

Identification of Bioactive Contaminants Associated With Wastewater Using a Receptor Pulldown Assay and High Resolution Mass Spectrometry

Dr. Brett Blackwell
Great Lakes Toxicology & Ecology Division
Duluth, MN

The contents of this presentation neither represent nor necessarily reflect official US EPA policy

Acknowledgments

US EPA

- ORD GLTED: J. Cavallin, A. Cole, R. Hofer, D. Villeneuve
- ORD CEMM: D. Ekman
- Region 8 J. Kinsey
- NEIC J. Beihoffer, K. Keteles

NPS

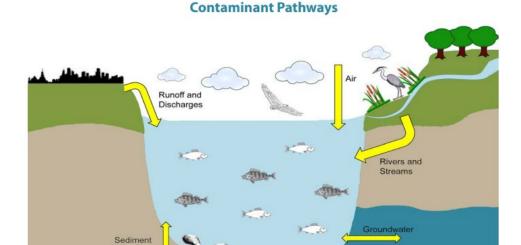
Rebecca Weissinger

USGS

• B. Battaglin, P. Bradley, D. Winkleman

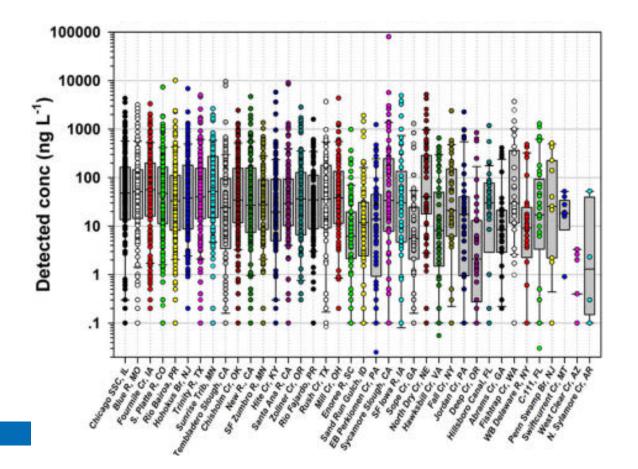
Univ. of Toronto

Hui Peng



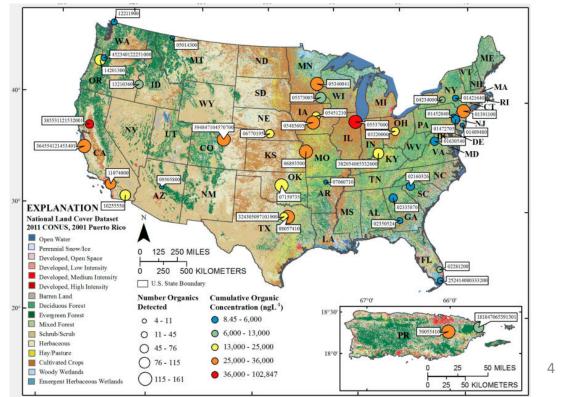
Chemicals in the Environment

- Increasing number of compounds can be detected in the environment
- Contaminants of emerging concern (CECs)
 - Pharmaceuticals and personal care products (PPCPs)
 - Agricultural chemicals (pesticides, growth promoters)
 - Industrial chemicals (plasticizers, flame retardants, PFAS)



Surface Water Contaminants in the US

- 406/719 organic compounds detected
- 4 161 compounds detected at a single site
- Cumulative concentrations ranged 8 103000 ng/L

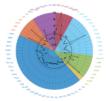


pubs.acs.org/est

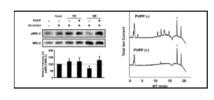
Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams

Paul M. Bradley,*,†© Celeste A. Journey,† Kristin M. Romanok,‡ Larry B. Barber,^{§©} Herbert T. Buxton,^{||} William T. Foreman, Edward T. Furlong, Susan T. Glassmeyer,[#] Michelle L. Hladik,^{©©} Luke R. Iwanowicz, Daniel K. Jones, Dana W. Kolpin, Kathryn M. Kuivila, Keith A. Loftin, Marc A. Mills, Michael T. Meyer, James L. Orlando, Timothy J. Reilly,‡ Kelly L. Smalling,‡ and Daniel L. Villeneuve

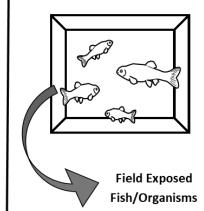
Generalized Effects-based Approach


Increasing Biological/ Environmental Realism

Untargeted Monitoring


- High throughput screening in multiplexed cellbased assay that evaluates approximately 80 pathway-based endpoints (e.g., receptor binding; transcription factor activation).
- Assays are highly standardized, but expensive
- · Easy to implement

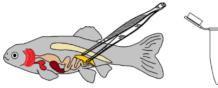
- Organism tissues analyzed using transcriptomics and/or metabolomics
- · Data analysis and interpretation is non-standardized and requires specialized knowledge and training
- Can simultaneously probe effects on many biological pathways



In Vitro

Water Samples from Field Site

In Situ



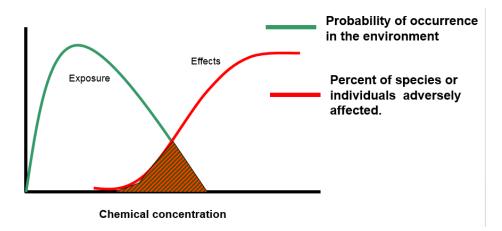
- Assays chosen based on information gathered from untargeted monitoring or previous knowledge
- In vitro bioassays conducted to identify specific cellular targets in assays such as,
 - MDA-kb2: (anti)androgenic activity
 - T47D: (anti)estrogenic activity
 - H4IIE: dioxin-like

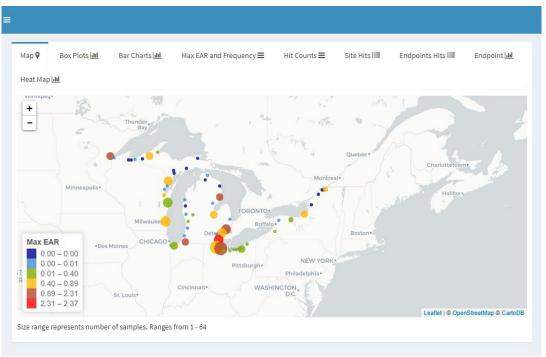
- Investigate specific endpoints associated with adverse outcome pathways
- Biochemical and molecular markers of endocrine disruption or other adverse outcomes can be measured in tissues extracted from organisms exposed to sites of concern

21st Century Approach: High-Throughput Toxicology (HTT)

- EPA and other federal agencies began the Toxicity Forecaster (ToxCast)and Tox21 in 2007 as part of an effort to advance chemical toxicity assessments
- Focus on in vitro testing vs traditional whole animal testing
- Greatly reduces cost of screening chemicals; ~10,000 currently screened through 100+ assays
- Provides a new source of methods and data that can be applied to assessment of environmental data

- 1536 well HTS
- 10,000 chemicals
- 25 assays per year





Using HTT To Predict and Prioritize Chemicals

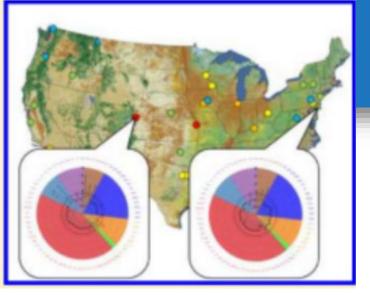
- Compare observed chemical concentrations to effects concentration in ToxCast database
 - Exposure-activity ratio (EAR)
 - Bioactivity-exposure ratio (BER)
- Simple, rapid approach to screen chemicals for potential biological effects
- Can prioritize sites or chemicals for further assessment
- R package "toxEval" allows for automated comparison of chemical monitoring data with ToxCast (https://github.com/USGS-R/toxEval)

HTT-based Screening of Environmental Mixtures

- HTS assays can be used as effects-based monitoring tools to directly screen environmental extracts
- Assay responses incorporate unknowns and potential interactions of mixture components

Art

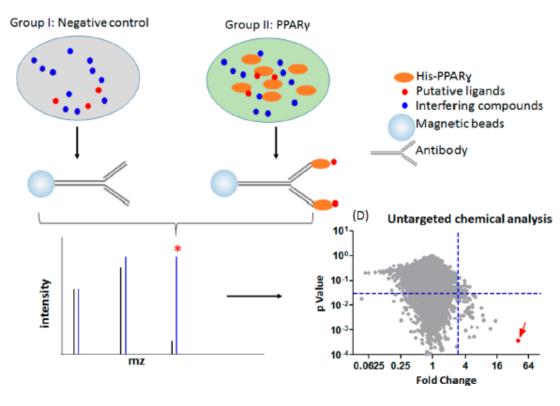
pubs.acs.org/est


Potential Toxicity of Complex Mixtures in Surface Waters from a Nationwide Survey of United States Streams: Identifying in Vitro Bioactivities and Causative Chemicals

Brett R. Blackwell,**,* Gerald T. Ankley,* Paul M. Bradley,* Keith A. Houck, Sergei S. Makarov, Alexander V. Medvedev, Joe Swintek, and Daniel L. Villeneuve

Cite This: Environ, Sci. Technol. 2019, 53, 973-983

 Only one of 11 biological endpoint (estrogenic activity) explained by measured chemicals


NTA for Identification of Bioactive Chemicals

- NTA methods can help uncover the "unknowns" of chemical exposure
- Bioactivity can prioritize samples/features for NTA analysis
- Fractionation and subsequent bioassay/NTA analysis can further define chemical space of interest (effects-directed analysis, EDA)

Receptor Pulldown Assay and HR-MS

- Similar to bioassays, mass spectrometry techniques can utilize proteins to help elucidate bioactive compounds
- Effects-based monitoring data can guide selection of biological targets and environmental sites of interest
- Employing these methods in a case study of wastewater associated contaminants in the Colorado River

Peng et al. 2016, Environ. Sci. Technol. 50:7816-7824

Colorado River Case Study

- 2013 National Park Service measured CECs along Colorado River between Arches NP and Canyonlands NP
- Detected CECs far downstream of Moab WWTP
 - Designed 1950s for 5000 millions of visitors per year
 - Treatment plant upgraded in 2018

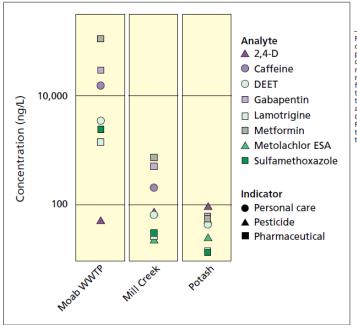
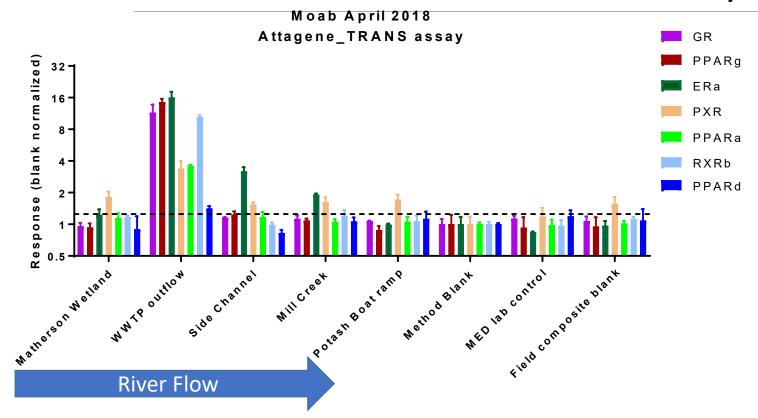



Figure 3-2. Concentrations of pharmaceuticals and personal care products decreased by orders of magnitude as samples moved downstream from the wastewater treatment plant outflow to the Colorado River at Mill Creek and to the Colorado River at the Potash boat ramp. Note the logarithmic scale on the y-axis.

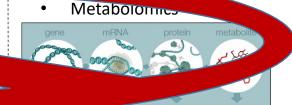
Colorado River Bioactivity

Target	Hazard Considerations						
ER	Well established hazard to aquatic vertebrates						
GR	Hazards to aquatic life not well defined						
PPARg	Hazards to aquatic life not well defined						

Field Collection Methods

- Caged fathead minnows deployed at each site
- Autosampler deployed to collect composited water samples
 - Water samples align with duration of fish exposure
 - Provide representative samples for chemical or bioassay analysis
- Bimonthly grab water samples collected

General Approach


Supervised

Unsupervised

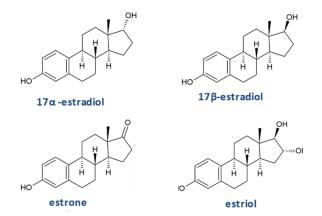
homical and molecular markers

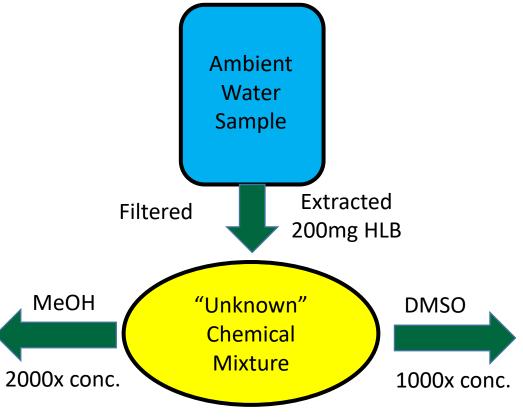
or enc. tradiol (E2),
vitellogenin (VTG)

Surface Waters; Extracts In vitro bioassays

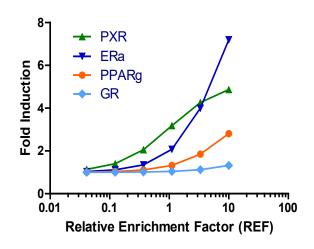
- ER activity
- GR activity
- PPAR activity

Attagene Assays


- In vitro assays
- 70 endpoints



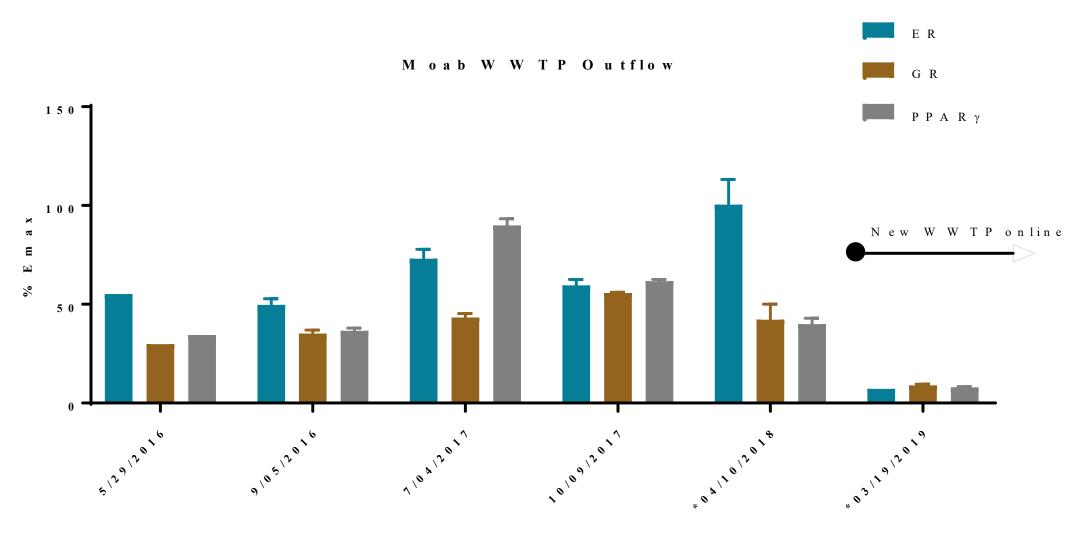
Bioassay Workflow


Targeted Steroidal Estrogens

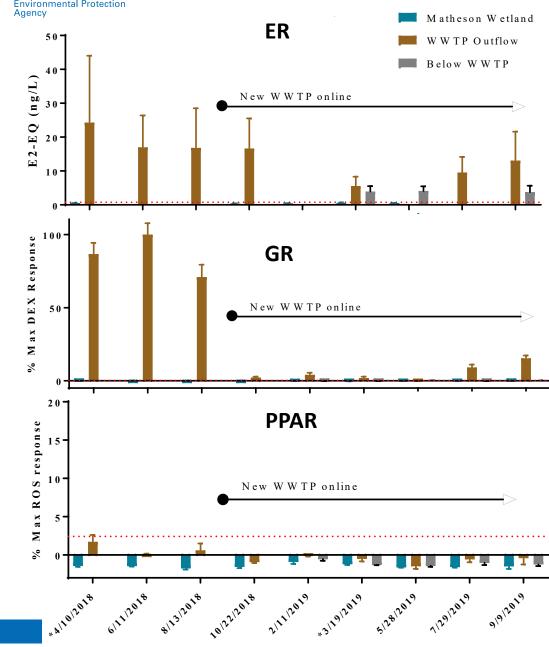
Orbitrap ID-X System

In vitro bioassays

PPARγ Pulldown Assay

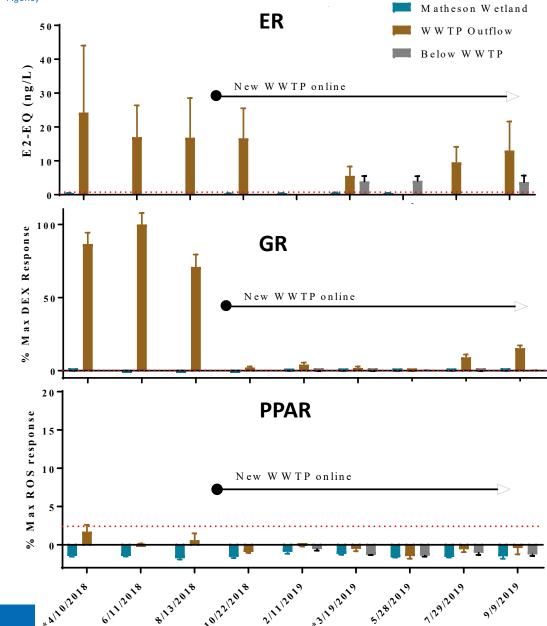


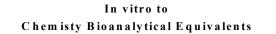
Glucocorticoid Suspect Screening

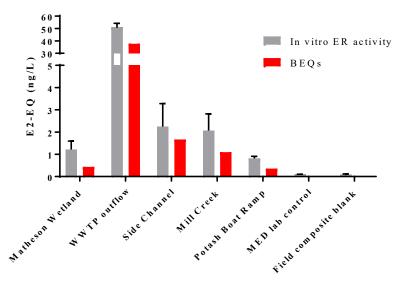


Attagene Trans-Factorial Bioassay Results

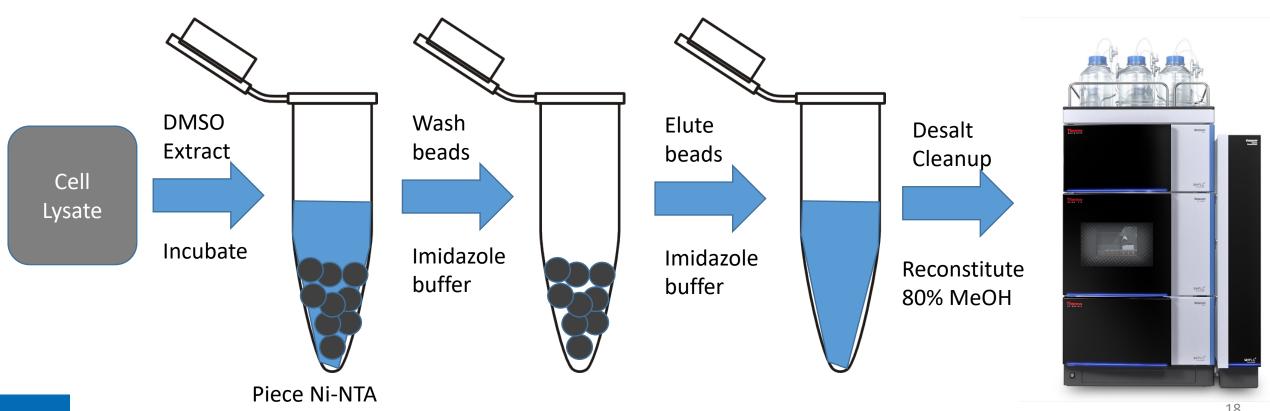
United States Environmental Protection


Sample Date


Targeted Bioassays


 ER and GR activity decrease greatly following WWTP upgrade

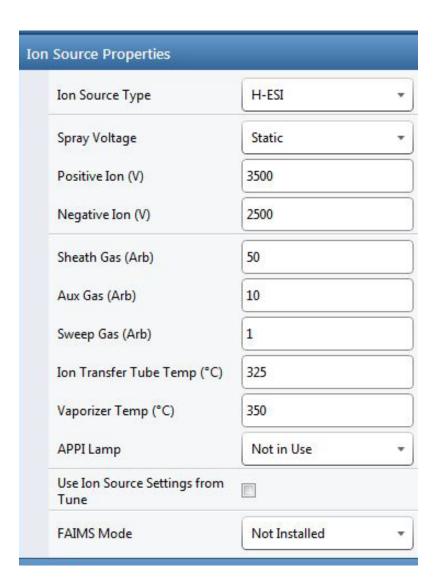
 PPARγ assay not sensitive enough to detect activity above baseline


No observed chemicals can explain GR or PPAR related activity

PPARy Receptor Pulldown Assay

- HIS-tagged human PPARγ Ligand Binding Domain (LBD) only
- Receptor overexpressed in E.Coli; cell lysate used for assay

magnetic beads



Pulldown Assay: LC-MS Analysis

- Vanquish Horizon LC System
- ID-X Orbitrap

Instrument Parameter	Value				
Injection Volume	2 uL				
Flow rate	300 uL/min				
Column	C18, 1.7um, 2.1 x 150mm				
Column Compartment	40°C				
Polarity	Pos/Neg				

GR-Agonist Suspect Screening


- GR receptor not readily available for pulldown assay
- GR agonist much better defined A number have been reported in wastewater and surface waters
- Suspect screening list of 45 previously identified compounds
 - Natural corticosteroids cortisol, cortisone, corticosterone, etc
 - Synthetic corticosteroids dexamethasone, triamcinolone, prednisone

Suspect Screening Analysis

- Vanquish Horizon LC System
- ID-X Orbitrap

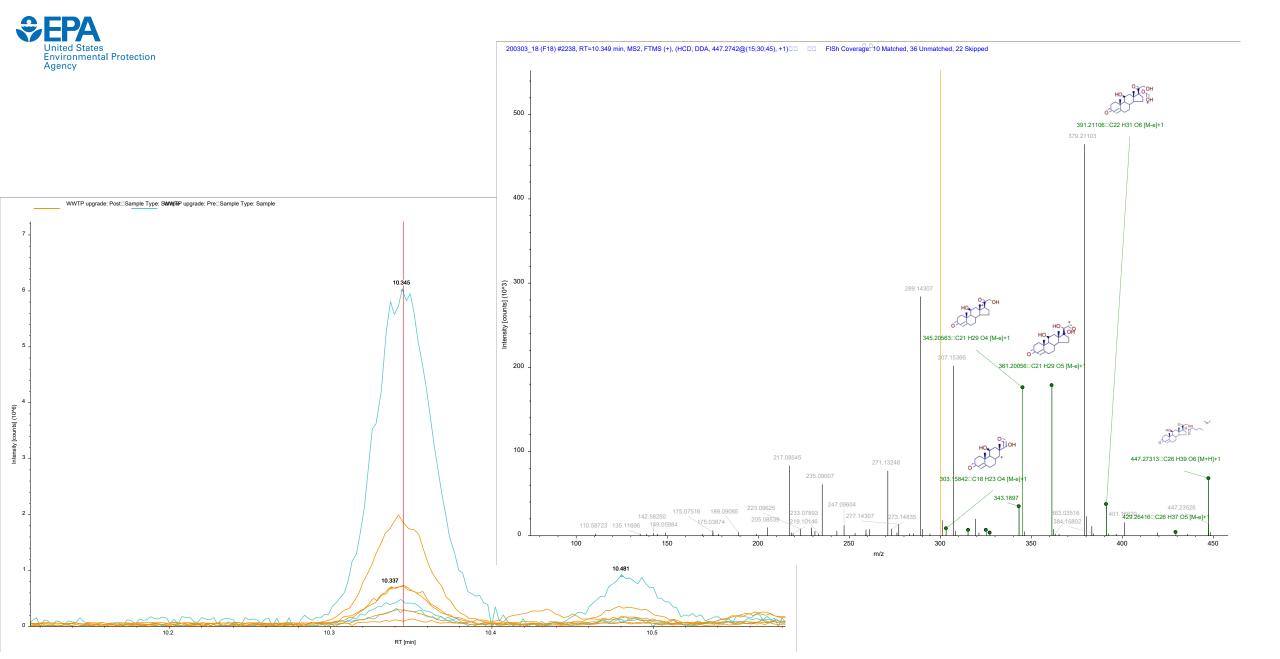
Instrument Parameter	Value				
Injection Volume	2 uL				
Flow rate	300 uL/min				
Column	C18, 1.7um, 2.1 x 150mm				
Column Compartment	40°C				
Polarity	Pos				

MS	Scan Properties	Show All
	Orbitrap Resolution	30000 🔻
	Scan Range (m/z)	300-600
	RF Lens (%)	60
	Maximum Injection Time (ms)	50
	Polarity	Positive •

Suspect Screening Preliminary Results

- Processing HR-MS data using Compound Discoverer v3.1
- Automated workflow: Environmental Unknown ID w Online and Local Database Searches
 - Searches against ChemSpider, MZCloud, user defined suspect list
- Data analysis very preliminary to date

Gladly taking suggestions/recommendations for successful data analysis!



Suspect Screening Preliminary Results

 Only WWTP site and process blanks analyzed

 31 compounds with MS2 spectra

	Со	ompo	unds 😽	Compounds per File	Merged Features	Features	mzCloud Results	ChemSpider Results	Mass List Search	Results Input Fi	iles Sp	ecialized Traces
-			Checked	Name		F	ormula	Annotation Sc 🛨	FISh Coverage	Molecular Weight	RT [min]	Area (Max.) N
1	4	₽ [(13 H27 F N2 O7			342.18040	10.025	189060658
2	4	=				(29 H64 F N7 O17			801.43503	5.571	3000970
3	4	-		3,20-Dioxopregna-4,9(11),1	6-trien-21-yl acetate	(23 H28 O4			368.19894	8.226	6057044
4	4	=		-		(16 H26 F2 N4 O			328,20730	12.571	18729871
5	4	to to				(C42 H68 N3 O10 P			805.46484	5.774	45612841
6	4	-				(244 H86 F2 N8 O8			892,65360	14.326	11642104
7	4	P		Methylprednisolone		(22 H30 O5		34.57	374.20906	7.367	3358786
8	4	₽		17α-Hydroxyprogesterone		(21 H30 O3		37.61	330.21851	7.733	34441552 0
9	Н	-		Hydrocortisone Valerate		(26 H38 O6		21.74	446.26693	10.345	15144596
10)	P				(18 H28 F N4 O3 P S			430.15993	7.646	10228015
11	1	-12		2-piperidinophenyl N-[4-(b	enzyloxy)phenyl]carb	amate (25 H26 N2 O3			402.20213	5.774	12923567
12	2	-		N-{[(2R,4S,5R)-5-(3-Cyclope	entyl-1-methyl-1H-py	razol-5 (22 H30 N4 O2			364.22515	12.760	4844295 c
13	3	-P				(24 H49 F O2 P2			450.31949	11.577	37465016 d
14	4	-		Corticosterone		(21 H30 O4		33.62	346.21401	8.791	3391338
15	5	-		Nor-9-carboxy-δ9-THC		(21 H28 O4			344.19823	14.175	3087155
16	5	Þ		Cortisol		(21 H30 O5		41.18	362.20897	7.534	5883962
17	7	Þ		2-Octyl-3,6,9,12-tetraoxate	tradecane-1,14-diol	(18 H38 O6			350.26582	12.180	68752768
18	3	Þ		(2S,3R,4S,5S,6R)-2-[4-hydro	xy-2-(3-methylbut-2-	-en-1-) (17 H24 O7			362.13423	10.239	3808722
19	9	Þ		NP-020634		(21 H30 O6			400.18627	10.077	3117029
20)	-		Cortisone		(21 H28 O5		52.25	360.19383	7.619	3294584 d

Summary

- Effects-based monitoring a powerful complement to traditional chemical monitoring
- Effects-based methods can support and guide unknowns identification
- If specific targets are known, receptor pulldown assays can be a specific, targeted method to identify bioactive components of mixtures
- Suspect screening viable if receptor agonists are well defined
- Access to lab is back Continuing pulldown assay and suspect screeing work. Targeting mid-2021 for project completion

Questions?

Brett Blackwell, PhD

USEPA Office of Research and Development

Center for Computational Toxicology and Exposure

Great Lakes Toxicology and Ecology Division

blackwell.brett@epa.gov

