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Calculating Chemical Risk

• High throughput risk prioritization based upon in vitro screening requires comparison to exposure             
(for example, NRC, 1983)

• Data obtained in vitro must be placed in an in vivo context:  in vitro-in vivo extrapolation (IVIVE) 

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro
with Reverse 

Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization



In Vitro - In Vivo Extrapolation (IVIVE)

“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)
Normalization of 
dose PBPK models

Comparative
testing

Extrapolation 
using PD and 
PBPK models

Testable 
predictions

• IVIVE-PK/TK 
(Pharmacokinetics/Toxicokinetics): 
 Fate of molecules/chemicals in body
 Considers absorption, distribution, 

metabolism, excretion (ADME)
 Can use empirical PK or physiologically-

based (PBPK)

 IVIVE is the use of in vitro data to predict 
phenomena in vivo

 IVIVE can be broken down into two components:

 IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
 Effect of molecules/chemicals at biological target in vivo
 Perturbation as adverse/therapeutic effect, reversible/ irreversible effects



IVIVE Allows Chemical Prioritization

Chemicals Monitored by CDC NHANES
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Ring et al. (2017)

ToxCast + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)
CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey
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ToxCast + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)

Exposure 
intake rates 
can be 
inferred from 
biomarkers 
(Wambaugh 
et al., 2014)
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intake rates 
can be 
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(Wambaugh 
et al., 2014)
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Higher priority chemicals



IVIVE by Scaling Factor

𝐀𝐀𝐀𝐀𝐀𝐀 = 𝑭𝑭𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 × [𝑿𝑿]

 We make various assumptions that allow simple conversion of an in vitro 
concentration [𝑿𝑿] (µM) into an administered equivalent dose (AED) with units of 
mg/kg body weight/day:

 AED is the external dose rate that would be needed to cause a given steady-state 
plasma concentration

 FIVIVE is a scaling factor that varies by chemical



IVIVE by Scaling Factor

 For a given chemical, FIVIVE = 1 / Css,95

 Css,95 is the steady-state plasma concentration as the result of a 1 mg/kg/day exposure

 The dashboard provides Css,95 values for >1000 chemicals
 The “95” refers to the upper 95th percentile – due to human variability and 

measurement uncertainty there are a range of possible Css values
 All of this assumes that the individuals have enough time to come to “steady-state” 

with respect to their daily exposures
 Here that means that their daily average plasma concentration is unchanged 24 hours later

𝐀𝐀𝐀𝐀𝐀𝐀𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗



ADME on the CompTox Chemicals Dashboard

 Toxicokinetics describes absorption, distribution, metabolism, excretion (ADME)
 The dashboard provides ADME information for >1000 chemicals
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ADME on the CompTox Chemicals Dashboard

 Toxicokinetics describes absorption, distribution, metabolism, excretion (ADME)
 The dashboard provides ADME information for >1000 chemicals

Click here 
for ADME 

information



ADME on the CompTox Chemicals Dashboard

 Toxicokinetics describes absorption, distribution, metabolism, excretion (ADME)
 The dashboard provides ADME information for >1000 chemicals



ADME on the CompTox Chemicals Dashboard

 The ADME tab provides any available in vitro measured determinants of toxicokinetics

These 
properties are 

measured
in vitro:



ADME on the CompTox Chemicals Dashboard

 Eventually in vivo-derived values will be available from CvTdb (Sayre et al., 2020)

These 
properties are 

measured
in vivo:



Most chemicals do not have TK Data
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ADME on the CompTox Chemicals Dashboard

 We use the R package “httk” (Pearce et al., 2017) to make predictions about TK from 
in vitro-measured TK data

These properties 
are computed from 

in vitro TK data:



ADME on the CompTox Chemicals Dashboard

 We use the R package “httk” (Pearce et al., 2017) to make predictions about TK from 
in vitro-measured TK data

The Dashboard provides 
Css,95 for every chemical 
where it is available



Does My Chemical Have HTTK Data?

 The “HTTKHUMAN” list will take you to the landing page for a chemical with HTTK data

Click here to 
bring up 
Dashboard 
Options



Does My Chemical Have HTTK Data?

 The “HTTKHUMAN” list will take you to the landing page for a chemical with HTTK data

Select “Lists 
of Chemicals”
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Does My Chemical Have HTTK Data?

 The “HTTKHUMAN” list will take you to the landing page for a chemical with HTTK data

Select list 
“HTTKHUMAN”



Does My Chemical Have HTTK Data?

 The “HTTKHUMAN” list will take you to the landing page for a chemical with HTTK data



How Does AED Work?

 AED is the administered equivalent dose for an in vitro concentration

 Css,95 is the steady-state plasma concentration as the result of a 1 mg/kg/day exposure
 The dashboard provides Css,95 values for >1000 chemicals
 The “95” refers to the upper 95th percentile – due to human variability and 

measurement uncertainty there are a range of possible Css values
 All of this assumes that the individual has had enough time to come to “steady-state” 

with respect to their daily exposures
 Here that means that their average plasma concentration is unchanged 24 hours later

𝐀𝐀𝐀𝐀𝐀𝐀𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗



Steady-State Plasma Concentration
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 Css(dose rate) is the steady-state plasma concentration as the result of a fixed daily 
dose rate (mg/kg/day)

 Because of limitations on the data available, we use a linear model
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Steady-State Plasma Concentration
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 Because of limitations on the data available, we use a linear model
 We calculate “Css” for the case of 1 mg/kg/day

1 mg/kg/day



 We use Monte Carlo simulation to propagate measurement uncertainty (Wambaugh et 
al., 2019) and characterize human physiological variability (Ring et al., 2017)

 This produces a range of Css values

Monte Carlo Simulation
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Monte Carlo Simulation
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 We typical consider the median and highest (most sensitive) 95th percentile for the 
same dose rate

 The Css,95 corresponds to higher plasma concentrations for 1 mg/kg/day
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Steady-State Reverse Dosimetry IVIVE
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 For “reverse dosimetry” (Tan et al., 2007) we swap the x- and y-axes:



Administered Equivalent Dose (AED)
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 We can then calculate a dose rate that would cause steady-state plasma 
concentrations equal to an in vitro concentration

 The AED95 is lower than the median AED, because the individuals are more sensitive
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Check Your Units!

µ𝑴𝑴 =
𝟏𝟏

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏

𝑴𝑴𝑴𝑴
𝒎𝒎𝒎𝒎
𝑳𝑳

 At least once a year I make the mistake of failing to convert in vitro concentrations to the 
right units

 The Dashboard provides Css,95 in units of mg/L
 For example, if your in vitro concentration is in µM, you must convert – factor depends on 

the chemical-specific molecular weight (MW, g/mol):



Where Do We Get The TK Predictions?

• To provide toxicokinetic data for larger numbers of chemicals we collect in vitro, high throughput 
toxicokinetic (HTTK) data (for example, Rotroff et al., 2010, Wetmore et al., 2012, 2015)
• This is an example of a New Approach Methodologies (NAM,  Kavlock et al. 2018)

• HTTK methods have been used by the pharmaceutical industry to determine range of efficacious 
doses and to prospectively evaluate success of planned clinical trials (Jamei, et al., 2009; Wang, 
2010)

• The primary goal of HTTK is to provide a human dose context for bioactive in vitro concentrations 
from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) (for example, Wetmore et al., 2015)

• A secondary goal is to provide open source data and models for evaluation and use by the broader 
scientific community (Pearce et al, 2017)



High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
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In Vitro Data for HTTK
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• Most chemicals do not 
have TK data – we use in 
vitro HTTK methods 
adapted from pharma to 
fill gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order of 
values measured in 
clinical trials 
(Wang, 2010)



Generic Models for HTTK
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• Tissues are modeled by compartments:
• Clearance from the body depends on two processes:

• Metabolism in the liver (estimated from in vitro clearance and 
binding)

• Excretion by glomerular filtration in the kidney (estimated from in 
vitro binding)

• Model parameters are either:
• Physiological: determined by species and potentially varied via 

Monte Carlo (including HTTK-pop, Ring et al. 2017)
• Chemical-specific: physico-chemical properties (Mansouri et al., 

2018) and equilibrium partition coefficients plus plasma binding and 
metabolism rates that are determined from in vitro measurements or 
potentially predicted from structure



Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk


Modules within R Package “httk”

Feature Description Reference

Chemical Specific In Vitro 
Measurements

Metabolism and protein binding for ~1000 
chemicals in human and ~200 in rat 

Wetmore et al. (2012, 
2013, 2015), plus 
others

Chemical-Specific In Silico 
Predictions

Metabolism and protein binding for ~8000 
Tox21 chemicals Sipes et al. (2017)

Generic toxicokinetic models
One compartment, three compartment, 
physiologically-based oral, intravenous, and 
inhalation (PBTK)

Pearce et al. (2017a), 
Linakis et al. (2020)

Tissue partition coefficient 
predictors Modified Schmitt (2008) method Pearce et al. (2017b)

Variability Simulator Based on NHANES biometrics Ring et al. (2017)
In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)

Uncertainty Propagation Model parameters can be described by 
distributions reflecting uncertainty

Wambaugh et al. 
(2019)



Population simulator for HTTK

Correlated Monte Carlo 
sampling of physiological 
model parameters built into 
R “httk” package:

Sample NHANES biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Ring et al. (2017)NHANES: US CDC National Health and Nutrition Examination Survey



Population simulator for HTTK

Correlated Monte Carlo 
sampling of physiological 
model parameters built into 
R “httk” package:

Sample NHANES biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from 
literature (McNally et al., 2014)
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB 

[Bosgra et al. 2012], etc.)

Ring et al. (2017)NHANES: US CDC National Health and Nutrition Examination Survey



Population simulator for HTTK

Predict physiological 
quantities for generic 
Models:

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Correlated Monte Carlo 
sampling of physiological 
model parameters built into 
R “httk” package:

Sample NHANES biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from 
literature (McNally et al., 2014)
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB 

[Bosgra et al. 2012], etc.)

Ring et al. (2017)NHANES: US CDC National Health and Nutrition Examination Survey



Calculating Dashboard Values in R

 It is often helpful to set an 
environmental variable that 
points to a personal library of R 
packages, for me, on Windows, I 
have the “user variable” 
R_LIBS_USER set to 
“c:/users/jwambaug/Rpackages”

 Many people like to use a 
graphical user interface (GUI) 
such as RStudio, which also may 
be freely available to you:

https://rstudio.com/

 R is freely available from the Comprehensive R Archive Network (CRAN):
https://cloud.r-project.org/

https://rstudio.com/
https://cloud.r-project.org/


Calculating Dashboard Values in R

> install.packages("httk")
Installing package into ‘c:/Users/jwambaug/Rpackages’

(as ‘lib’ is unspecified)

--- Please select a CRAN mirror for use in this session ---

trying URL 'https://cloud.r-
project.org/bin/windows/contrib/3.6/httk_2.0.1.zip'

Content type 'application/zip' length 10127063 bytes (9.7 MB)

downloaded 9.7 MB

package ‘httk’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\jwambaug\AppData\Local\Temp\Rtmp4STebz\downloaded_packages

> library(httk)
> packageVersion("httk")
[1] ‘2.0.1’

Install HTTK from the 
command line 
(GUI’s like RStudio also provide 
menus for this)

Load the HTTK data, 
models, and functions

Check what version you are using



Calculating Dashboard Values in R

> set.seed(12345)
> calc_mc_css(dtxsid="DTXSID1020221",

which.quantile=0.95,                 
output.units="mg/L")

Human plasma concentration returned in mg/L units for 0.95 quantile.

95% 

2.931 

Warning messages:

1: In (function (chem.cas = NULL, chem.name = NULL, dtxsid = NULL,  :

Funbound.plasma adjusted for in vitro partitioning (Pearce, 2017).

2: In calc_rblood2plasma(chem.cas = chem.cas, species = species, 
adjusted.Funbound.plasma = adjusted.Funbound.plasma,  :

Rblood2plasma has been recalculated.

3: In calc_rblood2plasma(hematocrit = parameters.dt$hematocrit, Krbc2pu = 
parameters.dt$Krbc2pu,  :

Rblood2plasma has been recalculated.



Calculating Dashboard Values in R

> set.seed(12345)
> calc_mc_css(dtxsid="DTXSID1020221",

which.quantile=0.95,                 
output.units="mg/L")

Human plasma concentration returned in mg/L units for 0.95 quantile.

95% 

2.931 

Warning messages:

1: In (function (chem.cas = NULL, chem.name = NULL, dtxsid = NULL,  :

Funbound.plasma adjusted for in vitro partitioning (Pearce, 2017).

2: In calc_rblood2plasma(chem.cas = chem.cas, species = species, 
adjusted.Funbound.plasma = adjusted.Funbound.plasma,  :

Rblood2plasma has been recalculated.

3: In calc_rblood2plasma(hematocrit = parameters.dt$hematocrit, Krbc2pu = 
parameters.dt$Krbc2pu,  :

Rblood2plasma has been recalculated.

This step sets the 
random number 
generator to a 
specific state, 
otherwise Monte 
Carlo (MC) will give 
you slightly 
different answers



Conclusions

Testing 
Predictions

IVIVE for
Risk 
Prioritization

• For >1000 chemicals, the CompTox 
Chemicals Dashboard provides 
information on absorption, distribution, 
metabolism, and excretion (ADME)

• ADME information allows calculation of 
administered equivalent doses (AEDs) 
for in vitro bioactivity data

• This information is based upon HTTK, 
comprising in vitro measured chemical-
specific data and generic models that 
can use those data

• These predictions, and much more, can 
also be accessed via open source, free, 
and evaluated “httk” software for R

in vitro-in vivo extrapolation, IVIVE
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