

High-Throughput Transcriptomics (HTTr): Pipeline Updates and Concentration-Response Modeling

EU-ToxRisk Seminar

Dec 18, 2019

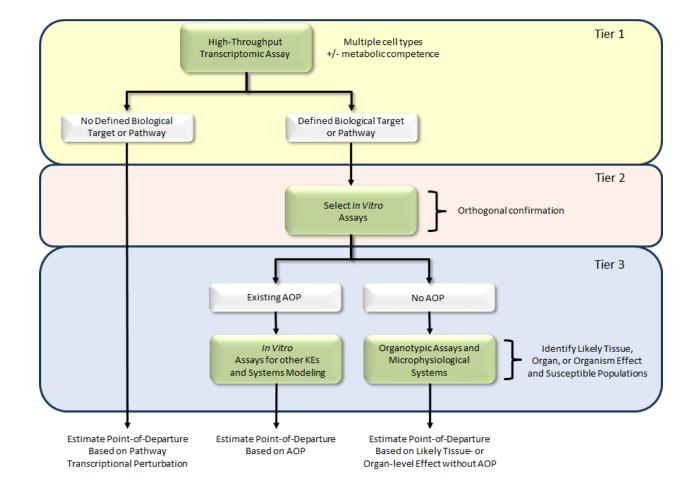
Imran Shah

Center for Computational Toxicology & Exposure

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Outline

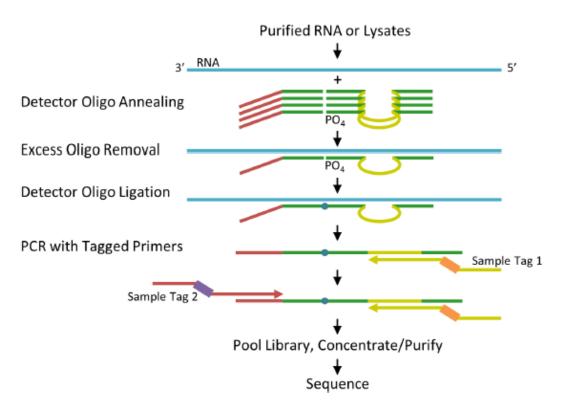
- Why transcriptomics and TempO-Seq?
- The high-throughput transcriptomics (HTTr) assay
- Processing pipeline and data management
- Platform reproducibility & differential expression
- Concentration-response analysis


Objectives

A strategic vision and operational road map for computational toxicology at the U.S. Environmental Protection Agency [DRAFT]

 A flexible, portable and cost efficient platform to comprehensively evaluate the potential biological pathways and processes impacted by chemical exposure

→ High-throughput transcriptomics (HTTr)


- Identify the concentration at which biological pathways/processes begin to be impacted
- Assign putative biological targets for chemicals

TempO-Seq for HTTr

- The **TempO-Seq** human whole transcriptome assay measures the expression of ~21,100 transcripts.
- Requires only picogram amounts of total RNA per sample.
- Compatible with purified RNA samples or cell lysates.
- Transcripts in cell lysates generated in 384-well format barcoded to well position
- Scalable, targeted assay:
 - Measures transcripts of interest
 - Greater throughput and requires lower read depth than RNA-Seq
 - Ability to attenuate highly expressed genes

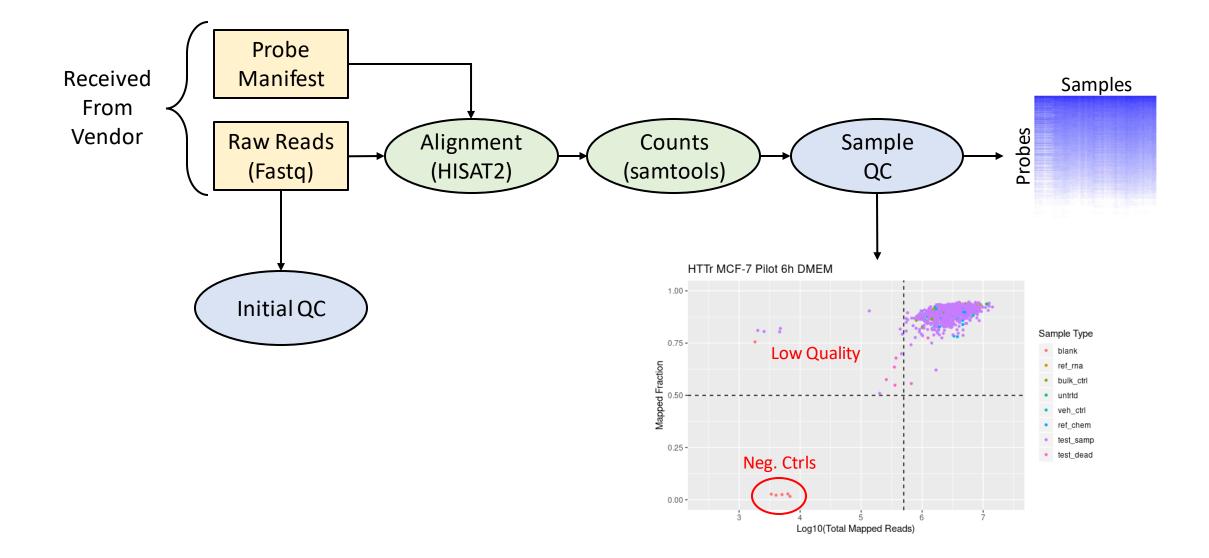
TempO-Seq Assay Illustration

HTTr Experiments (more coming in 2020)

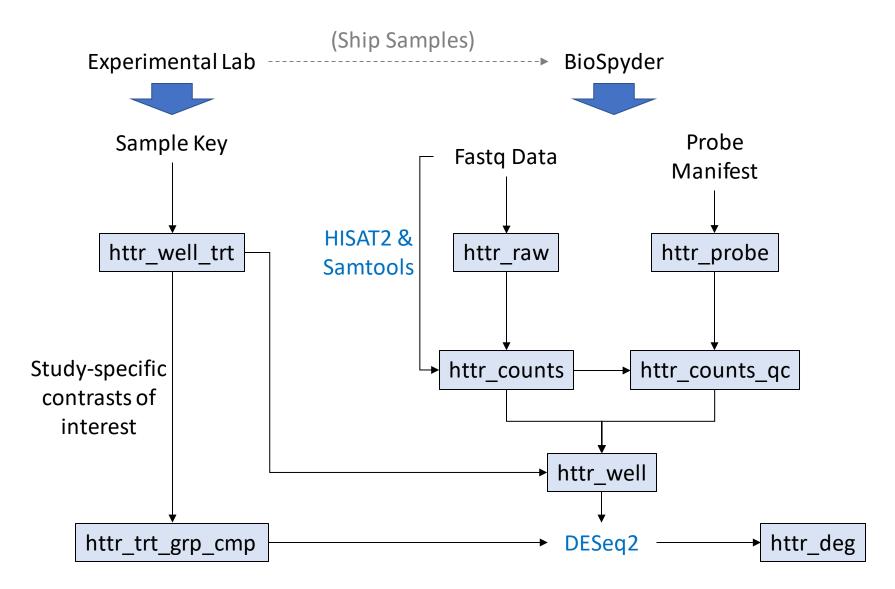
- Cell type: MCF7
- Compounds: 44 chemicals
- Time points: 6 , 12, 24 h
- Media: PRF- / PRF+ (DMEM +10% HI-FBS)
- Concentration Response: 8
- Replicates: 3
- Data: 6,804 samples x 21,111 transcripts

MCF7-Pilot

Pilot study to validate workflow, refine experimental design, and develop analysis pipeline


HTTR-PhI

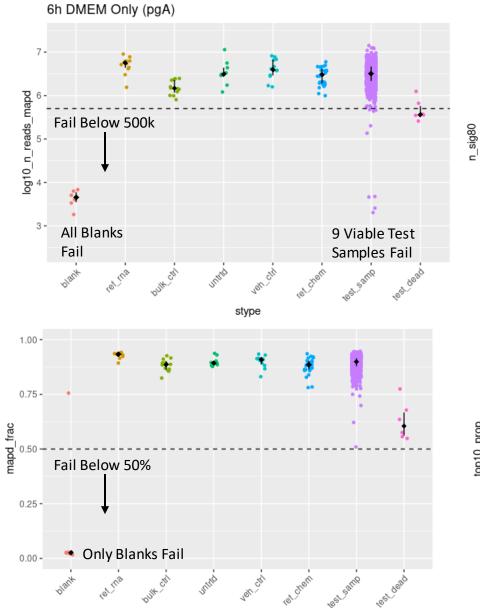
Large-scale screen (Ongoing)


- Cell type: MCF7
- Compounds: 2,200
- Time Point: 6h
- Media: PRF+
- Concentration Response: 8
- Replicates: 3
- Data: ~53,000 samples x 21,111 transcripts

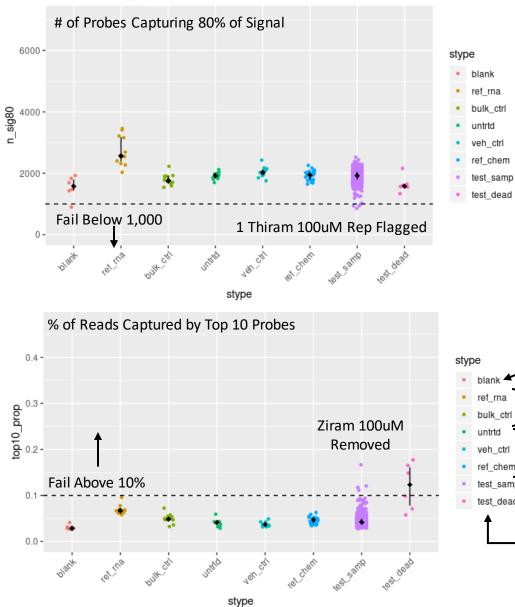
HTTr Processing Pipeline

Pipeline: Raw Data Processing

HTTr Data Management


Scheduled backups Recovery plan Rapid export Open-source tech

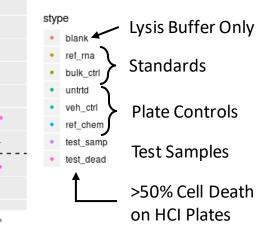
Raw Processing Options


- Alignment Pipeline using HISAT2, comparable to STAR
 - Now trims 51bp reads prior to alignment
 - Allowed soft-clipping with per base penalty
- Probe Homology can be an issues
 - Mapped homology within probe manifest (some probes have 49bp overlap)
 - >95% of reads map uniquely to one probe with current parameters
 - HISAT2 was better at resolving unique matches for homologous probes
 - Multi-mapping probes discarded for final counts

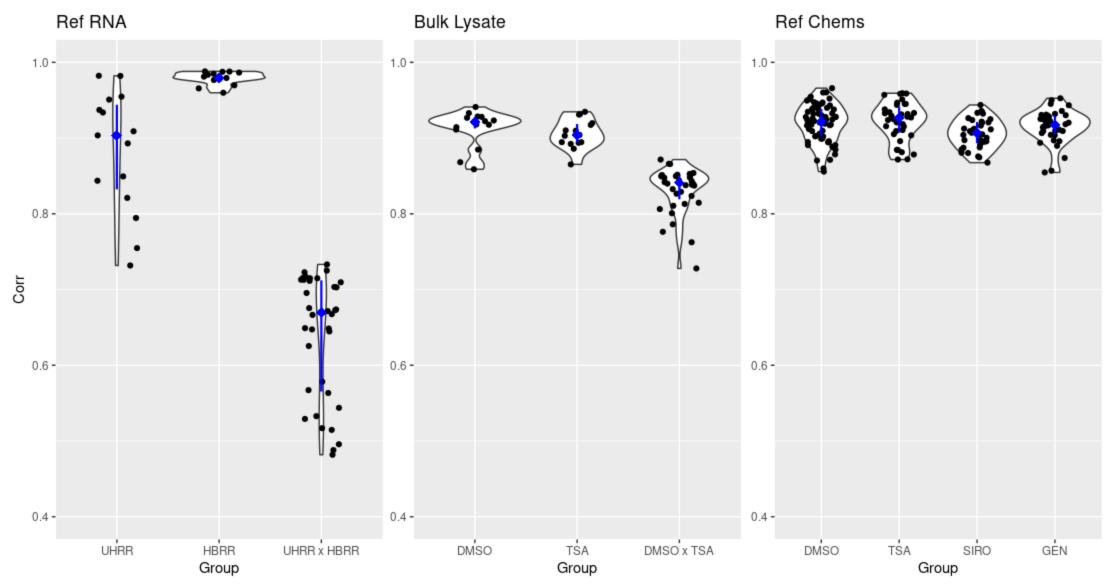
QC Metrics to Filter Samples

6h DMEM Only (pgA)

stype



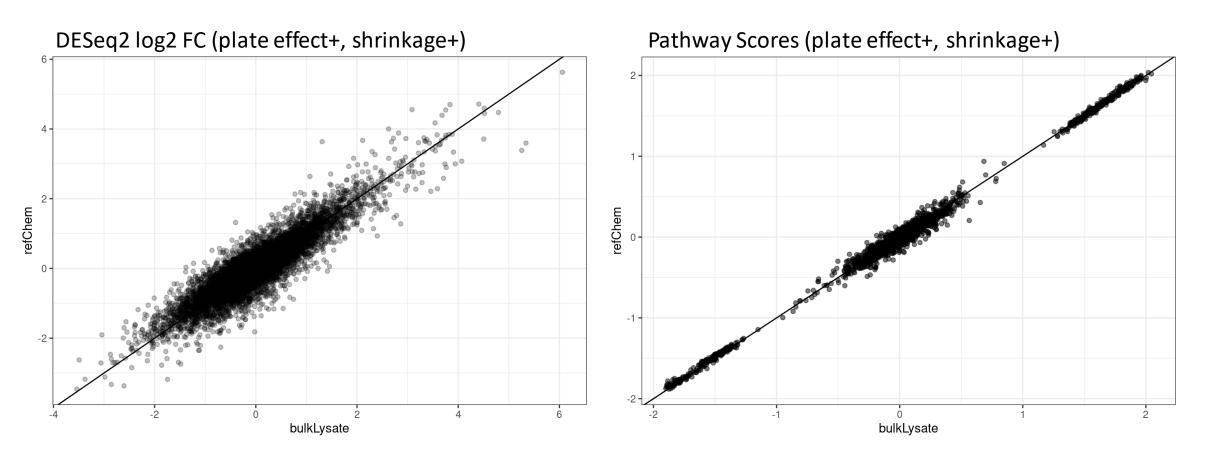
1,039 (98%) test samples pass all QC checks


Other QC Metrics:

- Ncov5 = Number of probes with at least 5 reads
- Gini Coefficient = Measure of inequality

Track with metrics shown

Reproducibility: MCF7 Pilot DMEM 6h



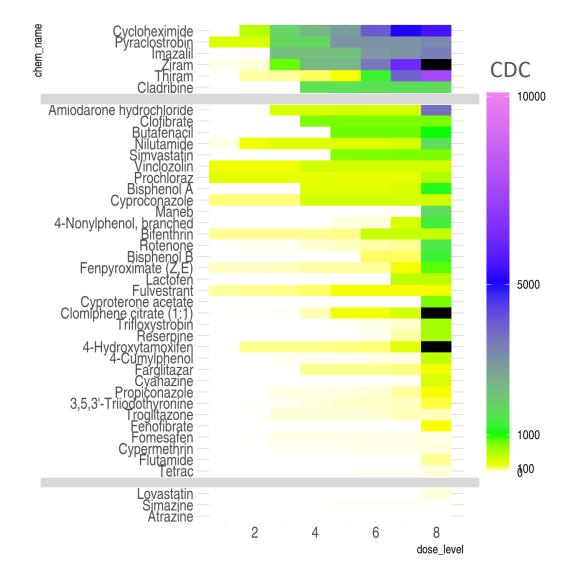
Differential Gene Expression Analysis

- Most recent version of DESeq2 (v??)
 - Evaluated questions about choice of plate effect and shrinkage using reference chemicals
 - Newer shrinkage methods (Ashr, Apeglm) results less reliable
- DEG analysis by four DESeq2 options:-
 - 1. Plate effect , Shrinkage -
 - 2. Plate effect , Shrinkage +
 - 3. Plate effect + , Shrinkage -
 - 4. Plate effect + , Shrinkage + (Recommended)

Reproducibility: MCF7 Pilot DMEM 6h

• TSA Treatment Effect: Bulk Lysate Control vs Plated Reference

Related Complete

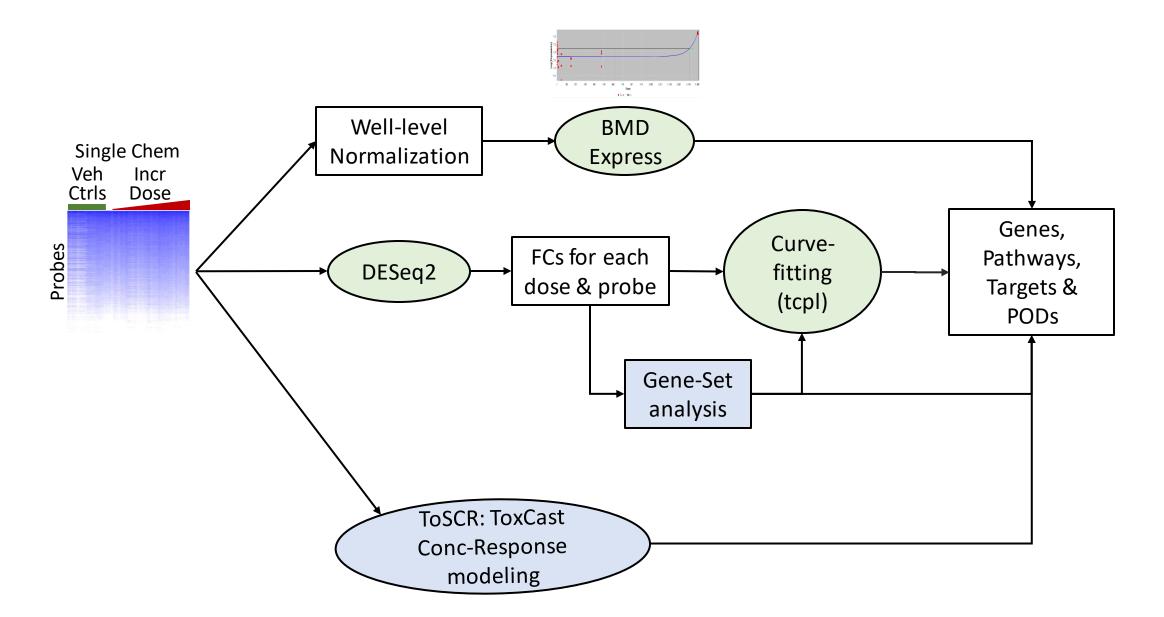

Slide Deck

MCF7 Pilot DMEM 6h DEGs

- Summarize DEGs for all chemicals & concentrations
- Propose DEG Metric = sum(probes w/ DESeq2 q value < 5% FDR)
- Cumulative DEG Count (CDC)

sum(unique(

probes w/ DESeq2 q < 0.05 in current dose, probes w/ DESeq2 q < 0.05 in any lower dose))


Putative Targets, Pathways & Potencies

MCF7 Pilot:

Cell type: MCF7 Compounds: 44 chemicals Time points: 6 h Media: DMEM Concentrations: 8 Replicates: 3 Data: 6,804 samples x 21,111 transcripts

Name	CASRN	Target annotation	Target key
3,5,3'-Triiodothyronine	6893-02-3	Thyroid hormone receptor agonist	thyroid
4-Cumyl phenol	599-64-4	ER agonist	ER
4-Hydroxytamoxifen	68392-35-8	ER a n ta go nist	ER
4-Nonylphenol, branched	84852-15-3	ER agonist	ER
Ami odarone hydrochloride	19774-82-4	Blocks myocardial Ca , K, Na channels	ion channel
Atrazine	1912-24-9	Herbicide, photosystem II i nhibitor	electron chain
Bifenthrin	82657-04-3	Sodium channel modulator	ion channel
Bisphenol A	80-05-7	ER agonist	ER
Bisphenol B	77-40-7	ER agonist	ER
Butafenacil	134605-64-4	Herbicide, protoporphyrinogen oxidase (PPO) inhibition	Plant PPO
Cladribine	4291-63-8	DNA synthesis inhibitor	DNA
Clofibrate	637-07-0	PPARa agonist, upregulates extrahepatic lipoprotein lipase	PPAR
Clomiphene citrate (1:1)	50-41-9	ER a n ta go nist	ER
Cyanazine	21725-46-2	Herbicide, photosystem II inhibitor	electron chain
Cycloheximide	66-81-9	Protein synthesis i nhibitor	proteinsynthesis
Cypermethrin	52315-07-8	Sodi um channel modulator	ion channel
Cyproconazole	94361-06-5	Ergosterol-biosynthesis i nhibitor. Pan-cyp i nhibitor	CYPs
Cyproteroneacetate	427-51-0	AR a nta gonist	AR
Farglitazar	196808-45-4	PPARgagonist	PPAR
Fenofibrate	49562-28-9	PPARa agonist, upregulates extrahepatic lipoprotein lipase	PPAR
Fenpyroximate (Z,E)	111812-58-9	Mitochondrial electron transport in hibitor	mitochondria
Flutamide	13311-84-7	AR antagonist	AR
Fomesafen	72178-02-0	Herbicide, protoporphyrinogen oxidase (PPO) inhibition	Plant PPO
Fulvestrant	129453-61-8	ER a nta gonist	ER
Imazalil	35554-44-0	Ergosterol-biosynthesis i nhibitor. Pan-cyp i nhibitor	CYPs
Lactofen	77501-63-4	Herbicide, protoporphyrinogen oxidase (PPO) inhibition	Plant PPO
Lovastatin	75330-75-5	HMGCR inhibitor	cholesterol
Maneb	12427-38-2	Inhibits metal-dependant and sulfhydryl enzyme systems	prote in reactive
Nilutamide	63612-50-0	AR antagonist	AR
Prochloraz	67747-09-5	Ergosterol-biosynthesis inhibitor. Pan-cyp inhibitor	CYPs
Propiconazole	60207-90-1	Ergosterol-biosynthesis i nhibitor. Pan-cyp i nhibitor	CYPs
Pyraclostrobin	175013-18-0	Mitochondria (complex III in hibitor)	mitochondria
Reserpine	50-55-5	inhibition of the ATP/Mg2+ pump	adrenergic
Rotenone	83-79-4	Mitochondria (complex Linhibitor)	mitochondria
Simazine	122-34-9	Herbicide, photosystem II inhibitor	electron chain
Simvastatin	79902-63-9	HMGCR inhibitor	cholesterol
Tetrac	67-30-1	T4 synthesis i nhibitor	thyroid
Thiram	137-26-8	Inhibits metal-dependant and sulfhydryl enzyme systems	proteinreactive
Trifloxystrobin	141517-21-7	Mitochondria (complex III in hibitor)	mitochondria
Troglitazone	97322-87-7	PPARg, PPARa agonist	PPAR
Vinclozolin	50471-44-8	AR a nta gonist	AR
Ziram	137-30-4	Inhibits metal-dependant and sulfhydryl enzyme systems	prote in reactive

Pipeline: Targets & Concentration Response

Gene Set Selection: Pathways and Treatments

Canonical Pathway gene sets

- Select 500 pathways from MSigDB and BioPlanet related to chemical targets
- Randomly select another 500 gene sets/pathways from MSigDB, BioPlanet
- Create CMap gene sets with chemicals in class of the 44 chemicals
- Add the ER-specific pathways
- Total canonical pathways = 2277

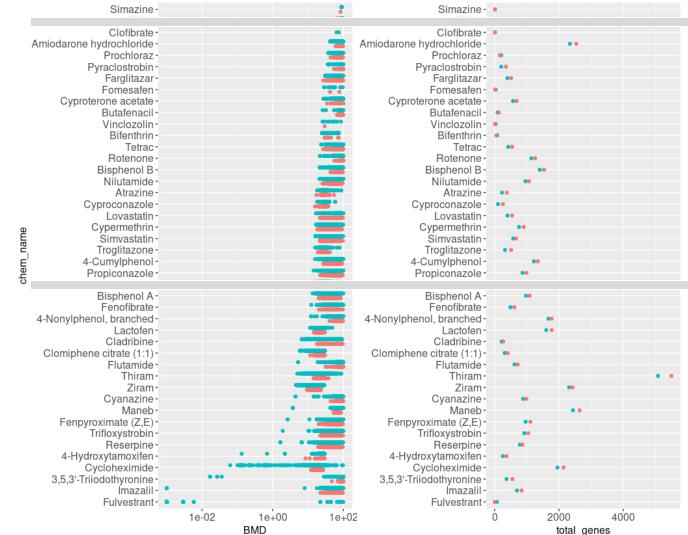
Random Gene sets

- For null distribution
- Create 500 random gene sets with mean 100, SD=40
- Total random pathways = 500

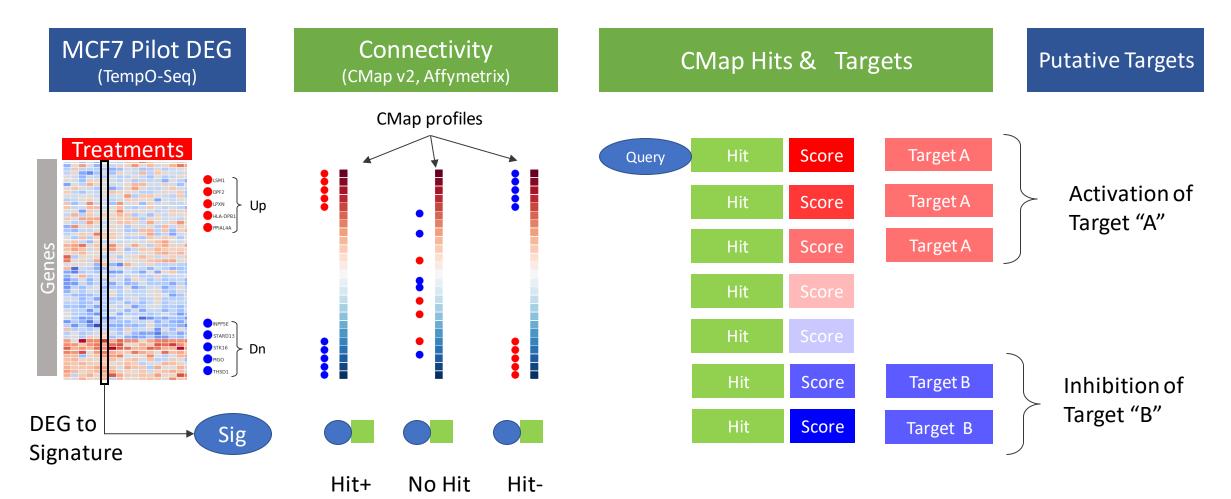
Total pathways = 2777

MCF7 Pilot DMEM 6h

All Pathway Hits

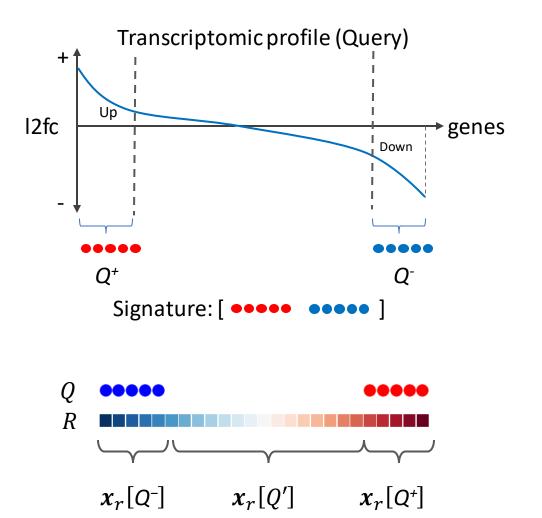

Total Genes Used

type 🔹 Random 🔹 Real


type • Random • Real

BMD Express

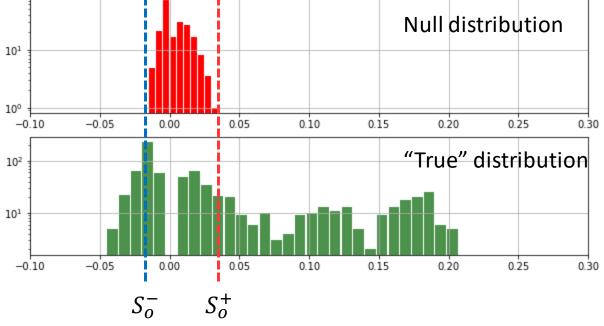
- Ran BMDExpress using models and parameters specified in NTP RR 5
 - <u>https://ntp.niehs.nih.gov/ntp/results/pubs/rr/reports/rr05_508.pdf</u>
 - Using BMR Factor = 1.349 instead of 1
 - Using fold-change cutoff of 2x, no other prefilter
- Summarized probe-level BMD values at pathway level following the guidelines in NTP RR 5
 - Consider only BMDs < top dose, BMDU/L < 40, p-value > 0.1
 - Take median of these BMDs for pathways with at least 3 passing genes, 5% coverage
 - Used same pathway collection as for Richard's tcpl analysis
 - Included random gene sets but computed min BMD for each chemical separately for random and real gene sets
 - 0.001 uM was used as a minimum limit for pathway level BMDs (Fulvestrant and Imazalil)


Putative Targets by Gene Set Connectivity

Cmap v2: MCF7: 1294 chems Profiles for all cell types 6100

Connectivity Analysis

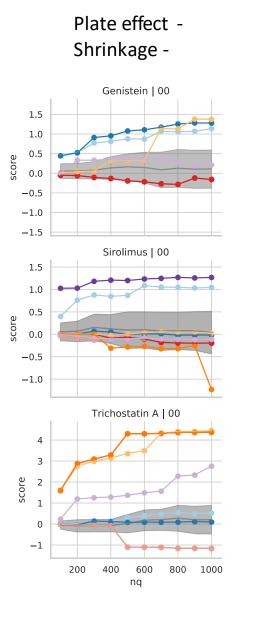

- A query signature Q containing q genes
 - $Q = \{g_1, g_2, \dots, g_j, \dots, g_q\}$
 - A directional signature (i.e. defined by Q⁺ and Q⁻)
- A query vector x_q containing l2fc or Z-scores
- A reference transcriptomic profile
 x_r containing m genes (where m>q)
- A reference transcriptomic signature
 - $R = \{g_1, g_2, \dots, g_j, \dots, g_m\} = \{R^+, R^-\}$
- Genes not in the signature, Q' = R Q
- The subset of the reference transcriptomic profile containing query genes $x_r[Q]$ or not containing query genes $x_r[Q']$



Evaluating Hit Significance Empirically

- Permute DEG matrix for MCF7 Pilot to create random gene expression profiles
- Column shuffle and generate N random profiles

- Search signatures against MCF7 Pilot and randomized MCF7 Pilot (to obtain null dist)
- Estimate significance for Up and Down hits separately



Gene Set Connectivity Scoring Methods

Score	Method	Reference
T-statistic	$ts = \frac{\overline{x_r[Q]} - \overline{x_r[Q']}}{\sqrt{\frac{\sigma_q^2}{q} + \frac{\sigma_{q'}^2}{q'}}}; \sigma_q^2 = \frac{1}{N} \sum_{i \in Q} (x_{ri} - \overline{x_r[Q]})^2, \sigma_{q'}^2 = \frac{1}{N} \sum_{i \in Q'} (x_{ri} - \overline{x_r[Q']})^2$	Tian et al. 2005; Goeman et al. 2004, 2005
Ranksum statistic	$rs = \min\left(qq' + \frac{q(q+1)}{2} - \sum y_r, qq' + \frac{q'(q'+1)}{2} - \sum y'_r\right); \ y = rank(x)$	Barry, Nobel, and Wright 2005; Gower, Spira, and Lenburg 2011
Gene Set Enrichment analysis (GSEA)	$ES = max_{1 \le j \le m} (S_i - S'_i); \ S_i = \sum_{\substack{i \in Q \\ j \le i}} \frac{ x_j ^b}{\sum_{i \in Q} x_i ^{b'}} \ , S'_i = \sum_{\substack{i \in Q' \\ j \le i}} \frac{ x_j ^b}{\sum_{i \in Q} x_i ^b}$	Mootha et al. 2003; Subramanian et al. 2005
Total enrichment score (TES)	$TES = 1 - \frac{ES^+ - ES^-}{2}$	Iorio, Tagliaferri, and Bernardo 2009
eXtreme Pearson correlation (xpc)	$\frac{cov(\boldsymbol{x}_{q},\boldsymbol{x}_{r})}{\sigma_{q}\sigma_{r}}$	Tenenbaum et al. 2008
eXtreme Spearman Correlation (xsc)	$\frac{cov(y_q, y_r)}{\sigma_{y_q}\sigma_{y_r}}, y = rank(x)$	Tanner and Agarwal 2008
eXtreme Sum (XSum, xs)	$\sum_{i\in Q^+} x_{ri} - \sum_{i\in Q^-} x_{ri}$	Cheng et al. 2014
eXtreme Cosine (XCos, xc)	$\frac{x_q \cdot x_r}{ x_q x_r }$	Cheng et al. 2012
Jaccard index (ji)	$J(Q,R) = \frac{Q \cap R}{Q \cup R}$	
Signed Jaccard (sji)	$\frac{J(Q^+,R^+) + J(Q^-,R^-) - J(Q^+,R^-) - J(Q^-,R^+)}{2}$	Zichen Wang et al. 2016

Connectivity Mapping: Reference Chemicals

Gene set-based connectivity mapping correctly identifies targets of reference chemicals

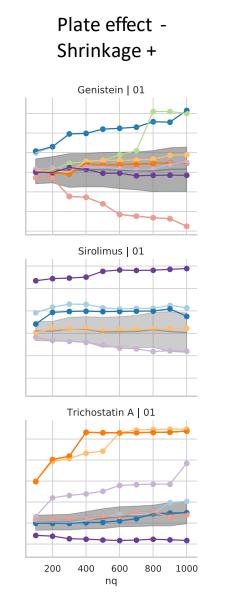
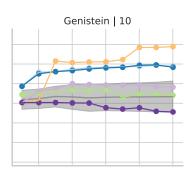
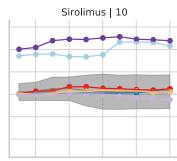
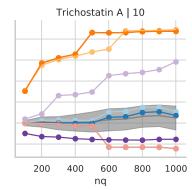
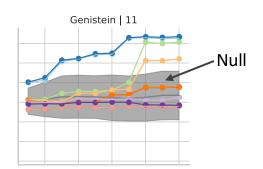
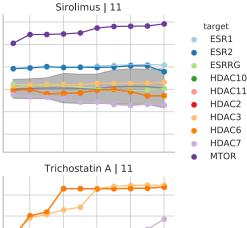
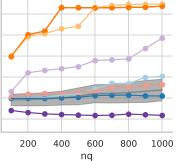
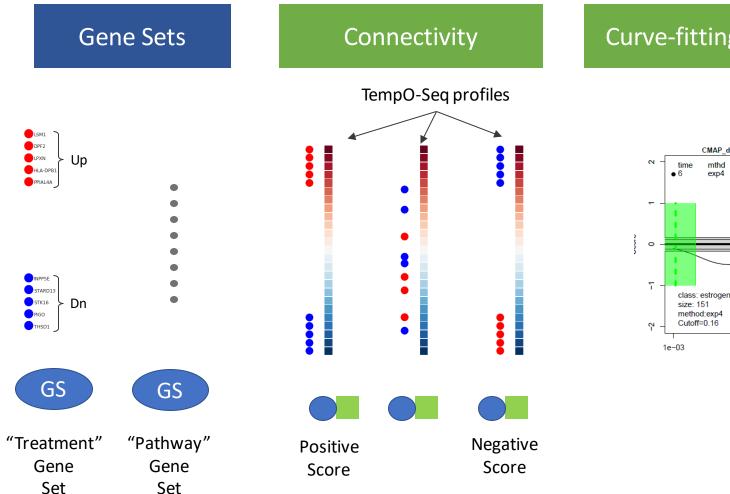
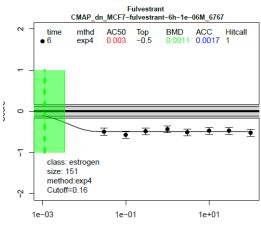




Plate effect + Shrinkage -

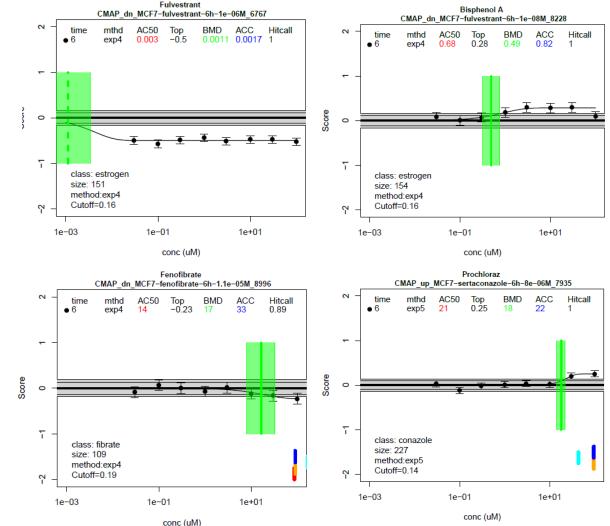






Plate effect + Shrinkage +

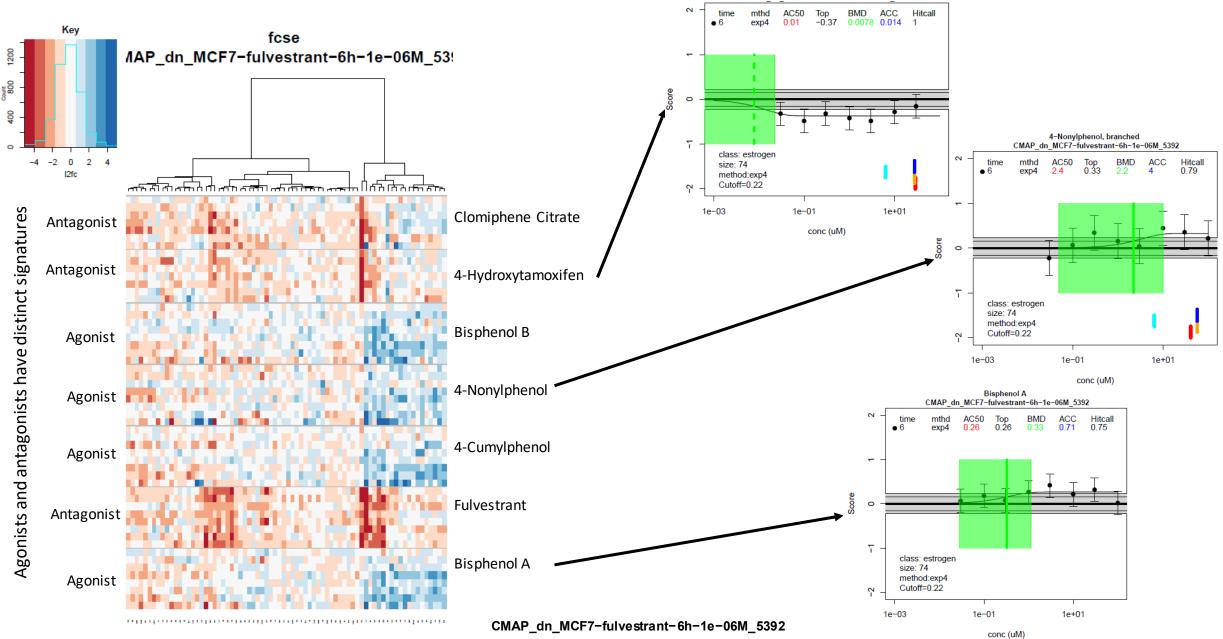


Gene Set Concentration-Response

Curve-fitting Gene-Set Scores

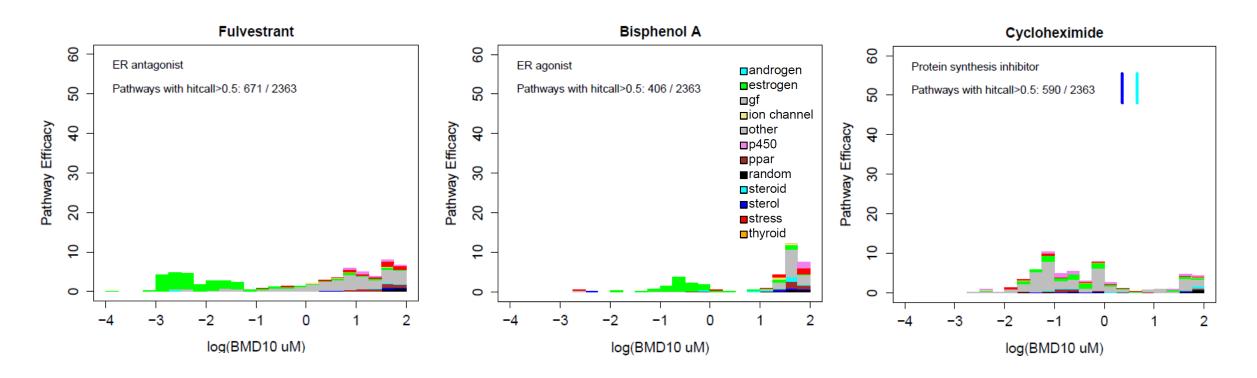


conc (uM)


Summarize BMD scores for each Chemical across gene sets to obtain A potency distribution

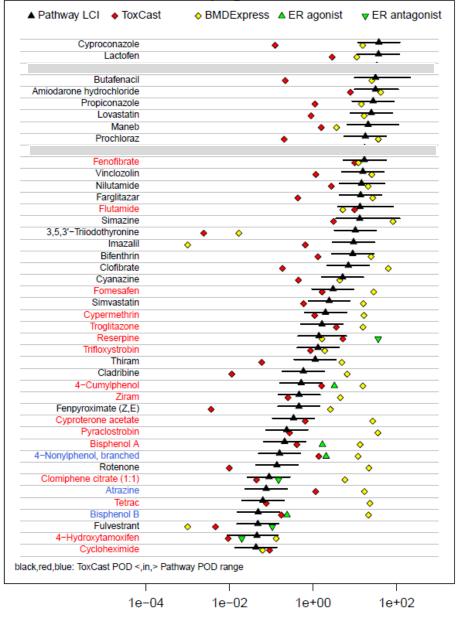
Gene Set Concentration Response

- Calculate the pathway score for each pathway for the 44 real and 1000 random chemicals for each condition and concentration
- Random set forms null distribution for concentrationresponse modeling
- Do concentration-response modeling for 44+1000 chemicals
- Do post-processing analyses



Example: Estrogen

4-Hydroxytamoxifen CMAP dn MCF7-fulvestrant-6h-1e-06M 5392


Gene Set Classes

Key points:

- 1. Estrogens have estrogen pathways at low concentrations
- 2. Most chemicals show stress at high concentrations
- 3. Random pathways usually only show up at high concentrations

DMEM_6hr_pilot_normal_pe_1 : gsva PathwaySet_20191107

log(BMD10 uM)

Comparing PODs

Key Points

- Potent chemicals in DESeq2 HTTr tend to have PODs ~ ToxCast
- PODs from BMDExpress are mostly at high dose (>DESeq2)
- Chemicals with significant efficacy (l2fc) tend to have better agreement between DESeq2 and BMDExpress PODs
- 4. ER pathway PODs from DESeq2 are on average more potent than those from ER Pathway Model / ToxCast ER assays

Understanding where BMDExpress has very potent predictions

Pathways with BMD<1 uM

- Cycloheximide high efficacy, cell cycle, stress-related pathways
- Fulvestrant high efficacy, ER pathways (e.g. CMAP Fulvestrant ...)
- 4-Hydroxytamoxifen 2 "real" ER pathways
- 3,5,3'-Triiodothyronine 5 small gene sets with CYP1A1, CYP1B1
- Imazalil 4 x 3-gene pathways ~ TNF signaling (TRAD, FADD, JUN)

Summary

- Robust HTTr processing pipeline and data management
- HTTr TempO-Seq platform reproducible
- Results for targets, pathways and potencies as expected
- Gene-set approaches produced more biologically-relevant results for this data set
- Ongoing research:
 - Choice of curve-fitting approaches
 - Gene set connectivity scoring methods
 - General approaches for putative target prediction

Acknowledgements

- HTTr Wetlab
 - Joshua Harrill
 - Clinton Willis
- TempO-Seq assay
 - BioSpyder
- HTTr Processing and Analysis
 - Logan Everett
 - Derik Haggard
 - Woody Setzer
 - Richard Judson
 - Thomas Sheffield
 - Bryant Chambers
 - Beena Vallanat
- Other
 - Russell Thomas