

High-Throughput Chemical Screening Using High-Content Profiling Assays: Applications for Next Generation Risk Assessment

Joshua A. Harrill

USEPA Center for Computational Toxicology and Exposure (CCTE)

Office of Research and Development

Disclaimer

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency, nor does mention of trade names or products represent endorsement for use.

Outline

Background

- What is CCTE?
- What does CCTE Do?
- USEPA Computational Toxicology Blueprint

• High-Throughput Profiling Assays

- High-Throughput Transcriptomics (HTTr) → TempO-Seq
- High-Throughput Phenotypic Profiling (HTPP) \rightarrow Cell Painting
- Potential Applications for Next Generation Risk Assessment
 - Bioactivity-to-Exposure Ratio (BER) Analysis
 - Profile Similarity for Chemical Read-Across

Who is CCTE ?

A research organization tasked with **developing** and **applying** cutting edge innovations in methods to rapidly evaluate chemical's toxicity, transport and exposure to people and environments.

Rapid Assay Development Branch (RADB)

Develops the next generation of **high-throughput toxicity assays** to comprehensively cover the potential **molecular and phenotypic responses** resulting from chemical exposure and **fill gaps** in biological pathways and processes not addressed using existing assays.

Computational Toxicology & Bioinformatics Branch (CTBB)

Utilizes computational and informatics approaches to **analyze** and **integrate** data from high-throughput toxicity assays, complex culture models, alternative species, toxicokinetics and chemistry to predict adverse effects of chemicals in humans and animal models.

Computational Toxicology Research Areas

CCTE research programs focus on developing the **tools, approaches and data** needed to accelerate the pace of chemical risk assessment and foster incorporation of non-traditional toxicity testing data into regulatory decision-making processes.

ToxCast: Use of targeted high-throughput screening (HTS) assays to expose living cells or isolated proteins to chemicals and assess bioactivity and potential toxic effects.

	# of assays	# of chemicals	Types of chemicals
Phase 1 (2007 – 2009)	500	300	Mostly pesticides
Phase 2 (2009 – 2013)	700	2,000	Industrial, consumer product, food use, "green"

- Mostly targeted assays (*chemical* $X \rightarrow target Y$)
- Incomplete coverage of biological space.
- New Approach for Hazard Evaluation: Employ broad-based (i.e. non-targeted) profiling assays that cast the broadest net possible for capturing the potential molecular and phenotypic responses of human cells in response to chemical exposures.

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322

Tiered Hazard Evaluation Approach

- Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics (HTTr) a practical option for *in vitro* chemical screening.
 - Whole Transcriptome TempO-Seq
- Imaging-based high-throughput phenotypic profiling (HTPP) provides a cost-effective means for characterizing the effects of chemicals on apical cellular morphology (i.e. cellular pathology).

• Cell Painting

- Both methods are complementary to each other and can be used in human-derived in vitro models.
- The resulting bioactivity profiles can potentially be used for **potency estimation**, **mechanistic prediction** and evaluation of **chemical similarity**.

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322

High-Throughput Transcriptomics (HTTr) Whole Transcriptome TempO-Seq

SEPA United States Environmental Protectio Templated Oligo with Sequencing Readout (TempO-Seq)

Technology

- The **TempO-Seq** human whole transcriptome assay measures the expression of greater than 20,000 transcripts.
- Requires only picogram amounts of total RNA per sample.
- Compatible with purified RNA samples or **cell lysates**.
- Lysates generated in 384-well format are barcoded according to well position and combined in a single library for sequencing using industry standard instrumentation.
- Scalable, targeted assay:
 - 1) specifically measures transcripts of interest
 - 2) ~50-bp reads for all genes
 - 3) requires less flow cell capacity than RNA-Seq

TempO-Seq Assay Illustration

Yeakley, et al. PLoS ONE 2017

Slide courtesy of Logan Everett

HTTr MCF-7 Screen: Experimental Design

Parameter	Multiplier	Notes
Cell Type(s)	1	MCF-7
Culture Condition	1	DMEM + 10% HI-FBS ^a
Chemicals	2,112	ToxCast ph1, ph2 Nominated chemicals from e1k / ph3
Time Points:	1	6 hours
Assay Formats:	2	TempO-Seq HCI Cell Viability & Apoptosis
Concentrations:	8	3.5 log ₁₀ units; ~half-log ₁₀ spacing
Biological Replicates:	3	

^a MCF7 cells cultured in DMEM + 10% HI-FBS was selected as the test system to facilitate comparability to the Broad Institute Connectivity Map (CMAP) database (<u>http://portals.broadinstitute.org/cmap/</u>).

HTTr Pipeline: Raw Data Processing

TPA Inited States Invironmental Protection HTTr Pipeline: Targets & Concentration Response

• Focus on one today → Gene Set Scoring Analysis

٠

Gene Set Scoring Analysis Overview (1)

Prelimnary Analysis by Thomas Sheffield and Richard Judson

Gene Set Scoring Analysis Overview (2)

Step 4: Concentration-Response Modeling

tcplFit2 fitting

- Uses maximum likelihood estimation
- Error modeled as 4 DF t-distribution

Models

- Constant, exp 2|3|4|5, hill, gnls, poly 1|2, power
- Winner \rightarrow Lowest AIC

Benchmark Response

- 1.349*sd of NULL

Confidence Bounds

- Likelihood ratio test for 90% CI to give bounds

Continuous Hit Calls

- Multiply the following
 - Odds of at least one conc. > cutoff
 - Odds of top above cutoff using likelihood ratios
 - Winning model Akaike Weight (relative to constant)

Preliminary Analysis by Thomas Sheffield and Richard Judson

SEPA United States Environmental Protection Comparison of Gene Set Scoring Analysis to ToxCast (1)

- EPA model of estrogen receptor (ER) activity uses 18 *in vitro* (ToxCast) assays.
- Provides a "pseudo AC_{50} ", essentially a median estimate of potency.
- ER gene set potency in HTTR dataset should be correlated with ToxCast ER potency.

Approach:

- Select equal number of estrogen active & inactive chemicals according to ToxCast model.
- Focus on estrogen receptor activation gene set relevant to screening conditions
 - MSigDB \rightarrow Duertre Estradiol 6 HR UP
- Compare at continuous and discrete levels:
 - Balanced accuracy, RMSE, R² weighted by hitcall

EPA United States Environmental Protection Comparison of Gene Set Scoring Analysis to ToxCast (2)

EPA United States Environmental Protection Comparison of Gene Set Scoring Analysis to ToxCast (3)

Preliminary Analysis by Richard Judson

EPA In Vitro-in-In Vivo Extrapolation (IVIVE) & Bioactivity Exposure Ratios (BER)

High-throughput toxicokinetic (httk) modeling: Conversion of *in vitro* bioactivity to *in vivo* steady state concentration (C_{ss}) **Reverse dosimetry:** Conversion of predicted C_{ss} to an administered equivalent dose (AED)

17

HTTr BER Results

Signatures/Classifiers For Putative Target Prediction

Transcriptomic Reference Database Chemicals / Profiles Annotated with Respect to Known Biological Targets

- Manually curated a sub-set of the Connectivity Map (v2) MCF7 database with target associations.
- Created a series of target-centric signatures.
- Queried against both CMAP and TempO-Seq HTTr database

ER Model (any Mode) Derived from CMAP

Performance of Signatures for Putative Target Prediction in HTTr Data

Putative	CMap v2 / Affymetrix		BioSpyder HTTr-Phase I (n = 352)					
Target	Signature size	PPV	Positives	Positive Chemicals found (Curated)	Top 5 Prediction (Uncurated)			
CYP2C9	131	1	1	Fluconazole	Emodin, Phenazopyridine hydrochloride, Lactofen, Hexachlorophene, 2-Amino-5-azotoluene			
ESR1	257	1	11	o,p'-DDT, Genistein, 4-Nonylphenol, 4- Hydroxytamoxifen, Diethylstilbestrol, Raloxifene hydrochloride, Bisphenol A, 17beta-Estradiol, 5alpha- Dihydrotestosterone, Mifepristone, 4-(1,1,3,3- Tetramethylbutyl)phenol	dl-Norgestrel, SSR504734, Haloperidol, Cyclosporin A, Astemizole			
HDAC1	124	1	2	Trichostatin A, Valproic acid	2-(Thiocyanomethylthio)benzothiazole, Azinphos-methyl, Sodium (2-pyridylthio)-N-oxide, 3,3'-Dichlorobenzidine dihydrochloride			
DHFR	215	1	2	Pyrimethamine, Methotrexate	Adriamycin hydrochloride, PharmaGSID_48505, Etoposide, Resveratrol, Nisoldipine			
NR1I2	139	1	2	17beta-Estradiol, Bisphenol A	dl-Norgestrel, Endosulfan, Isodrin, Genistein, 17alpha- Estradiol			
PGR	115	1	1	Mifepristone	Flurandrenolide, Fluorometholone, Dexamethasone, Melengestrol acetate, Betamethasone			
HMGCR	236	1	1	Lovastatin	Resveratrol, dl-Norgestrel, o,p'-DDT, Tamoxifen, Chlorhexidine			
ABCC2	357	1	1	Methotrexate	4-Nitrosodiphenylamine, Resveratrol, Adriamycin hydrochloride, Nisoldipine, 8-Hydroxyquinoline sulfate			
TYMS	329	1	1	Methotrexate	Etoposide, Resveratrol, 4-Nitrosodiphenylamine, Cytarabine hydrochloride, PharmaGSID_48505			
ESR2	281	0.86	7	Genistein, Diethylstilbestrol, 4-Nonylphenol, Bisphenol A, 4-Hydroxytamoxifen, 17beta-Estradiol	dl-Norgestrel, 17alpha-Estradiol, Haloperidol, Cyclosporin A, Isodrin			
AR	261	0.78	9	o,p'-DDT, 17beta-Estradiol, 5alpha- Dihydrotestosterone, Flutamide, Bisphenol A, Mifepristone, 17-Methyltestosterone	dl-Norgestrel, Melengestrol acetate, Dehydroepiandrosterone, 8-Hydroxyquinoline, Genistein			
NR3C2	352	0.5	2	Mifepristone	Fluocinolone acetonide, Bexarotene, 1-Naphthol, Dexamethasone, dl-Norgestrel			
ABCB1	117	0.5	2	Reserpine	Fabesetron hydrochloride, Abamectin, SAR115740, SSR69071, Chlorobenzilate			
NR3C1	148	0.5	4	Triamcinolone, Mifepristone	Medroxyprogesterone acetate, Fluorometholone, Melengestrol acetate, Dexamethasone, Prednisolone			
CA1	176	0.5	4	Phenol, Sodium nitrite	Triclopyr, Triclopyr butotyl, p-Bromodiphenyl ether, 2- Fluoroacetamide, 1-Ethyl-2-methylbenzene			
CA2	341	0.5	4	Celecoxib, Phenol	PharmaGSID_48509, Acenaphthylene, CP-105696, Aloe- emodin, 2-Fluoroacetamide			
PTGS1	307	0.25	4	Indomethacin	SSR69071, 17alpha-Estradiol, Chlordane, Cetylpyridinium bromide, Zoxamide			

Slide by Imran Shah

Table Courtesy of Imran Shah

High-Throughput Phenotypic Profiling (HTPP) Cell Painting

Cell Painting

- Cell Painting is a HCS profiling method that measures a large variety of phenotypic features in fluoroprobe labeled cells *in vitro*.
- No requirement for *a priori* knowledge of molecular targets.
- Uses:
 - Functional genomics
 - Drug discovery
 - Compound efficacy and toxicity screening
 - Mechanism-of-action identification
 - Chemical grouping
- Hypothesis: Cell Painting may be an efficient and cost-effective method for evaluating the bioactivity of environmental chemicals.

ſ	Markor	Cellular	Labeling Chomistry	Labeling	Opera Phenix	
	Warker	Component		Phase	Ex.	Em.
	Hoechst 33342	Nucleus	Bisbenzamide probe that binds to dsDNA		405	480
	Concanavalin A – AlexaFluor 488	Endoplasmic reticulum	Lectin that selectively binds to α-mannopyranosyl and α-glucopyranosyl residues enriched in rough endoplasmic reticulum		435	550
	SYTO 14 nucleic acid stain	Nucleoli	Cyanine probe that binds to ssRNA	Fixed	435	550
	Wheat germ agglutinin (WGA) – AlexaFluor 555	Golgi Apparatus and Plasma Membrane	Lectin that selectively binds to sialic acid and N-acetylglucosaminyl residues enriched in the trans-Golgi network and plasma membrane		570	630
	Phalloidin –AlexaFluor 568	F-actin (cytoskeleton)	Phallotoxin (bicyclic heptapeptide) that binds filamentous actin			
	MitoTracker Deep Red	Mitochondria	Accumulates in active mitochondria	Live	650	760

Image Analysis Workflow → Image Segmentation

1. find nuclei

2. find cell outline

3. reject border objects

Define Cellular Compartments

nuclei

membrane

cell

Phenotypic Feature Extraction

	NUC	ELEUS RING	5 Compartments CYTOPLASM MEMBRANE	CELL					
5 Channels (organelles) and RNA ER AGP MITO ER AGP MITO	Radial distribution Intensity Texture Texture Comp	on Second Se	Axial	Intensity Positio	n	V V V O O Profile	Position [7]	Basic morph- ology [5]	fea symme [80]
						DNA			Nucle
	Pe	erkinElme	r Opera Phenix			RNA			Nucle
	M	Iodality:	Confocal (sing	le <i>z</i>)	<u>е</u>	ER			Cell
	PI Fi	bjective: ate: elds:	20X water CellCarrier-38 5 or 9	4 Ultra	Chann	AGP			Cell
						Mito			Cell
						Not associated	Nuclei	Nuclei	

1300 features / cell

	Module								
Profile	Position [7]	Basic morph- ology [5]	SCARP morphology					Intensity	Toxturo
			Symmetry [80]	Compactness [40]	Axial [20]	Radial [28]	Profile [20-30]	[9]	[14]
DNA			Nuclei	Nuclei	Nuclei	Nuclei Cell	Nuclei Cytoplasm	Nuclei	Nuclei
RNA			Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei
ER			Cell	Cell	Cell	Cell	Cytoplasm	Ring Cytoplasm	Ring Cytoplasm
AGP			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm Membrane	Ring Cytoplasm Membrane
Mito			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm	Ring Cytoplasm
Not associated with a channel	Nuclei Cell	Nuclei Cell							

With illustrations from Perkin Elmer

HTPP Assay Overview

Median BMC [µM]

Analysis of Phenotypic Features

U-2 OS APCRA Screen Experimental Design

Parameter	Multiplier	Notes
Cell Type(s)	1	U-2 OS
Culture Condition	1	DMEM + 10% HI-FBS
Chemicals	462	APCRA Case Study Chemicals + Duplicates Unilever CRADA Consensus Chemicals HTTr Pilot Chemicals
Time Points:	1	24 hours
Assay Formats:	2	Cell Painting Cell Viability
Concentrations:	8	3.5 log ₁₀ units; semi log ₁₀ spacing
Biological Replicates:	4	Independent cultures

Kavlock et al. (2018) Chem. Res. Tox; 31(5): 287-290

- International collaboration of regulatory scientists focused on developing case studies for evaluating the use of New Approach Methodologies (NAMs) in chemical risk assessment.
- ECHA Workshop (2017) case study focuses on **deriving quantitative estimates of risk based on** NAM-derived potency information and computational exposure estimates

U-2 OS APCRA Screen: Dose Plate Design

A B C

DE

Label	Reference Chemicals:	Phenotypic Observations	Test Concentrations
А	Berberine Chloride	Specific mitochondrial effects	0.03 – 10 μM
В	Etoposide	Cell hypertrophy control that produces effects in every channel / organelle	0.03 - 10 μM
С	Ca-074-Me	Effects on AGP channel at sub-cytotoxic doses	0.03 -10 μM
D	Rapamycin	Effects on RNA and DNA channels	0.03 - 10 μM
E	Staurosporine	Cytotoxicity Control	0.01 -3 μM

А

Reference Chemical Phenotypes (1)

DNA Mitochondria

Solvent control (0.5% DMSO)

RNA/ER

Solvent control (0.5% DMSO)

Solvent control (0.5% DMSO)

Etoposide (3 µM)

Rapamycin (100 µM)

Reference Chemical Phenotypes (2)

Assay Reproducibility

APCRA Screening Results

Number of affected categories

BER Results

• Chemicals with small BER ratio would be of higher priority than chemicals with a large BER ratio.

Read Across Pilot, Experimental Design

Parameter	Multiplier	Notes
Cell Type(s)	1	U-2 OS
Culture Condition	1	DMEM + 10% HI-FBS
Chemicals	120	Pharmacological Tool Compounds Model Toxicants Structure Series
Time Points:	1	24 hours
Assay Formats:	2	Cell Painting Cell Viability
Concentrations:	8	3.5 log ₁₀ units; ~half-log ₁₀ spacing
Biological Replicates:	4	Independent cultures

Actin cytoskeleton modulators	DNA toxicants: alkylators	Mito. Respiratory complex inhibitor
Actin stabilizers	DNA toxicants: topoisomerase	Autophagy inhibitor
ER modulator	DNA toxicants: antimetabolites	Autophagy activator
Golgi modulator	DNA toxicants: genotoxic	RNA polymerase inhibitor
Mitochondrial fission	Oxidative stress	Benzimidazole structure series
Microtuble modulator	Proteosome inhibitors	Rapamycin analogues
Microtuble stabilizer	Oxidative phosphorylation uncoupler	Ca-074-Me analogues

Read Across Pilot, **Results**

Read Across Example (1)

DTXSID9020453

Organochlorine Pesticides

• Changes in nuclear texture manifest as "holes".

Read Across Example (2)

DTXSID101017940

Summary

- Workflows: We have established wet lab and computational workflows for high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP) of environmental chemicals in human-derived cell lines.
- HTTr: Evaluated a variety of alignment, normalization and concentration-response modeling approaches for TempO-Seq data, including a novel approach for pathway-level concentration-response modeling. Aggregating signal at the pathway level improves reproducibility and reduces uncertainty in screening results.
- **HTPP:** Developed a novel phenotypic categorization approach for analysis of Cell Painting data. Demonstrated reproducibility of potency estimates and phenotypic profiles using reference chemicals.
- Screening: Performed concentration-response screening of sets of environmental and reference chemicals using both technologies.
- **Bioactivity Exposure Ratio (BER):** HTTr and HTPP data may be used in combination with IVIVE and ExpoCast estimates to identify chemicals with bioactivity thresholds in relevant human exposure ranges.
- **Chemical Read Across:** Connectivity mapping and vector-based similarity approaches were able to identify chemicals with similar response profiles using data from the respective technologies.

Acknowledgments

HTTr: Logan Everett Imran Shah **Richard Judson** Woody Setzer **Thomas Sheffield Derik Haggard** Beena Vallanant Joseph Bundy **Bryant Chambers** Tia Tate Megan Culbreth **Rusty Thomas**

National Toxicology Program: Scott Auerbach

HTPP: Johanna Nyffeler Clinton Willis

Katie Paul-Friedman

HTTK: John Wambaugh

Unilever: Paul Carmichael Paul Russell Sharon Scott Sophie Malcomber Andy White Alistair Middleton Joe Reynolds Carl Westmoreland

Center for Computational Toxicology & Exposure

