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Definitions
Adverse Outcome Pathway

• Structured representation of biological events leading to adverse effects; 
relevant to risk assessment

• A series of causally connected key events (KE) between two points — a 
molecular initiating event (MIE) and an adverse outcome (AO) that occur 
at a level of biological organization relevant to risk assessment

Gene Expression Biomarker

• List of genes and associated fold-change values or ranks

• Measures a molecular initiating event or key event in an adverse 
outcome pathway using transcript profiling

Biological Thresholds 

• Empirically-derived by comparing exposure conditions that lead to toxic 
responses vs. those that do not

• Chemical-independent

• Derived for biomarkers, genes and traditional measures of toxicity

Bioset

• List of statistically-filtered genes derived from a comparison between 
treated and control groupsTreated vs. Control



Use of biomarkers and thresholds to inform 
carcinogenic risk and mode of action

Problem: how can we better use 21st century tools in a prospective manner to 
avoid unnecessary 2-year bioassays?

Can we predict from short-term studies:
• Chemical-dose combinations that will cause tumors?
• Mode of action by which the tumors would arise?
• Whether the mechanism is human-relevant?
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• TG-GATES microarray data
• ~130 chemicals, 8 time points, 3 doses

• DrugMatrix microarray data
• >600 chemicals, 4 time points, 2 doses

• Carcinogenicity Potency Database
• Carcinogenicity data on >1500 chemicals in 

rats and mice
• Categorized the hepatotumorigenic potential 

of 1182 chemical-dose-time comparisons 
representing ~130 chemicals

Sources of Rat Liver Tumorigenicity and Microarray 
Data



Construction of biomarkers from microarray data 
generated in animal tissues

From Corton (2019) Current Opinion in Toxicol 18:54



Comparing gene lists in BaseSpace Correlation Engine

Derived from Rooney et al. Toxicol Sci. 166:146-162

>130,000 statistically 
filtered gene lists 
from > 25,000 studies



Computing directionality and final correlation scores 
between two gene lists

Adapted from Kuperschmidt et al. (2010) PLoS One

• Score(b1, b2) = sum(b1+b2+, b1+b2-, b1-b2+, b1-b2-)
• Running Fisher Test p-value
• Direction of the correlation



Adverse Outcome Pathways that Lead to Liver Cancer

• Hypothesis: measurement of these MIEs will 
be sufficient to predict liver cancer

• Approach: measure MIEs with gene expression 
biomarkers

Rooney et al. (2018) Tox Appl
Pharm 356:99-113

Corton et al.  A Set of Gene Expression 
Biomarkers Identify Rat Liver Tumorigens
in Short-Term Assays. In preparation.
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Using weight of evidence to build a rat liver PPARα biomarker

Weight of evidence gene selection
• Same direction of change
• Regulated in the majority of 

comparisons
• Ave absolute fold-changes ≥ 1.5
• Not found in other biomarkers

• Microarray data sets from TG-GATES study
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Testing the rat liver PPARα biomarker for predictive accuracy
• Examined 261 comparisons with known PPARα activity in rat liver (261 

comparisons)
• A cutoff of –Log(p-value) = 4 was used as in prior studies
• Excluded comparisons used to create the biomarker

Sensitivity 0.95
Specificity 1

Positive Predictive Value 1
Negative Predictive Value 0.927

Balance Accuracy 0.975
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Identification of chemicals with PPARα activity
• Performed a comparison test between the PPARα biomarker and ~3100 

microarray comparisons in TG-GATES using the Running Fisher test

• Heat map shows the relationship between expression of biomarker genes and 
–Log(p-value)s

• Positively correlated comparisons on the left and negatively correlated 
comparisons on the right
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Adverse Outcome Pathways that Lead to Liver Cancer

Rooney et al. (2018) Tox Appl
Pharm 356:99-113

Corton et al.  A Set of Gene Expression 
Biomarkers Identify Rat Liver Tumorigens
in Short-Term Assays. In preparation.
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Biomarker scores across the TG-GATES study
• Activation of the 6 MIEs across the 4 

time points (4d-29d); one-
dimensional clustering; -Log(p-
value)s being shown

• Most of the chemical-dose-time 
conditions did not lead to activation 
of any of the MIEs and those were 
associated with nontumorigenic 
doses

• Activation of one or more of the 
MIEs were associated with 
tumorigenic doses From Corton et al., in preparation

Time



• All chemical-dose comparisons ranked by ToxPi scores; 
dimensionless score, i.e., weighted combination of all 
data

• 390 chemical-dose combinations across 77 chems

• Red dots – chemical scores
• Orange bars – confidence intervals
• Distance from the origin is proportional to 

the normalized value of the component data 
points 

Rooney et al. (2018) TAAP

• Most of the chemical-dose pairs that increased liver 
tumors have the highest scores

• 75 out of 77 chemicals were correctly categorized 
(balanced accuracy = 96%)

• Strategy using biomarkers and traditional measures 
accurately identifies liver tumorigens in early 
studies 

Using ToxPi to stratify chemicals based on key event modulation



Assessment of the 6 MIEs predicts liver cancer
• Determined ToxPi scores for each bioset using 

the 6  –Log(p-value)s

• Divided the TG-GATES study into training and test 
sets.

• DeLong, DeLong and Clarke-Pearson receiver 
operating curve (ROC) analysis to determine the 
optimal threshold in the training set; ROC=0.477

• Applied to the test set: 90% sensitivity, 97% 
specificity, and a balanced accuracy of 93% 

• Out of 44 rat liver tumorigens, only two (5%) 
were missed (acetamide, ethionine)

ROC = 0.477

From Corton et al., in preparation
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Defining biological thresholds for liver cancer

• Central premise of AOP framework: key 
events are necessary but not sufficient

• An early key event may not necessarily 
lead to an adverse outcome but 
depends on the degree or amount of 
disruption to the particular pathway

• Can we define thresholds “tipping 
points” for each of the key events?

• To define a threshold need to compare 
the range of values between conditions 
that cause cancer and those that do not

http://www.silverdoctors.com



Identification of thresholds for gene expression 
biomarkers

• Divided the chemical-dose 
conditions into tumorigenic 
and nontumorigenic and 
training and test sets

• Thresholds defined as the 
maximum value in the 
nontumorigenic group

• Outliers removed if they 
were ≥ 2 –Log(p-value) units

• Thresholds were similar 
between the training and 
test sets

From Hill et al., in preparation



Biomarker thresholds accurately predict liver cancer

• Derived thresholds from the TG-
GATES training set and then 
applied to the entire dataset

• Each red line is a condition in 
which the biomarker –Log(p-
value) exceeds the threshold

• Most of the tumorigenic 
conditions exceed one or more 
of the 6 thresholds

• Thresholds rarely exceeded in 
any of the nontumorigenic 
conditions

• Test set: 100% sensitivity, 94% specificity, and a 
balanced accuracy of 97% 

From Hill et al., in preparation



Thresholds for individual genes or liver weights and 
clinical chemistry endpoints are predictive of liver cancer

• Using thresholds for 6 individual genes
• 100% sensitivity, 80% specificity, 

and a balanced accuracy of 90% 

• Using thresholds for liver weight and 
clinical chemistry endpoints

• 88% sensitivity, 100% specificity, 
and a balanced accuracy of 94%

From Hill et al., in preparation and Corton et al. in preparation



Summary
• An AOP-guided computational approach can be used to identify liver 

tumorigens in future prospective studies
• 95% of the tumorigenic chemicals evaluated fell into one or more of the 

six AOP categories
• ToxPi/ROC analysis could identify the top ranked chemical-dose 

combinations that caused liver cancer

• Identified clear thresholds of response for individual biomarkers, individual 
genes, and common measures associated with liver cancer
• Supports the idea that early genomic changes can be used to establish 

threshold estimates or “tipping points” that are predictive of later-life 
outcomes

• Thresholds will be useful tools in future toxicgenomic studies
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Supporting Materials
• Adverse Outcome Pathways

• Link to Wiki: https://aopwiki.org/
• General reviews of AOPs

• Carusi et al. (2018) Sci Total Environ. 628-629:1542.
• Ankley and Edwards (2018) Curr Opin Toxicol. 9:1.
• Leist et al. (2017) Arch Toxicol. 91:3477.
• Vinken et al. (2017) Arch Toxicol 91:3697.
• Ankley et al. (2010) Environ Toxicol Chem. 29:730.

• Using AOPs to help guide building predictive assays
• Coady et al. (2019) Integrated Environmental Assessment and Management 15:633.
• Wang et al. (2019) Environ Int 126:377.

• General papers and reviews on the construction and use of gene expression 
biomarkers

• Li et al. (2017) Proc Natl Acad Sci U S A. 114:E10881-E10889.
• Corton et al. (2019) Toxicol Appl Pharmacol. 380:114683.
• Corton (2019) Current Opinion in Toxicol 18:54.

• Construction and use of rat liver gene expression biomarkers
• Rooney et al. (2018) Toxicol Appl Pharmacol. 356:99.

https://aopwiki.org/


Biomarkers that predict key events in the livers of mice 
and rats

p53

AhR

CAR

PPARα

NRF2

Estrogen
Receptor α

STAT5b

SREBP

• Oshida et al. (2015). Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-
Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium.  PLoS One.  
10(2):e0112655.

• Oshida et al. (2015). Identification of Chemical Modulators of the Constitutive Activated Receptor 
(CAR) in a Mouse Liver Gene Expression Compendium.  Nuclear Receptor Signaling. 13:e002.

• Oshida et al. (2015). Screening a Mouse Liver Gene Expression Compendium Identifies Effectors of 
the Aryl Hydrocarbon Receptor (AhR).  Toxicology. 336:99-112.

• Oshida et al. (2015). Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome 
by Diverse Factors Is a Common Event. PLoS One. 11(3):e0148308.

• Oshida et al. (2015). Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of 
the Liver Transcriptome. PLoS One. 2016 11(3):e0150284.

• Rosen et al. (2017). PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by 
transcript profiling. Toxicology. 387:95-107.

• Rooney et al. (2017). Genomic Effects of Androstenedione and Sex-Specific Liver Cancer 
Susceptibility in Mice. Toxicol Sci. 160(1):15-29.

• Rooney et al. (2018) Activation of Nrf2 in the liver is associated with stress resistance mediated by 
suppression of the growth hormone-regulated STAT5b transcription factor. PLoS One. 
13(8):e0200004.

• Rooney et al. (2018).  Activation of CAR leads to activation of the oxidant-induced Nrf2. Toxicol Sci. 
167:172-189.

• Rooney et al. (2018). Adverse outcome pathway-driven identification of rat liver tumorigens in 
short-term assays. Toxicol Appl Pharmacol. 356:99-113. 

• Corton (2019). Frequent Modulation of the Sterol Regulatory Element Binding Protein (SREBP) by 
Chemical Exposure in the Livers of Rats. Comput. Toxicol. 10:113-129.
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