

Tox21 Federal Collaboration Cross Partner Project # 5: Project Update

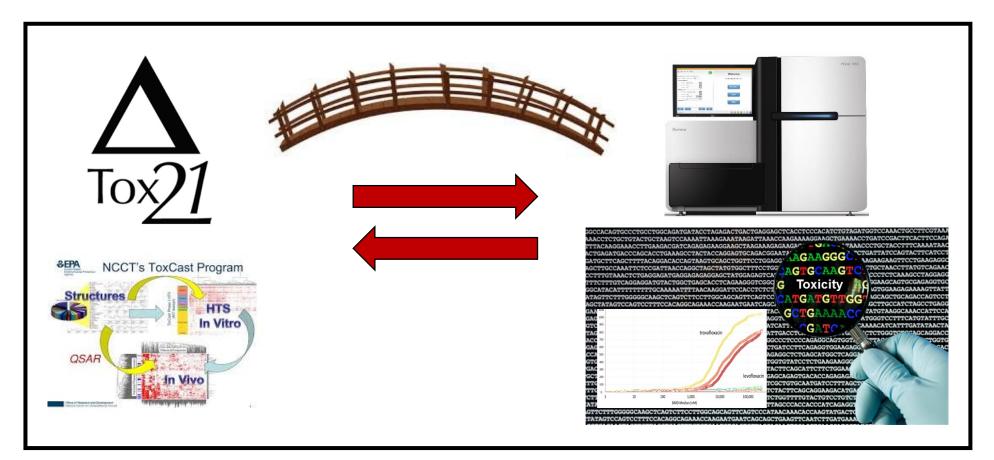
Development of a Common Reference Chemical Dataset for Interpretation of High-Throughput Transcriptomics Screening Data

Disclaimer

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency, nor does mention of trade names or products represent endorsement for use.

Project Background

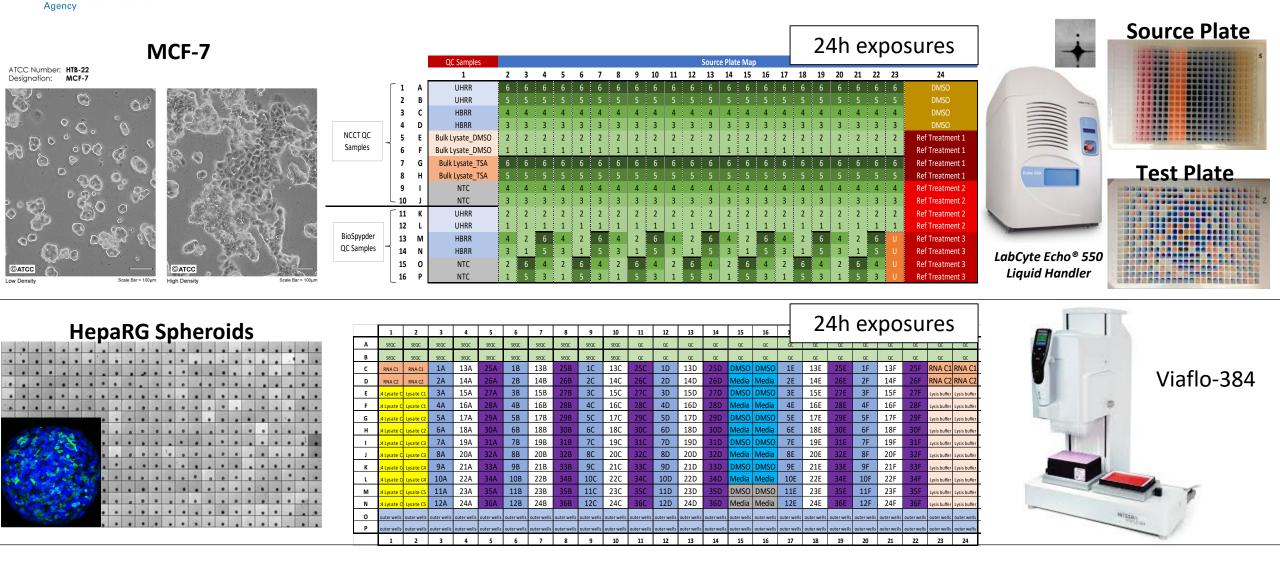
- CPP5 Partner organizations (USEPA, NTP) have both incorporated high-throughput transcriptomics (HTTr) screening into their research portfolios.
- To date, the cell models, gene panel and chemical sets evaluated by the respective organizations do not completely overlap.


Organization	Cell Models	Gene Panel	Chemical Sets
NTP	2-D HepaRG (Prolif & Diff), 3-D HepaRG	TempO-Seq S1500+	Liver Toxicants (mostly)
EPA	MCF-7, U-2 OS, 2-D HepaRG (Diff)	TempO-Seq whole transcriptome	ToxCast Chemicals

- It is anticipated that the diversity of cell models and chemical sets evaluated will increase over time for both organizations.
- There is a need for datasets and tools that can facilitate interpretation of HTTr data & identify
 putative molecular targets / mechanisms, especially for poorly characterized or unknown chemicals.

Project Hypothesis

Development of a common set of transcriptional profiles from reference chemicals will allow more robust interpretation of high-throughput transcriptomic screens to link chemicals to biological-response pathways and molecular initiating events.



Project Goals

- Identify a diverse set of ~200-500 chemicals from the Tox21 chemical library that overlap with multiple annotated sources of reference chemicals (to biological pathways)
- Build a robust transcriptomics dataset of concentration-response biological perturbations to these reference chemicals using MCF-7 and HepaRG cultures employed by Tox21 partners in high-throughput screens
- Develop transcriptomic signatures that accurately identify specific molecular targets/biological pathways perturbed by the reference chemicals, and their respective 'firing orders' across the range of concentrations examined.

Step 1: Fit-for-purpose approach compatible with Tox21 partner capabilities

- 4 independent experimental runs, 3 averaged for HTT
- 1 technical replicate per treatment group

Environmental Protection

- 6 chemical concentrations (half-log spacing)
- concentrations span reference target potencies from reporter assays (e.g., IC₅₀, EC₅₀)

Assays summary

<u>Cell viability/Cytotoxicity</u>

- Cell viability will be evaluated based on each lab's respective established methods
 - NTP: Liver enzyme leakage assays (LDH-Glo) in spent culture media with photomicrographs for each well for 3D HepaRG spheroids
 - EPA: Employed a high content imaging (HCI)-based cell painting approach that assesses apoptosis and cell viability assay for use with MCF7 cells grown in monolayer culture.

High throughput transcriptomics

- Cell cultures will be lysed with BioSpyder lysis buffer for 15m, frozen at -80°C, and shipped to BioSpyder for TempO-Seq analysis using the Human Whole Transcriptome Gene Set to be analyzed at a minimum average read depth of ~300-500 reads/transcript.
- Freezing leftover culture media for future contextual follow-up (e.g., chemical exposures, metabolomics) with 3D HepaRG spheroids

Identifying a diverse set of reference chemicals targeting specific biological targets (1)

•Goal:

 Develop a list of ~300 chemicals covering ~75-100 biologicalresponse pathways (i.e., 3 or more for a given pathways) with wellannotated associations to specific molecular targets or biologicalresponse pathways and 10-20 "negatives"

Identifying a diverse set of reference chemicals for specific biological targets (2)

RefChemDB

A database of *chemical_target_mode_activity* associations created by Judson et al. from information contained in the public domain.

- > 2900 biological targets
- > 37,000 unique chemicals

Intended to be used in a semi-automated workflow for development *candidate reference chemical lists* for a molecular target

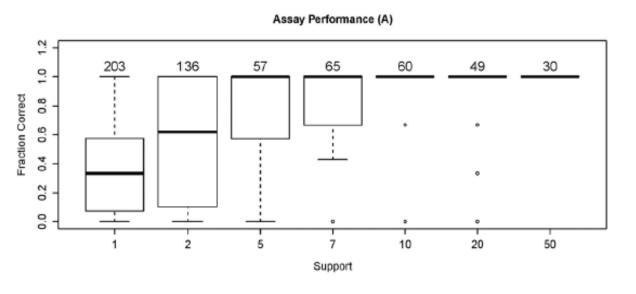
Candidate lists are then refined using expert knowledge.

For a given chemical, more than one literature source may support a given chemical_target_mode association (i.e. *level of support*).

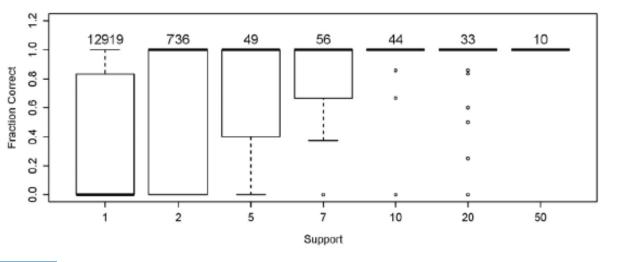
Research Article

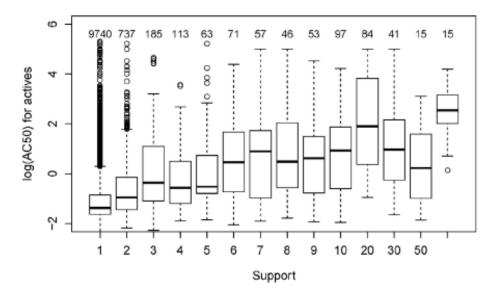
ALTEX 36(2), 261-276. doi:10.14573/altex.1809281

Workflow for Defining Reference Chemicals for Assessing Performance of *In Vitro* Assays


Richard S. Judson¹, Russell S. Thomas¹, Nancy Baker², Anita Simha³, Xia Meng Howey³, Carmen Marable³, Nicole C. Kleinstreuer⁴ and Keith A. Houck¹

¹US EPA, National Center for Computational Toxicology, Research Triangle Park, NC, USA; ²Leidos, Inc., Research Triangle Park, NC, USA; ³ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Research Triangle Park, NC, USA; ⁴National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA


Source	Chemicals	Targets	Chemical-target-mode- activity combinations	Mean multiplicity	PMIDs
ChEMBL	28,832	2,238	310,984	1.16	11,520
ChEMBL Drug	1,187	738	4,099	1	0
CTD	2,317	7,904	25,606	1.22	5,280
DrugBank	1,630	1,169	3,623	3.41	6,274
Eurofins Biochemical	206	570	925	1	0
Eurofins Functional	211	239	706	1	0
luphar BPS	1,860	941	5,081	1	0
KEGG Drug	661	263	1,201	1	0
KIDB	535	450	6,532	1	0
KInaseDB	133	168	676	1	1
LitDB	2,654	88	8,348	4.94	27,909
Open Targets	1,031	820	3,973	1	0
Prodrug	41	33	41	1	1
Repurposing Hub	2,279	2,172	10,209	1	0
ToxCast	9,136	343	852,470	1.03	0
TTD	3,916	1,575	11,557	1.00	0
Web Curation	3,940	1,059	5,617	1.01	0
Total	37,301	11,055	123,4580	1.02	49,883


Identifying a diverse set of reference chemicals for specific biological targets (3)

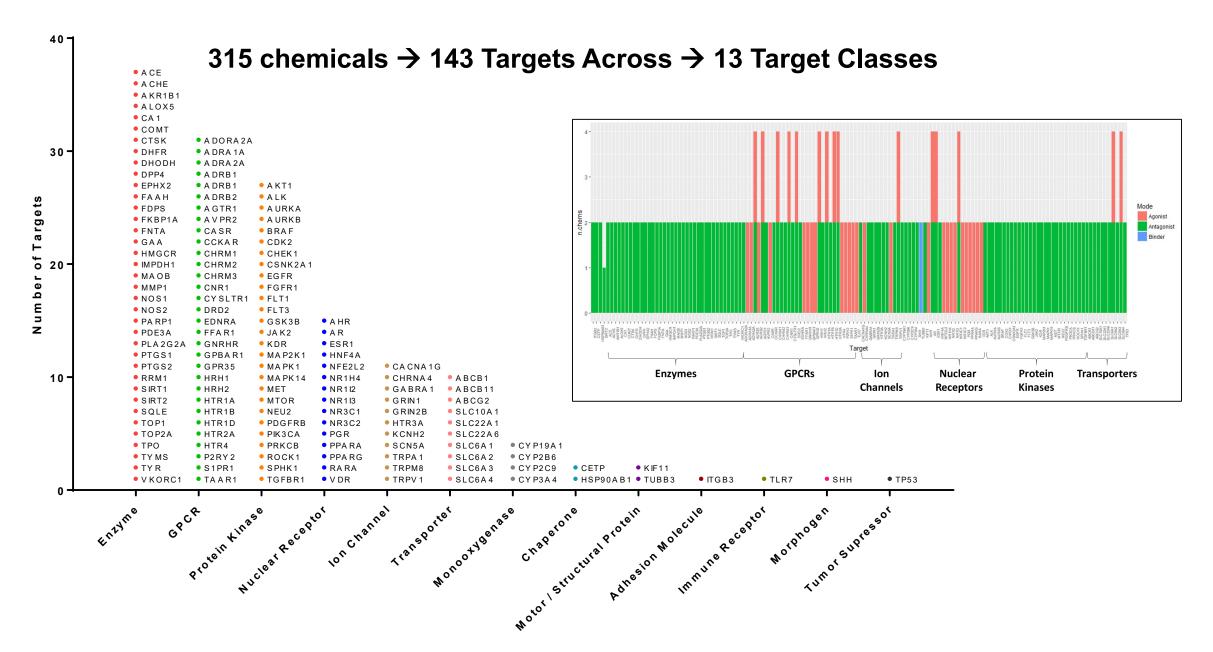
Chemical Performance (B)

Potency vs. Support

Higher level-of-support is associated with greater reliability of chemical_target_model predictions using the ToxCast/Tox21 assay results as a benchmark.

Chemical_target_mode predictions with level of support <= 5 are suspect.

Higher level-of-support is also associated with greater potency at the predicted molecular target.



Identifying a diverse set of reference chemicals targeting specific biological targets (4)

• Approach:

- RefChemDB filtered for chemicals with > 5 chemical_target_mode associations for a given pathway (n = 3263 chemicals)
- An additional filter was applied to remove "promiscuous" chemicals that map to > 3 targets.
- Two agonists / antagonists were then selected (if available) for each remaining target with preference toward more selective chemicals (n = 330 chemical candidate list).
- The list was then manually curated to confirm target / mode associations, remove spurious target/mode associations and identify targets / pathways of interest that were not selected using the automated methods.
- The candidate list includes chemicals that target classical signal transduction pathways (e.g., nuclear receptors) and upstream / downstream proteins (e.g., GPCRs, enzymes, transporters) as "pathways".

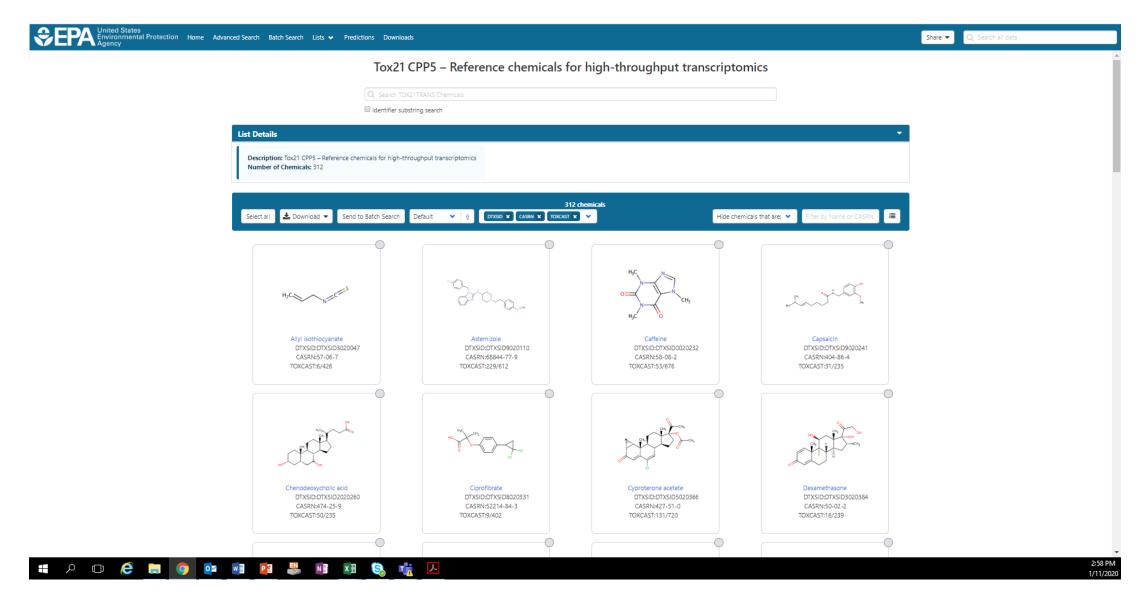
Targets by Target_Class

Chemical Sourcing Summary / Progress (1)

Procurement Plan:

- 58 chemicals available in existing ToxCast library
- 168 chemicals obtained by EPA for CPP5 and other projects.
- 89 compounds designated for procurement by NTP.
 - 8 of 89 chemicals were present in the MRI chemical inventory
 - Initial sourcing of the remaining 81 chemicals targeted 5 g procurements of each to provide enough for preparation of 20 mM solutions DMSO plus 1 g of neat material.
 - Initial sourcing cost was prohibitively high (~\$1.4M) (•)

Chemical Sourcing Summary / Progress (2)

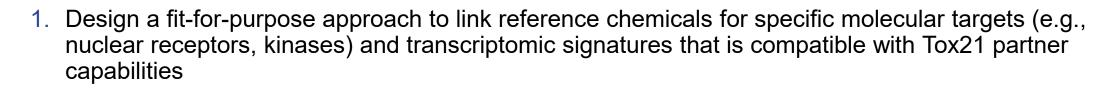

Procurement Progress:

- NTP Chemistry worked with Steve Ferguson and Josh Harrill to identify substitutes for the most expensive chemicals on the sourcing list.
- Replacement chemicals:
 - Selected to target the same biomolecular pathways(s) and mode as the original chemicals.
 - Sourced and CAS number/chemical name/chemical form issues were resolved.
 - New sourcing cost: \$181,400 🕑
- Chemicals were ordered through MRI Global.
- 2019-12-23: All non-DEA schedule CPP5 compounds are in house at MRI and EPA-required paperwork has been completed. Project all non-DEA solubilized chemicals will be received by Evotec in Feb-March 2020.

SEPA United States Environmental Protection Agency Examples of manually curated chemical substitutions

Preferred_Name	Original_Substance_Requested	Target_Mode	Reason for substitution
Citronellol	Substitute for JYL-1511 (623166-14-3)	TRPV1 _ Agonist,TRPV1 _ Antagonist	Already in NTP inventory
Proguanil hydrochloride	Substitute for Piritrexim (72732-56-0)	DHFR _ Antagonist	Already in NTP inventory
Anisotropine methylbromide	Substitute for Biperiden (514-65-8)	CHRM1 _ Antagonist	Already in NTP inventory
Fludrocortisone acetate	Substitute for Fludrocortisone (127-31-1)	NR3C2 _ Agonist	Already in NTP inventory
Solifenacin	Substitute for 4-Diphenylacetoxy-1,1-dimethylpiperidinium (81405-11-0)	CHRM3 _ Antagonist	Already in NTP inventory
SB202190	Substitute for SB202190 (152121-30-7)	MAPK1 _ Antagonist,MAPK14 _ Antagonist	Already in NTP inventory
Montelukast sodium	Substitute for Montelukast (158966-92-8)	CYSLTR1 _ Antagonist,CYSLTR1 _ Binder	Already in NTP inventory
Rabusertib	Substitute for granulatimide (219828-99-6)	CHEK1 _ Antagonist	Already in NTP inventory
SU9516	Substitute for 3-[(1H-Imidazol-5-yl)methylidene]-5-methoxy-1,3-dihydro-2H-indol-2-one (377090-84-1)	CDK2 _ Antagonist	Already in NTP inventory
Apatinib myselate	Substitute for CP 547632 (252003-65-9)	KDR _ Antagonist	Already in NTP inventory
lfenprodil (+)-tartrate salt	Substitute for Ifenprodil (23210-56-2)	GRIN2B _ Antagonist	Already in NTP inventory
Scopolamine hydrochloride	Substitute for Methoctramine (104807-46-7)	CHRM2 _ Antagonist	Already in ToxCast
Caffeine	Substitute for ST-1535 (496955-42-1)	ADORA2A _ Antagonist	Already in ToxCast
ZM-447439	Substitute for Barasertib (722543-31-9)	AURKB _ Antagonist	Cost savings
Leflunomide	Substitute for Brequinar (96187-53-0)	DHODH _ Antagonist	Cost savings
Doxycycline hydrochloride	Substitute for Prinomastat (192329-42-3)	MMP1 _ Antagonist,MMP2 _ Antagonist	Cost savings
Picrotoxin	Substitute for Mephobarbital (115-38-8)	GABRA1 _ Antagonist	Cost savings
Flt-3 inhibitor (TCS 359)	Substitute for Lestaurtinib (111358-88-4).	FLT3 _ Antagonist	Cost savings
Mebendazole	Substitute for MMAD (Monomethylauristatin D) (203849-91-6).	tubulin	Cost savings
AZD8055	Substitute for Temsirolimus (162635-04-3).	MTOR _ Antagonist	Cost savings
SCH-900776	Substitute for isogranulatimide (219829-00-2)	CHEK1 _ Antagonist	Cost savings
Ellagic acid	Substitute for 4,5,6,7-tetrabromobenzimidazole (577779-57-8)	CSNK2A1 _ Antagonist,CSNK2A2 _ Antagonist	Cost savings
Cetrorelix acetate	Substitute for Cetrorelix (120287-85-6)	GNRHR _ Agonist, GNRHR _ Antagonist	Cost savings
Tyramine	Substitute for 3-iodothyronamine (712349-95-6).	TAAR1 _ Agonist	Cost savings
Uridine 5'-triphosphate	Subsitute for Diquafosol (59985-21-6)	P2RY2 _ Agonist	Cost savings
Zopolrestat	Substitute for Sorbinil (68367-52-2)	AKR1B1 _ Antagonist	Cost savings
Cetirizine	Substitue for Levocabastine hydrochloride (79547-78-7)	HRH1 _ Agonist	Cost savings
Zanamivir	Substitute for 2-Deoxy-2,3-dehydro-N-acetylneuraminic acid (24967-27-9)	NEU2 _ Antagonist	Cost savings
HU 210	Substitute for Tetrahydrocannabinol (1972-08-3). Class I DEA Compound	CNR1 _ Agonist,CNR1 _ Binder,CNR2 _ Binder	DEA Schedule I substance
Ergotamine tartrate	Substitute for Ergotamine (113-15-5). Class I DEA compound	HTR1D _ Agonist	DEA Schedule I substance
Milnacipran	Substitute for MDMA (42542-10-9). Class I DEA Compound	SLC6A4 _ Agonist	DEA Schedule I substance

CompTox Chemistry Dashboard Registration



HTTr Reference chemical list registered in EPA Chemicals CompTox Dashboard. Not public (...yet).

Hypothesis & Specific Aims

Project Goals (Initiated January 2018)

- 2. Identify a diverse set of reference chemicals targeting relevant biological-response pathways
- 3. Procure reference chemicals and prepare stock solutions
- 4. Build a robust reference transcriptomics dataset with selected reference chemicals in 2 cell culture models (MCF-7 and 3D HepaRG) currently employed by Tox21 partners (384-well)
- Develop transcriptomic signatures that characterize cellular responses to reference chemicals & the utility of a 3-concentration approach to screen larger numbers of Tox21 compounds & untested chemicals
- Dec 2020

2021

June

2020

Oct

2020

- 6. Relate transcriptomic responses to reference chemicals (e.g., DEGs, BMCs) with established responses for reference biological targets (e.g., IC_{50} , K_i , EC_{50})
- 7. Extend approach to thousands of compounds in a data-driven manner