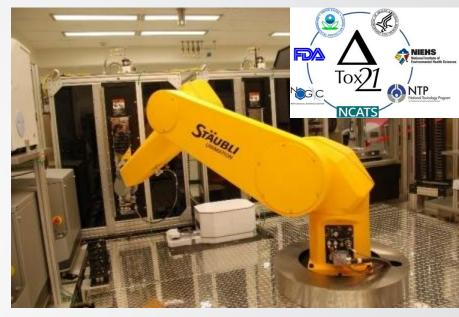

An Update on Public Tools for Prediction of Endocrine Bioactivity

Chad Deisenroth, Keith Houck, Richard Judson, and Katie Paul Friedman

November 14, 2019


Presentation to EFSA colleagues


The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

EPA's ToxCast program at a glance

SEPA

Tox21 robot

- ToxCast: more assays, fewer chemicals, EPA-driven
- Tox21: fewer assays, all 1536, driven by consortium
- All Tox21 data are analyzed by multiple partners
- Tox21 data is available analyzed in the ToxCast Data Pipeline

Endocrine hazard and risk evaluation using public tools: approach outline

- Publicly available data from ToxCast is actively being applied to endocrine hazard labeling in the EU.
- Risk-based approaches that incorporate bioactivity and exposure make the best use of new approach methodologies.

This presentation will demonstrate where to find these information and suggest an approach for utilizing them in endocrine bioactivity and hazard evaluation.

CompTox Chemicals Dashboard

Separation Home Advanced Search Batch Search Lists - Predictions Downloads Agency

Sepa

Chemicals Product/Use Categories Assay/Gene

Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChIKey

Identifier substring search

See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here

875 Thousand Chemicals

Share 🦷

Latest News

Read more news

August 9th 2019 - New release (3.0.9) in time for ACS Fall Meeting

August 14th, 2019 at 4:39:37 PM

A new version of the Dashboard has been released in time for the ACS Fall meeting. Included in this release are updates to data in the ToxVal database, an update to the in vitro database (version 3.2), and the release also addresses a number of minor bugs and includes a short list of additional functionality as described in the Release Notes here.

https://comptox.epa.gov/dashboard

•

EPA EPA's CompTox Chemicals Dashboard

- A publicly accessible website delivering:
 - ~875,000 chemicals with related property data
 - Experimental and predicted physicochemical property data
 - Integration to "biological assay data" for 1000's of chemicals
 - Information regarding consumer products containing chemicals
 - Links to other agency websites and public data resources
 - "Literature" searches for chemicals using public resources
 - "Batch searching" for thousands of chemicals
 - Downloadable Open Data for reuse and repurposing
 - Many features (only highlighting a few)
 - Access to multiple tools (direct data interpolation and predictive) for multiple disciplines
 https://www.epa.gov/chemical-research/comptox-chemicals-dashboard

SEPA

Examine physicochemical properties such as logP, vapor pressure, and MW to get a better sense of whether the chemical was suitable for the current *in vitro* assay suite

	EPA United States Environmental Protection	on Home Advanced Search Batch	i Search Lists 💙 Predictions Do	wnloads			Copy 🔻 Share 👻 Submit C	omment Q Search all da	ta				
Analytical chemistry: was the chemical present and in the DOA for current ToxCast?	JETAILS	80-05-	enol A 7 DTXSID70207 DSSTox Substance Id.	182									
	EXECUTIVE SUMMARY				Summ	nary							
ToxCast negatives: what does a negative	PROPERTIES ENV. FATE/TRANSPORT	Search query											
	HAZARD	Property	• Experimental average	Predicted average	Experimental median	Predicted median	Experimental range	Predicted range	♦ Unit ♦				
•	ADME	LogP: Octanol-Water	3.32 (1)	3.29		3.43	3.32	2.40 to 3.64	-				
mean? Outside of	► EXPOSURE	Melting Point	155 (7)	139	156	138	153 to 156	125 to 157	°C				
domain of	 BIOACTIVITY 	Boiling Point	200 (1)	363		360	200	343 to 401	°C				
applicability (DOA)?		Water Solubility	5.26e-4 (1)	9.62e-4		1.00e-3	5.26e-4	5.35e-4 to 1.31e-3	mol/L				
	TOXCAST: SUMMARY	Vapor Pressure	-	8.37e-7		3.43e-7	-	6.83e-8 to 2.59e-6	mmHg				
	EDSP21	Flash Point	-	190		190	-	188 to 192	°C				
	TOXCAST/TOX21	Surface Tension	-	46.0			-	46.0	dyn/cm				
	PUBCHEM	Index of Refraction	-	1.60			-	1.60	-				
	TOXCAST: MODELS	Molar Refractivity	-	68.2			-	68.2	cm^3				
Many chamicals		Polarizability	-	27.0			-	27.0	Å^3				
Many chemicals	SIMILAR COMPOUNDS	Density	-	1.17		1.17	-	1.14 to 1.20	g/cm^3				
successfully screened	GENRA (BETA)	Molar Volume Thermal Conductivity	· ·	200			•	200	cm^3 mW/(m*K)				
fall within:	RELATED SUBSTANCES	Viscosity	- -	9.66				9.66	cP				
logP -0.4 to 5.6 range;	SYNONYMS	Henry's Law	-	1.26e-7			-	1.26e-7	atm-m3/mole				
MW 180-480;	► LITERATURE	LogKoa: Octanol-Air	-	8.38			-	8.38	-				
Vapor Pressure < 1.	LINKS				16 reco	rds							

\$EPA

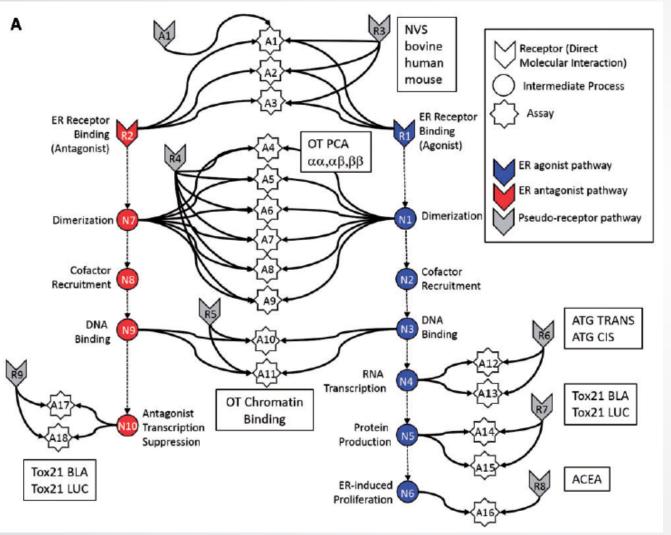
Examine QC data (if available) to see if we expect that the chemical was present for screening

EPA United States Environmental Prote Agency	action Home Advanced Search Batch Search Lists 🛩 Predictions Downlo	bads	Сору 🕶	Share 🔻 Submit Comment 🔍 Sea	rch all data
	Bisphenol A 80-05-7 DTXSID702018 Searched by DSSTox Substance Id.	32			
DETAILS			ToxCast/Tox21		
EXECUTIVE SUMMARY	QC Data ID	Grade	Description		
PROPERTIES	Tox21_202992	Pass	Purity>90% and MW confirmed		
ENV. FATE/TRANSPORT			Purity>90% and WV confirmed		
HAZARD	Tox21_400088 Selection 0 Selected <	Pass A Single Assay Can Have Multiple Cha		🛓 Bioactivity Summary 💌	Number of Charts: 0
ADME EXPOSURE BIOACTIVITY TOXCAST: SUMMARY EDSP21	Filter assays Odyssey Thera (0 (Another All Tox)) Attagene (0 of 165 CellzDirect (0 of 48	Se	ect one or more assays from the list o		ture Search
TOXCAST/TOX21	Bioseek (0 of 174 s Apredica (0 of 108 Bisphenol A				
Analytical che	emistry:	QC Gra	de	Identifiers	
was the che	emical	то	A MW Confirmed, Purity > 90%	Tox21 Tox21	202992
present and		T4	A MW Confirmed, Purity > 90%	NCATS NCGC	00260537-01
DOA for cu ToxCast				CAS 80-05- PubChem 144210	

A note on ToxCast versioning

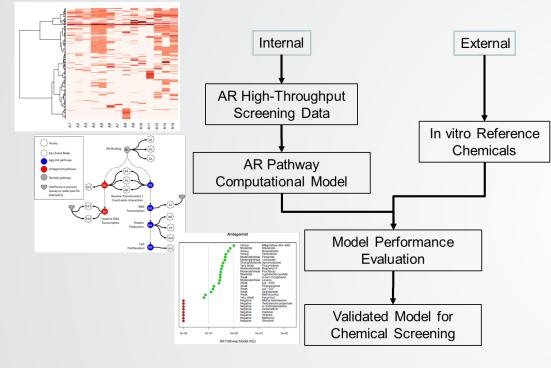
• Data change: curve-fitting, addition of new data

SFPA


- Models change: improvements, more data, etc.
- The CompTox Chemicals Dashboard release from August 9, 2019 is now using ToxCast invitrodb version 3.2: <u>https://doi.org/10.23645/epacomptox.6062623.v4</u>
- All ToxCast data and endocrine models (CERAPP, COMPARA, ER, AR, steroidogenesis) can currently be accessed from within invitrodb.
- Data downloads for NCCT: <u>https://www.epa.gov/chemical-</u> research/exploring-toxcast-data-downloadable-data

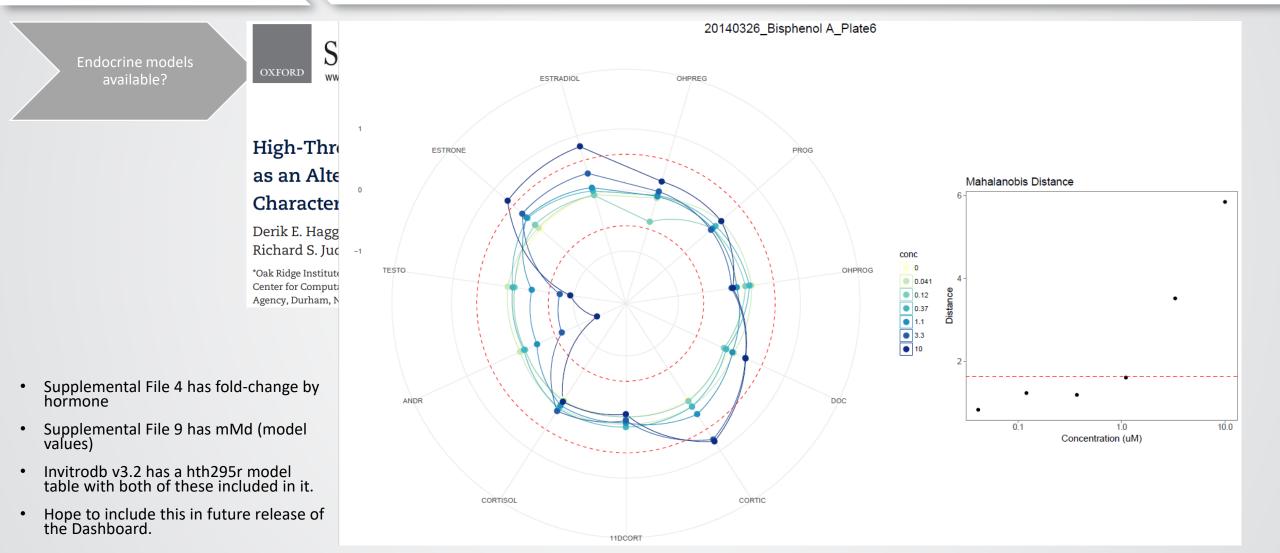
Endocrine models available via ToxCast and the Comptox Chemicals Dashboard

\$ EP∕	Models >	>> single as	says. And	d equivoca	als happen.
Endocrine mode available?	Advanced Search Batch Search Lists V Predictions Downloads Bisphenol A			Copy 🔻 Share 🗨 Submit Com	ment Q Search all data
	80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.				
DETAILS EXECUTIVE SUMMARY			: Models lel Predictions		
	Lownload ToxCast Model Predictions 💌		>0.1 = pos	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	equivocal
ENV. FATE/TRANSPORT	Model	Receptor	Agonist	Antagonist	Binding
HAZARD	1 ToxCast Pathway Model (AUC)	Androgen	0.00	0.345	-
ADME	1 ToxCast Pathway Model (AUC)	Estrogen	0.450	0.00	-
► EXPOSURE	COMPARA (Consensus)	Androgen	Inactive	Active	Active
- BIOACTIVITY	CERAPP Potency Level (From Literature)	Estrogen	Active (Weak)	-	Active (Weak)
TOXCAST: SUMMARY	CERAPP Potency Level (Consensus)	Estrogen	Active (Weak)	Active (Strong)	Active (Weak)
EDSP21	CERAPP = consensus ER QSAR	(from 17 groups)			
TOXCAST/TOX21	COMPARA = consensus AR QS/	AR (from 35 groups) (https://www.r	esearchgate.net/	project/CoMPARA-
PUBCHEM	Collaborative-Modeling-Project				
TOXCAST: MODELS			· · · · · ·		
SIMILAR COMPOUNDS	 ToxCast Pathway Model AUC E 	R = full ER model (18	assays)		
GENRA (BETA)	ToxCast Pathway Model AUC A	R = full AR model (11	. assays)		


SEPA ToxCast ER model

- The current model in the Dashboard is an update of the 2015 published model but still includes all 18 assays for agonist mode.
- This model has been accepted as an alternative for the ER binding, ER-TA, and Uterotrophic assays in the EDSP Tier 1 (https://www.federalregister.gov/documents/ 2015/06/19/2015-15182/use-of-highthroughput-assays-and-computational-toolsendocrine-disruptor-screening-programnotice).
- A newer publication describes how only 4 assays that cover key "receptors" or events in the activation of ER can achieve similar performance as the full model (https://doi.org/10.1016/j.yrtph.2017.09.022)
- OECD IATA proposal has been published and Defined Approach proposal being prepared

Set EPA


ToxCast AR model

https://doi.org/10.1021/acs.chemrestox.6b00347

- Similar approach to the ToxCast ER model, but also original version included a confidence score due to the possibility for cytotoxicity interference in antagonist mode.
- Reviewed by Scientific Advisory Panels in 2014 and 2017.
- The Dashboard provides values from the original model published in 2016; a forthcoming paper will recalculate these values with additional assay data.
- The use of the uncertainty bounds around both the ER and AR model scores can be helpful in understanding weak or borderline scores.
- Both the ER and AR models are most helpful in understanding relative bioactivity.
- New version with more assays has been developed.

HT-H295R model for steroidogenesis

SEPA

Follow-up on the HT-H295R model in prioritization and bioactivity evaluation

Regulatory Toxicology and Pharmacology 109 (2019) 104510

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

Check for updates

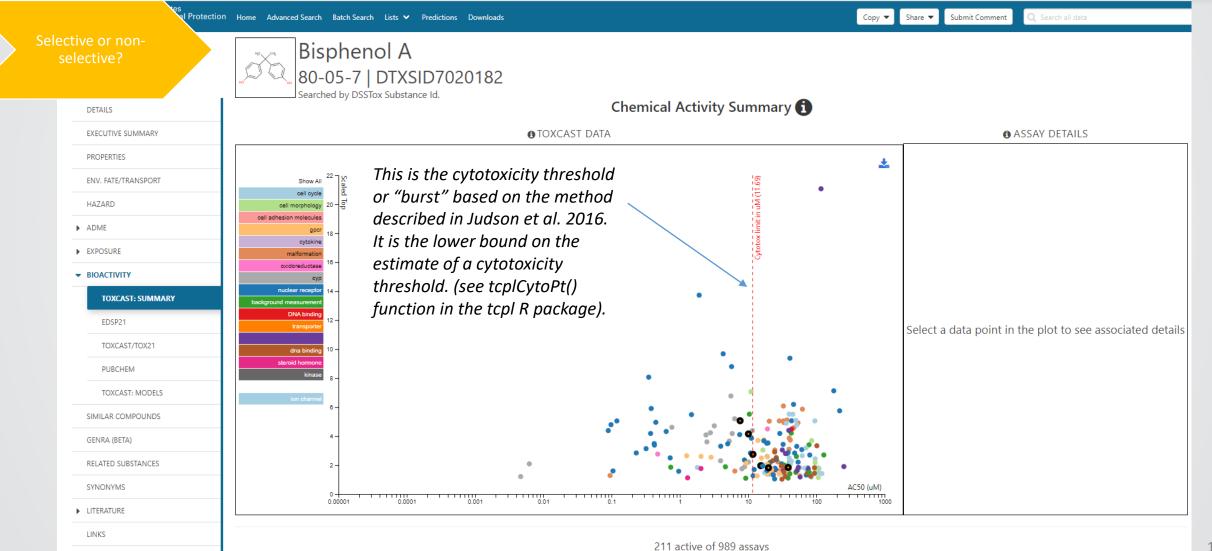
journal homepage: www.elsevier.com/locate/yrtph

Development of a prioritization method for chemical-mediated effects on steroidogenesis using an integrated statistical analysis of high-throughput H295R data

Derik E. Haggard^{a,b}, R. Woodrow Setzer^b, Richard S. Judson^b, Katie Paul Friedman^{b,*}

^a Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN, 37830, USA ^b National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA

- Data simulations suggest that covariances and variances among the 11 steroid hormones may be inherent to this assay.
- The mean Mahalanobis distance (mMd) approach demonstrated a false positive rate of less than 1%.
- The mMd approach has sufficient power to observe 1.5- to 2-fold changes in hormones and hormone combinations.
- Reference aromatase inhibitors were identified using the HT-H295R assay.
- A relative prioritization can be performed using cytotoxicity information and the maximum mMd.


- Evaluated the robustness, reproducibility, and power of the HT-H295R statistical model per feedback received at Scientific Advisory Panel review.
- Considered a case study: does the HT-H295R assay and model detect aromatase inhibitors?

Demonstrated the use of the HT-H295R statistical model in a selectivity-based prioritization exercise.

"Selectivity": comparing bioactivity to a lower bound prediction of cell stress and cytotoxicity

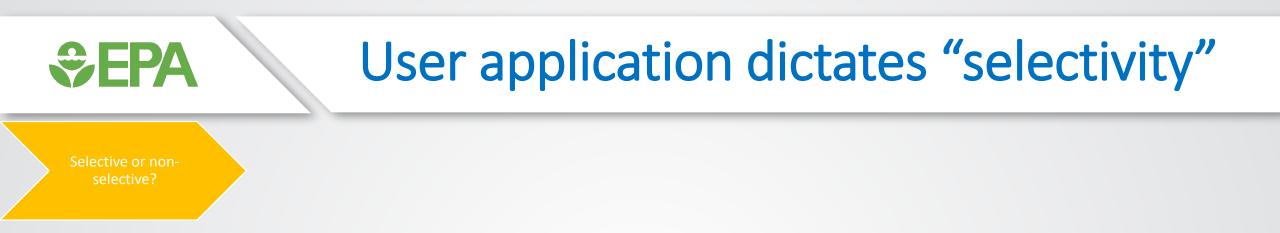
Bioactivity summary in the Dashboard

Summary of the assay data is in a table

Selective or non-								2	11 acti	ve ot 989	9 assay	S							
selective?										Sea	Search query Show Inactive Show Background								
	Modal	Description	SeqAPASS 🕈	AOP \$	Event \$	Hit Call ♀	<u>Top</u> ≑	Scaled Top 🗘	AC50	logAC50 ¢	Bmad \$	MaxMed	MaxMedConc \$	Cutoff \$	Flags 🗘	ModIAcc \$	ModIAc10 \$	ModIAcb \$	Intended Target Family
• ACEA_ER_80hr		2	NP_000116.2	200	1181	ACTIVE	112	4.18	0.373	-0.428	8.96	113 - percent_activity	0.301	26.9		-0.686	113	-0.686	nuclear receptor
APR_HepG2_CellLoss_24h_dn		-	-	-	-	ACTIVE	1.20	1.81	106	2.02	6.63e- 2	1.20 - log2_fold_induction	2.30	0.663		2.04	1.20	1.94	cell cycle
APR_HepG2_MitoMass_24h_dn		-	-	-	-	ACTIVE	0.874	1.76	109	2.04	4.96e- 2	0.867 - log2_fold_induction	2.30	0.496		2.05	0.867	1.95	cell morpholog
€ APR_HepG2_MitoMembPot_24h_dn		-	-	-	-	ACTIVE	5.92	7.07	11.0	1.04	8.38e- 2	6.45 - log2_fold_induction	1.70	0.838		0.813	6.45	0.646	cell morphology
APR_HepG2_OxidativeStress_24h_up		-	-	-	-	ACTIVE	1.20	1.47	110	2.04	8.19e- 2	1.19 - log2_fold_induction	2.30	0.819		2.08	1.19	1.97	cell cycle
APR_HepG2_CellLoss_72h_dn		-	-	-	-	ACTIVE	4.49	5.05	95.2	1.98	8.89e- 2	4.43 - log2_fold_induction	2.30	0.889		1.75	4.43	1.52	cell cycle
APR_HepG2_MitoMembPot_72h_dn		-	-	-	-	ACTIVE	2.71	3.69	85.3	1.93	7.33e- 2	2.26 - log2_fold_induction	2.30	0.733		1.70	2.26	1.36	cell morphology
APR_HepG2_MitoticArrest_72h_up		-	-	-	-	ACTIVE	1.66	1.17	84.7	1.93	0.142	1.44 - log2_fold_induction	2.30	1.42	Borderline active	2.29	1.44	1.71	cell cycle
APR_HepG2_OxidativeStress_72h_up		-	-	-	-	ACTIVE	1.80	1.65	106	2.02	0.110	1.60 - log2_fold_induction	2.30	1.10		2.08	1.60	1.82	cell cycle
ATG_Ahr_CIS_up		-	NP_001612.1	150	18	ACTIVE	1.31	1.32	23.4	1.37	0.199	1.28 - log2_fold_induction	2.00	0.994		1.56	1.28	1.34	dna binding

€EPA

 First
 <<</th>
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 >>>
 Last


Showing 1 to 10 of 211 records

"Burst:" thinking and updates

Selective or nonselective?

EPA

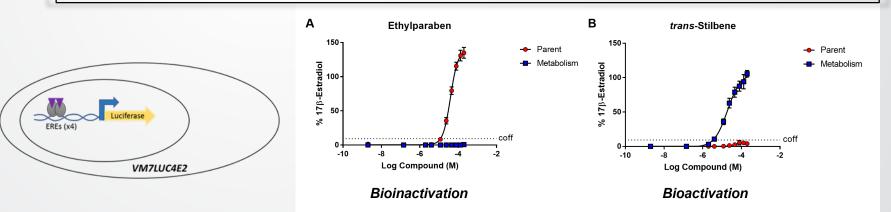
- In the Comptox Chemicals Dashboard released March 7, 2019 (version 3.0.5), the cytotoxicity threshold was erroneously displayed as the median. The value that should have been displayed was the lower bound on the estimate of cytotoxicity. The median would appear much higher than the anticipated lower bound (note that both the median and lower bound values were in the ToxCast database, invitrodb). The Dashboard was subsequently corrected in a bug fix release (version 3.0.8, May 10, 2019) to again show the lower bound estimate for the cytotoxicity threshold.
- The latest Comptox Chemicals Dashboard release (version 3.0.9, August 9, 2019) demonstrates a cytotoxicity threshold based on the latest ToxCast database (invitrodb version 3.2, released August 2019). This value can change as more cytotoxicity data become available or curvefitting approaches for existing data change.
- In invitrodb version 3.2, 88 assays are considered for the cytotoxicity threshold. A positive hit must be observed in 5% of these assays (noting that not all chemicals are screened in all 88 assays) in order to assign a cytotoxicity threshold. The cytotoxicity threshold is a median of AC50 potency values from the N assays with a hit. The cytotoxicity threshold visualized in the Dashboard is a lower bound on this estimate, calculated as the median cytotoxicity potency minus 3 times the global median absolute deviation. This is discussed further in a publication (10.1093/toxsci/kfw148) and the ToxCast Pipeline R package (tcpl) function, tcplCytoPt() (available on CRAN: https://cran.rproject.org/web/packages/tcpl/index.html). If fewer than 5 cytotoxicity assays demonstrate a positive hit, a default of 1000 micromolar is assigned for the chemical.
- The lower bound estimate of the cytotoxicity threshold or "burst" is useful context for ToxCast results. Bioactivity observed below the cytotoxicity threshold may represent more specific activity that is less likely to be confounded by cytotoxicity.
- It is possible that AC50 values above the cytotoxicity threshold are informative. If an assay has a parallel cytotoxicity assay in the same cell type, that may be more informative for interpreting that assay. Or, if a result is consistent with an AOP relevant to the chemical with assay AC50 values above and below the cytotoxicity threshold, those data may be meaningful.

- AC50 < burst?
- AC50 0.5log₁₀ distance from burst?
- AC50 < parallel viability assays?
- How else to filter ToxCast data: 3+ caution flags & hit-percent
- Other related ideas:
 - What other assays appear active in a similar concentration range?
 - Is there consistent support for MOA(s), or is it nonspecific activity?

The future: metabolism retrofitting and the ToxCast AR minimal assay model

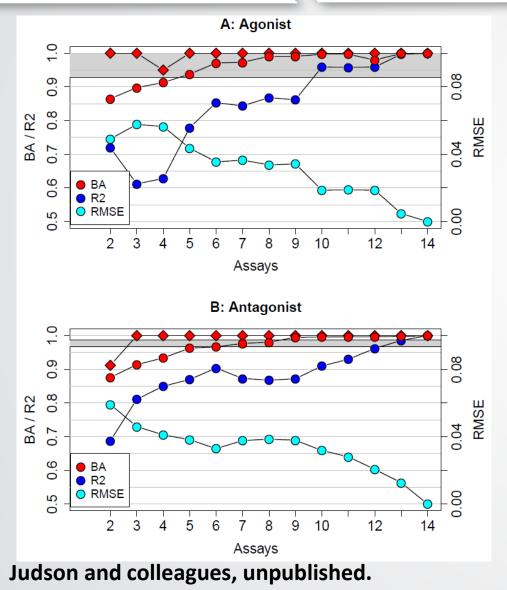
\$EPA

Retrofitting Metabolism to an Estrogen Receptor Transactivation Assay



AIME Method: S9 fraction immobilization in alginate microspheres on 96- or 384well peg lids

- Retrofitting Metabolism: AIME method suitable for biochemical- and cell-based HTS assays
- · Screening Throughput: Adaptable to 96- and 384-well screening platforms
- **Regulatory Relevance**: Integration of phase I liver metabolism for hazard identification of parent and metabolite endocrine activity
- · Results: Evaluation of a 63 chemical test set supports metabolic screening for -
 - Refinement of prioritization for ER-active substances based on metabolite effects
 - In some cases, supports more accurate prediction of *in vivo* effects for biotransformed substances



Parallel evaluation of parent compound and metabolites identifies false positive and false negative effects

Deisenroth and colleagues, unpublished.

Judson and colleagues: ToxCast AR minimal assay model

- Agonist batteries of as few as seven assays and antagonist batteries of as few as five assays can yield balanced accuracies of 95% or better relative to the full model.
- These subset models are evaluated against 1820 chemicals evaluated in the full model, as well as *in vitro* and *in vivo* reference chemicals derived from the literature.
- An approach is outlined for researchers to develop their own subset batteries to accurately detect AR activity using assays that map to the pathway of key molecular and cellular events involved in chemical-mediated AR activation and transcription factor activity.
- This work follows up on suggestions from the 2017 Scientific Advisory Panel review of the full ToxCast AR model.

OECD IATA and DA Progress

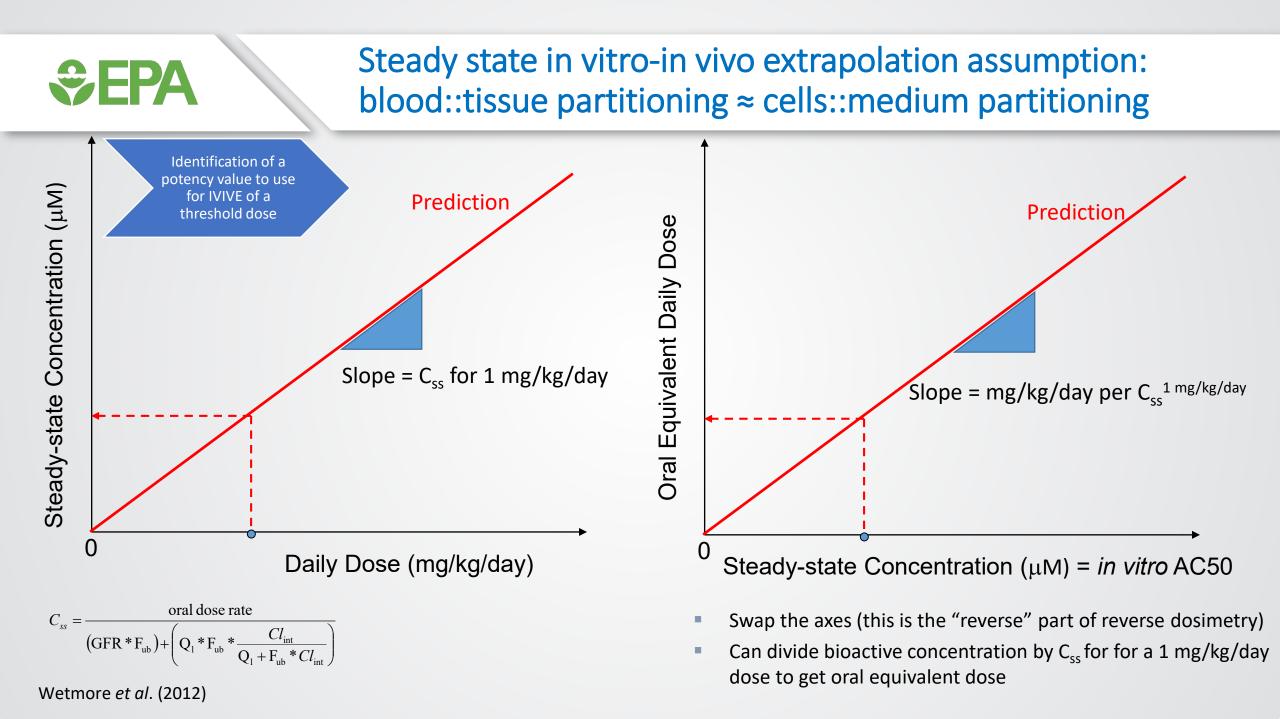
- Two IATAs using ER modeling have been published by OECD
- Case Study 309: The ER pathway model and subset versions (EPA)
 - <u>http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO</u> (2019)28&docLanguage=en
- Case Study 290: Use of ER modeling for Hindered Phenols (led by Health Canada)
 - <u>http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO</u> (2018)26&docLanguage=En
- IATA for AR model and subsets in preparation
 - Follows the ER model IATA closely

EPA

- Defined Approach (DA) for the ER model being planned
 - Partners: EPA, EFSA, NICEATM, JRC
 - Will include both in vitro assays and QSAR model

Conclusions

- Understanding the analytical quality control of samples screened in ToxCast/Tox21 and the amenability of the substance for current *in vitro* screens can be informative.
- In silico QSARs for xenobiotic-modulated ER and AR activity are available; these predict binding and agonist/antagonist modes based on sub-model consensus.
- ToxCast ER and AR models evaluate ER and AR agonism and antagonism based on HTS bioactivity assays for binding, cofactor recruitment, translocation, transcription factor activity, and in the case of ER, ER-dependent cell proliferation. These models also consider sources of interference, including cytotoxicity. Thus these models represent a more integrated and superior hazard prediction to single assays alone.
- The ToxCast HT-H295R model has been reviewed by a Scientific Advisory Panel and published in a trilogy of papers on the methods, modeling and comparison to the interlaboratory validation of the H295R assay, and then evaluation and use of the model in prioritization.
- The ToxCast ER and AR models are proceeding through OECD processes for development of IATAs and DAs.
- Future improvements to modeling approaches including metabolism are being developed.


Sepa Acknowledgments

- Thank you for listening.
- Please reach out to us if you need support or explanations for a specific case, or if you find issues.

Appendix slides on IVIVE and risk using publicly available tools

\$EPA	A IVIVE via high-throughput toxicokinetic data and models										
Identification of a potency value to use			• • • •	can be downloade uivalent doses (AE	ed from CRAN or GitHub for EDs)						
for IVIVE of a threshold dose	 For some substances, there is a beta tab in the Dashboard with Css and other values needed (no models). More chemicals have information in the httk package. 										
	• AC50 or LE	C (micromolar) *	(1 mg/kg/day/C	ss (micromolar)) =	= AED prediction						
		ge optionally imp ata available	plements multiple	e models that can	have increasing complexity						
Separate United States Environmental Protection Home Advanced Search Batch Agency				Copy 🔻 Share 🔻 Su	Submit Comment Q Search all data						
S 80-05-	PENDIA -7 DTXSID7020182 y DSSTox Substance Id.	IVIV	E		Search query						
ENV. FATE/TRANSPORT	\$	Measured \$	Predicted 🗘	Computed 🗘	Unit	\$					
HAZARD	rance	19.29	-	-	uL/min/million hepatocytes						
Fraction Unbound in Human F	Plasma	0.07	-	-							
		-	-	6.69	L/kg Days						
K Half Life		-	-	29.83	hours						
EXPOSURE Human Steady-State Plasma C	Concentration	-	-	1.98	mg/L						
► BIOACTIVITY											

SEPA

Bioactivity:exposure ratio requires exposure

Comparison to exposure predictions for a bioactivity:exposure ratio

• Currently the Dashboard shows SEEM2 (2014) values

	Bisphenol A 80-05-7 DTXSID7020182 Searched by DSSTox Substance Id.			
DETAILS		🚺 Ex	posure Predictions (mg/kg-bw/day)
EXECUTIVE SUMMARY	🕹 Download 👻			
PROPERTIES				
ENV. FATE/TRANSPORT	Demographic	\$	Median ÷	95th Percentil
	Ages 6-11		6.30e-5	5.82e-3
HAZARD	Ages 12-19		2.68e-5	2.00e-3
ADME	Ages 20-65		2.05e-5	1.61e-3
EXPOSURE	Ages 65+		1.61e-5	2.18e-3
PRODUCT & USE CATEGORIES	BMI > 30		1.69e-5	1.45e-3
	BMI < 30		2.67e-5	2.26e-3
CHEMICAL WEIGHT FRACTION	Repro. Age Females		1.11e-5	1.57e-3
CHEMICAL FUNCTIONAL USE	Females		1.11e-5	9.09e-4
TOXICS RELEASE INVENTORY	Males		3.89e-5	3.34e-3
			2.11e-5	2.00e-3

Set EPA

Comparison to exposure predictions for a bioactivity:exposure ratio

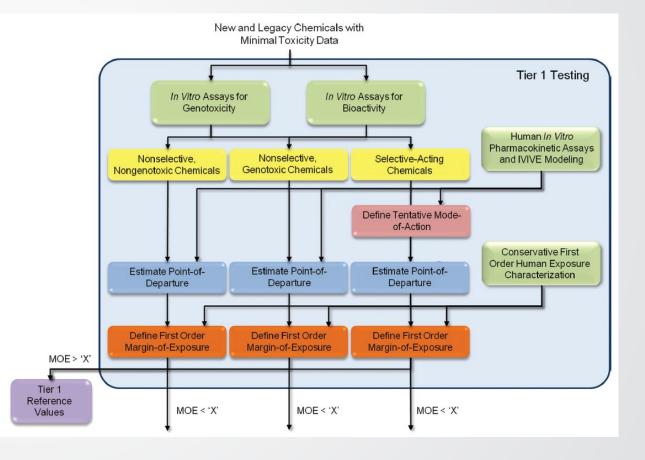
Consensus modeling of chemical exposure based on pathways: ExpoCast SEEM3

- "ExpoCast SEEM3" model:
 - uses twelve different exposure predictors including both nearand far-field models;
 - covers four distinct exposure pathways: non-pesticidal dietary, consumer products, far-field pesticide, and far-field industrial.
 - In SEEM3 each exposure predictor is scaled and centered such that chemicals without a value for a predictor relevant to its exposure pathways are assigned the average value.

Article

pubs.acs.org/est

Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways


Caroline L. Ring,^{†,§,∞} Jon A. Arnot,^{∥,⊥,#} Deborah H. Bennett,[∇][®] Peter P. Egeghy,[‡] Peter Fantke,[○][®] Lei Huang,[◆][®] Kristin K. Isaacs,[‡][®] Olivier Jolliet,[◆][®] Katherine A. Phillips,[‡][®] Paul S. Price,[‡][®] Hyeong-Moo Shin,[¶][®] John N. Westgate,^{∥,°} R. Woodrow Setzer,[†] and John F. Wambaugh*^{*,†}[®]

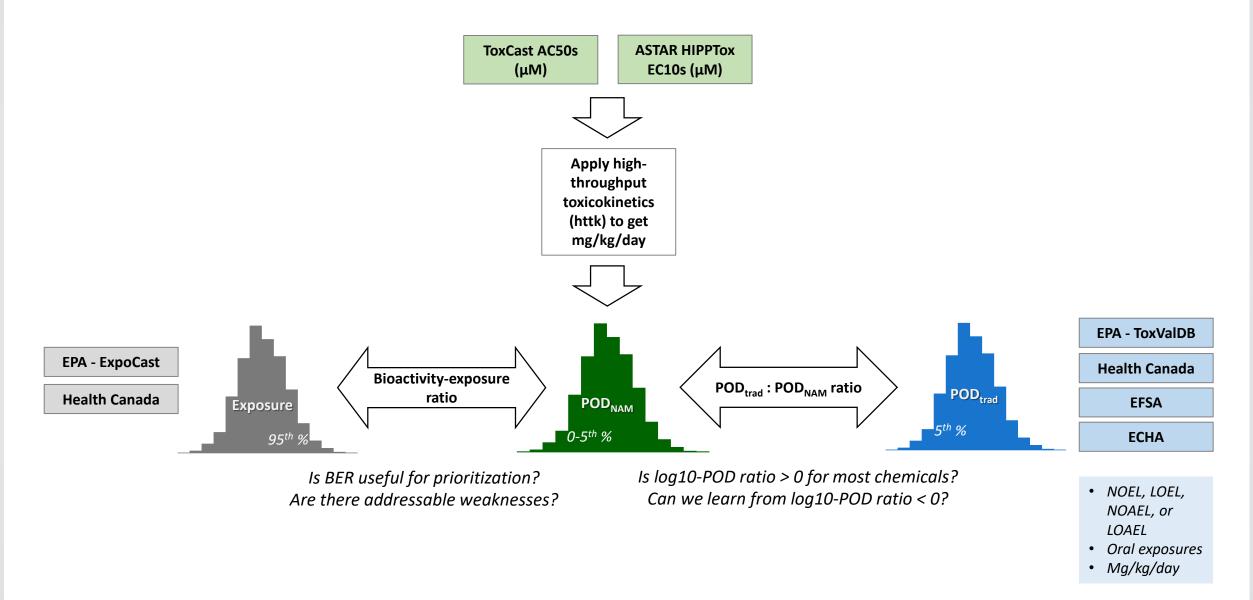
Use of predictive science in chemical safety should include risk-based approaches like BER

• Specific vs. nonspecific modes-of-action and the challenge of hazard labeling

Thomas et al. 2013 suggested a framework for hazard assessment that would be largely customized based on MOE (or now, BER).

SEPA

\$EPA


Screening level assessment: combine NAMs for exposure, *in vitro* bioactivity, and toxicokinetics

- Conducted by Accelerating the Pace of Chemical Risk Assessment (APCRA)
 - *"international cooperative collaboration of government agencies convened to address barriers and opportunities for the use of new approach methodologies (NAMs) in chemical risk assessment" (Paul Friedman et al., accepted)*
- Two case studies including a large retrospective analysis and a prospective analysis
- A poster on these two case studies won the Top Abstract Award from the Risk Assessment Specialty Section at SOT 2019
- First case study paper just accepted at <u>Toxicological Sciences</u>

Tune in for our Communities of Practice Webinar on 9/26/19, 11:00 AM- 12:00 PM EST

Case study workflow

Prioritize chemicals based on BER for all bioactivity or for some target bioactivity

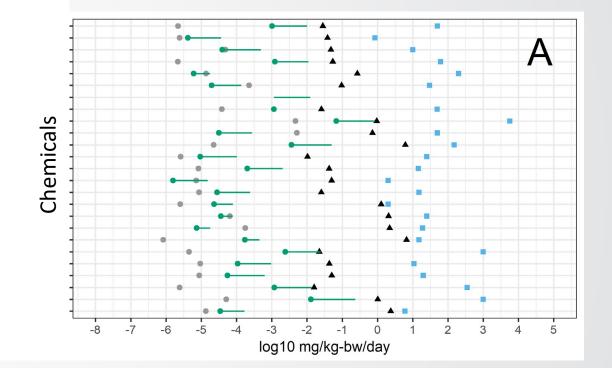


Figure 3 from Paul Friedman et al. accepted.