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Background Application 1: Estimation of potency thresholds for Application 2: Use of phenotypic profiles to discern

chemical bioactivity putative mode-of-action (MOA)

What is phenotypic profiling?
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* Image-based phenotypic profiling is a chemical screening method that
measures a large variety of morphological features of individual cells in in
vitro cultures.

In vitro-to-in vivo extrapolation (IVIVE) was performed using reverse dosimetry to extrapolate the HTPP POD to an
administered equivalent dose (AED) to compare it with in vivo effect values, other alternative methods and to exposure

predictions:
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= for 5.1% (16/316) of chemicals, the BER was negative, indicating a potential for humans to be exposed to
bioactive concentrations of these chemicals
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