

www.epa.gov

Background

What is phenotypic profiling?

mitochondria

- Image-based phenotypic profiling is a chemical screening method that measures a large variety of morphological features of individual cells in *in* vitro cultures.
- No requirement for *a priori* knowledge of molecular targets.
- May be used as an efficient and cost-effective method for evaluating chemical bioactivity.

Method: High-throughput phenotypic profiling (HTPP)

1. Chemical exposure & labeling

concentration

reference chemicals

\rightarrow Application 2

Results

Examples

individua

features

Chemicals from our inventory were selected that had information about *in vivo* bioactivity and for which toxicokinetic measurements and exposure estimates were available (Paul Friedman et al. 2020). A majority of chemicals are pesticides, the remaining chemicals are drugs, food additives and industrial chemicals.

HTPP result:

inactive 🤿

Experimental design	
Cell type	U-2 OS
Exposure time	24 h
Cell seeding density per well	400
# unique chemicals	462
# concentrations	8
Concentration spacing	1/2 log ₁₀
# solvent controls/plate	24
# replicates/plate	1
# independent experiments	4

➡ compactness of mitochondria

High-throughput screening

Screen 1: 462 bioactive chemicals

Screen 2: 1201 ToxCast chemicals

Chemicals from the ToxCast phase 1 and 2 libraries were selected. Of the 1201 chemicals, 179 chemicals had molecular targets annotated in the RefChemDB database (Judson et al. 2019).

(reference) chemicals. → see Application 2

AED

BER

BMC

GR

HTPP

IVIVE

MOA

NAM

PGR

POD

TTC

References

• Bray, et al. 2016. *Cell painting, a high-content image-based assay for morphological profiling* using multiplexed fluorescent dyes. Nat. Protoc. 11 (9), 1757–1774.

inactive

- Gustafsdottir, et al. 2013. *Multiplex cytological profiling assay to measure diverse cellular*
- states. PLoS One 8 (12), e80999 • Judson, et al. 2019. Workflow for defining reference chemicals for assessing performance of
- in vitro assays. ALTEX. 2019;36(2):261-276 • Nyffeler et al. 2020. Bioactivity screening of environmental chemicals using imaging-based
- high-throughput phenotypic profiling. Toxicol Appl Pharmacol. 389, 114876 • Paul Friedman, et al. 2020. *Examining the utility of in vitro bioactivity as a conservative point* of departure: a case study. Toxicol. Sci. 173 (1), 202-225.

U.S. Environmental Protection Agency

Office of Research and Development This work does not reflect USEPA policy.

Abbreviations

Administered equivalent do
Bioactivity exposure ratio
Benchmark concentration
Glucocorticoid receptor
High-throughput phenotypi
In vitro to in vivo extrapolat
Mode-of-action
New approach methodolog
Progesterone receptor
Point-of-departure
Threshold of toxicological of

Applications of image-based high-throughput phenotypic profiling (HTPP) for hazard evaluation of environmental chemicals

1 Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States. 2 Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN, 37831, United States.

- 3 Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN, 37831, United States.

- c profiling
- concern

Fig. 3: Comparison of HTPP assay results to exposure predictions. (A) The bioactivity exposure ratio (BER) was defined as the ratio of the lower bound of the HTPP AED confidence interval and the upper bound of the exposure prediction from the SEEM3 framework. The gray dotted line indicates the median of the distribution. For chemicals to the left of the unity line estimates overlap, indicating a potential for humans to be exposed to bioactive concentrations of these chemicals. The histogram comprises only active chemicals that had available httk and exposure data (n=316). (B) The 16 chemicals with a negative BER are

for 49% of chemicals, predicted exposure is > 1000x lower than estimated bioactivity for 5.1% (16/316) of chemicals, the BER was negative, indicating a potential for humans to be exposed to bioactive concentrations of these chemicals

HTPP *in vitro* potencies can be used for bioactivity exposure ratio analysis and prioritizing of chemicals based on inferred bioactivity in relation to predicted human exposure Next steps:

Test chemicals in multiple cell types to increase biological coverage

Johanna Nyffeler^{1,2}, Clinton Willis¹, Megan Culbreth¹, Richard E. Brockway^{1,3}, Logan J. Everett¹, Grace Patlewicz¹, Imran Shah¹, Daniel Chang¹, John Wambaugh¹, Katie Paul Friedman¹, Joshua Harrill¹

Application 2: Use of phenotypic profiles to discern putative mode-of-action (MOA)

Calculation of biological similarity

Example: Drug-like chemicals (glucocorticoids) 11 chemicals were annotated in RefChemDB with the glucocorticoid receptor (GR, NR3C1):

4			
Chemical	HTPP	1° target	Pharmacology
Betamethasone	active	GR agonist	
Budesonide	active	GR agonist	
Dexamethasone	active	GR agonist	
Fluorometholone	active	GR agonist	
Methylprednisolone	active	GR agonist	prednisolone derivative
Prednisolone	active	GR agonist	
Prednisone	inactive	GR agonist	converted to prednisolone in the liver
Triamcinolone	active	GR agonist	
Medroxyprogestero ne acetate	active	PGR agonist	progesterone derivative
Mifepristone	active	PGR antagonist	PR antagonist, GR antagonist
Progesterone	active	PGR agonist	Progesterone agonist, GR partial agonist,

Fig. 4: Chemicals targeting glucocorticoid receptor and their profiles in HTPP assay. (A) List of the 11 chemicals annotate with glucocorticoid receptor activity in RefChemDB. (B) Biological similarity of phenotypic profiles of the 10 active chemicals. (C) Signature of all active, non-cytotoxic concentrations. Row side colors indicate the primary biological target (green: GR; brown: PGR). Abbreviations: GR: glucocorticoid receptor; PGR: progesterone receptor.

□ Chemicals with the same mode-of-action display similar biological profiles. ⇒ Chemicals with different primary mode-of-action (i.e. GR vs PGR) can be distinguished.

Example: Environmental chemicals (Dieldrin) Dieldrin was used as a "seed" to retrieve chemicals with similar phenotypic profiles.

Look at different molecular targe are not covered by the ToxCast assay battery

Structural similarity = Tanimoto/Jaccard similarity:

shared structural features

Aldrin (30uM) Endosulfan (30uM Endrin (100uM) Heptachlor (30uM)

Fig 5.: Structural and biological analogues of dieldrin. All tested chemicals with a structural similarity of > 0.2 are displayed. (A) Signature of the highest non-cytotoxic concentration of each chemical. Features were clustered within a fluorescent channel for display. (B) Correlation matrix of biological and structural similarity.

⇒ Four structural analogues to dieldrin displayed high biological similarity with dieldrin, with changes in the DNA

at HTPP	is a	ble	to	dis	cern
Irug-like	and	env	⁄iro	nme	ental
ets, in pa	rticu	lar t	arg	ets	that