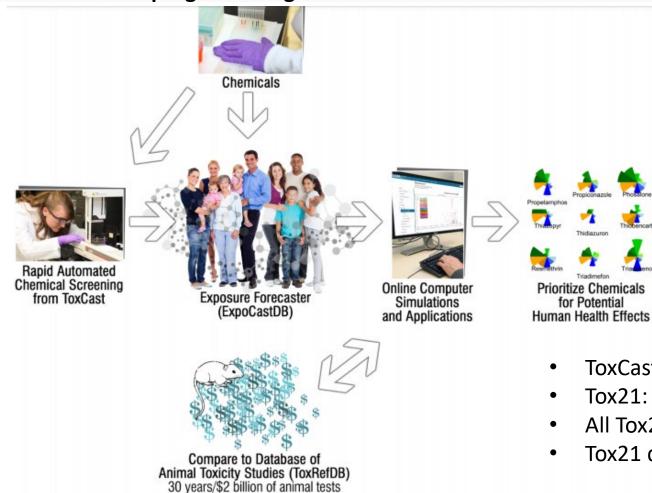
http://www.orcid.org/0000-0002-2710-1691

Overview of the CompTox Chemicals Dashboard and ToxCast/Tox21 Screening Program: Tools for Users

Katie Paul Friedman, PhD paul-friedman.katie@epa.gov Center for Computational Toxicology and Exposure, US-EPA, RTP, NC


The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the

U.S. EPA

10/23/2020 Happy Mole Day! ToxCast and Tox21 have generated a lot of publicly available bioactivity data for hazard screening and prediction.

EPA's ToxCast program at a glance

Tox21 robot

- ToxCast: more assays, fewer chemicals, EPA-driven
- Tox21: fewer assays, all 1536, driven by consortium
- All Tox21 data are analyzed by multiple partners
- Tox21 data is available analyzed in the ToxCast Data Pipeline

ToxCast covers a lot of biology but not all; and, ToxCast is growing over time.

Invitrodb version 3.3 (released August 2020) contained 17 different assay sources, covering (at least) 491 unique generelated targets with 1600 unique assay endpoints. Varying amounts of data are available for 9949 unique substances.

Assay source	Long name	Truncated assay source description	Some rough notes on the biology covered
ACEA	ACEA Biosciences	real-time, label-free, cell growth assay system based on a microelectronic impedance readout	Endocrine (ER-induced proliferation)
APR	Apredica	CellCiphr High Content Imaging system	Hepatic cells (HepG2)
ATG	Attagene	multiplexed pathway profiling platform	Nuclear receptor and stress response profile
BSK	Bioseek	BioMAP system providing uniquely informative biological activity profiles in complex human primary co-culture systems	Immune/inflammation responses
NVS	Novascreen	large diverse suite of cell-free binding and biochemical assays.	Receptor binding; transporter protein binding; ion channels; enzyme inhibition; many targets
ОТ	Odyssey Thera	novel protein:protein interaction assays using protein-fragment complementation technology	Endocrine (ER and AR)
TOX21	Tox21/NCGC	Tox21 is an interagency agreement between the NIH, NTP, FDA and EPA. NIH Chemical Genomics Center (NCGC) is the primary screening facility running ultra high-throughput screening assays across a large interagency-developed chemical library	Many – with many nuclear receptors
CEETOX	Ceetox/OpAns	HT-H295R assay	Endocrine (steroidogenesis)
CLD	CellzDirect	Formerly CellzDirect, this Contract Research Organization (CRO) is now part of the Invitrogen brand of Thermo Fisher providing cell-based in vitro assay screening services using primary hepatocytes.	Liver (Phase I/Phase II/ Phase III expression)
NHEERL_PADILL	A NHEERL Padilla Lab	The Padilla laboratory at the EPA National Health and Environmental Effects Research Laboratory focuses on the development and screening of zebrafish assays.	Zebrafish terata
NCCT	NCCT Simmons Lab	The Simmons Lab at the EPA National Center for Computational Toxicology focuses on developing and implementing in vitro methods to identify potential environmental toxicants.	r Endocrine (thyroid - thyroperoxidase inhibition)
TANGUAY	Tanguay Lab	The Tanguay Lab, based at the Oregon State University Sinnhuber Aquatic Research Laboratory, uses zebrafish as a systems toxicology model.	Zebrafish terata/phenotypes
NHEERL_NIS	NHEERL Stoker & Laws	The Stoker and Laws laboratories at the EPA National Health and Environmental Effects Research Laboratory work on the development and implementation of high-throughput assays, particularly related to the sodium-iodide cotransporter (NIS).	Endocrine (thyroid - NIS inhibition)
UPITT	University of Pittsburgh	The Johnston Lab at the University of Pittsburgh ran androgen receptor nuclear translocation assays under a Material Transfer Agreement (MTA for the ToxCast Phase 1, Phase 2, and E1K chemicals.	⁾ Endocrine (AR related)

Invitrodb version 3.3 (released August 2020) contained 17 different assay sources, covering (at least) 491 unique generelated targets with 1600 unique assay endpoints. Varying amounts of data are available for 9949 unique substances.

These assay endpoints were notable additions in invitrodb version 3.3.

Assay source	Long name	Truncated assay source description	Some rough notes on the biology covered
NCCT_MITO	NCCT (now Center for Computational Toxicology and Exposure) Mitochondrial toxicity	Respirometric assay that measure mitochondrial function in HepG2 cells	Multiple assay endpoints to evaluate mitochondrial function <u>https://doi.org/10.1093/toxsci/kfaa059</u> .
NHEERL_MED	NHEERL Mid- Continent Ecology Division	The EPA Mid-Continent Ecology Division of the National Health and Environmental Effects Research Laboratory screened the ToxCast Phase 1 chemical library for hDIO1 (deiodinase 1) inhibition as part of an ecotoxicology effort.	Endocrine (thyroid – hDIO1,2,3 inhibition) https://doi.org/10.1093/toxsci/kfy302
STM	Stemina	Stem cell-based metabolomic indicator of developmental toxicity for screening.	Developmental toxicity screening – multiple assay endpoints https://doi.org/10.1093/toxsci/kfaa014
LTEA	Life Tech Expression Analysis	Gene expression measured in HepaRG cells following 48 hr exposure	Liver toxicity model via transcription factor regulated metabolism and markers of oxidative/cell stress; multiple assay endpoints

What can be done with ToxCast data?

Answering biological questions

- (for example) Does this substance have endocrine or liver-mediated bioactivity?
- Is there support for one or more adverse outcome pathways based on these data, or does the substance appear "non-selective?"

Answering risk-related questions

- Can a protective bioactivitybased point-of-departure be calculated?
- What is the relative priority of this substance for additional evaluation?

A user interface to browse and download data: CompTox Chemicals Dashboard

Share 🤻

PEPA United States Environmental Protection Home Advanced Search Batch Search Lists • Predictions Downloads Agency

Product/Use Categories Assay/Gene

Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChIKey

Identifier substring search

Chemicals

See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here

875 Thousand Chemicals

Latest News

Read more news

August 9th 2019 - New release (3.0.9) in time for ACS Fall Meeting

August 14th, 2019 at 4:39:37 PM

A new version of the Dashboard has been released in time for the ACS Fall meeting. Included in this release are updates to data in the ToxVal database, an update to the in vitro database (version 3.2), and the release also addresses a number of minor bugs and includes a short list of additional functionality as described in the Release Notes here.

https://comptox.epa.gov/dashboard

. . .

- Vignette 1: Weight of evidence example
- Vignette 2: Risk-based approach that incorporates bioactivity and exposure, making the best use of new approach methodologies, for endocrine bioactivity.

This presentation will demonstrate where to find these information and suggest an approach for utilizing them in screening level risk evaluation.

Vignette one: bioactivity for weight-of-evidence/biological questions

Is mystery compound A toxic to liver and/or mitochondria?


Mystery compound A: in domain of current screening?

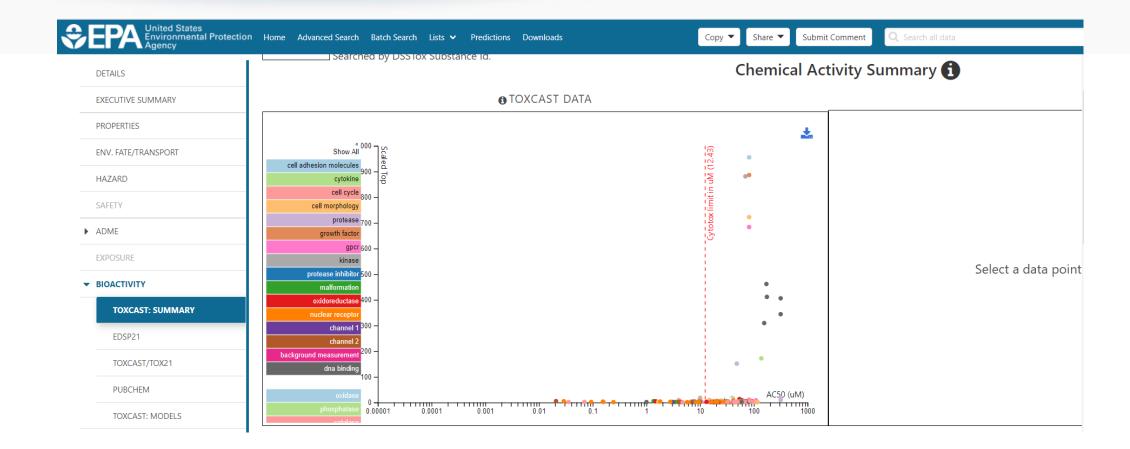
Analytical chemistry: was the chemical present and in the DOA for current ToxCast?	Home Advanced Search E	~	4 g/mol – likel	y Summary	Copy 🔻 Share 🔻	Submit Comment	Q Search all data	
PROPERTIES		good ordrav	unubinty	,	,			
ENV. FATE/TRANSPORT	Lownload Column	s ¥		Prol	hahlu ahle to cro	ss cell membrane	Searc	h query
HAZARD	Property \$	Experimental average	Predicted average	Experimental median 🗘				-
SAFETY	LogKow: Octanol-Water	-	4.94		4.67	-	4.30 to 6.11	>
► ADME	Melting Point	185 (2)	215	185	184	184 to 185	150 to 313	°C
	Boiling Point	-	589		657	-	397 to 714	°C
EXPOSURE	Water Solubility	-	5.40e-6		2.72e-6	-	8.75e-8 to 1.34e-5	mol/L
► BIOACTIVITY	Density	-	1.27		1.27	-	1.27	g/cm^3
SIMILAR COMPOUNDS	Flash Point	-	330		330	-	309 to 351	°C
	Vapor Pressure	-	7.20e-10	<	3.83e-11	-	7.24e-18 to 2.12e-9	mmHg
GENRA (BETA)	Surface Tension	-	51.0		Not volatile	-	51.0	dyn/cm
RELATED SUBSTANCES	Index of Refraction	-	1.61			-	1.61	-
SYNONYMS	Molar Refractivity	-	120			-	120	cm^3
	Polarizability	-	47.8			-	47.8	Å^3
► LITERATURE	Molar Volume	-	349			-	349	cm^3
LINKS	LogKoa: Octanol-Air	-	9.68			-	9.68	-
COMMENTS	Henry's Law	-	5.64e-9			-	5.64e-9	atm-m3/mole

"Low" hit-rate substances in ToxCast are distributed across physicochemical properties

These physicochemical properties may be helpful in considering substances that look negative across ToxCast, but physicochemical properties don't tell the entire story.

Substances with low hit-rate on the "fringe" of the distribution may need closer consideration to understand if they are within the domain of screening.

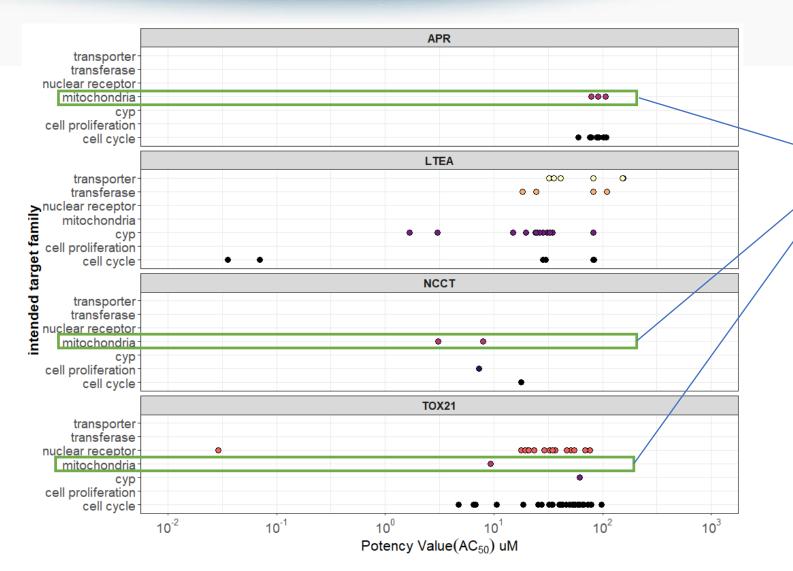
Mystery compound A seems to fit into the domain of screening based on chemistry



11

halytical chemistry: was the chemical present and in the DOA for current	stion Home Advanced Search Batch Search I	Substance Id.		nit Comment Q Search all data			
ToxCast?	—	Select samples	ToxCast/Tox21 that were analyzed (the chemical in DM	ISO stock) are high purity and confirme			
	QC Data ID	Grade	Description				
PROPERTIES	Tox21_112119	Pass	Purity>90% and MW confirmed				
ENV. FATE/TRANSPORT	Tox21_112119_1	Pass	Purity>90% and MW confirmed	Purity>90% and MW confirmed			
HAZARD	Tox21_300470	Pass	Purity>90% and MW confirmed				
SAFETY	Assay Selection 0 Selected	A Single Assay Can Harden Assay Can H	ave Multiple Charts 🛃 Representative Samples	Only & Bioactivity Summary - Number of Charts			
► ADME	Active Inac	tripod.nih.gov/tox21/samples/Tox21_112119	Altmetric it! ORD Graphics and ORD@Work Request Researcher	☆ •			
EXPOSURE	Filter assays			Structure Search Search			
▼ BIOACTIVITY	Tapquay Lab (0 of 19 s	0x21 Samples / Tox21_112119					
TOXCAST: SUMMARY		Con	me stable under sere seine serende sond				
EDSP21	Tox21/NCGC (0 of 235	See	ms stable under screening sample cond	itions (DIVISO, room temp, 0-4 months,			
TOXCAST/TOX21	NHEERL Mid-Continent		QC Grade	Identifiers			
		H ₃ C H ₃ CH ₃	T0 A MW Confirmed, Purity > 90%	Tox21 Tox21_112119			
		CH ₃	T4 A MW Confirmed, Purity > 90%	NCATS NCGC00159457-01			
		H3C		CAS			
				PubChem			
		5 ОН					

But what bioactivity does Mystery Compound A have?



Each assay platform or source can be a surrogate for one or more collections of AOPs

		Consider some of the information that might inform about liver toxicity:
Models availabl	e? Selective or non- selective?	 Mechanistic information on mitochondrial toxicity, oxidative stress, nuclear receptor transcription factor activity, markers of injury in liver- specific models, cell stress and cytotoxicity (inexhaustive listing here):
Biological process	Assay technologies	Details
Mitochondrial	TOX21_MMP	Mitochondrial membrane permeability (HepG2)
toxicity	NCCT_MITO	Multiple assay endpoints that measure oxygen consumption and respiration via Seahorse; can distinguish mechanism (HepG2)
	Apredica MitoMembPot	High content imaging, mitochondrial membrane permeability (HepG2)
	Apredica MitoMass	High content imaging, mitochondrial mass (HepG2)
Nuclear receptors and oxidative	ATG	Transcription factor activity, including nuclear receptor and cell stress panel (CIS by endogenous expression and TRANS by GAL4-NR receptor modules); HG19 subclone of HepG2 cells (for elevated metabolism)
stress	LTEA	mRNA expression in HepaRG for nuclear-receptor regulated metabolism/oxidative stress
	CLD	mRNA expression in sandwich-cultured primary human hepatocytes for Phase I-II metabolism and transport
	Tox21 NR assays	LUC and BLA nuclear receptor reporter assays
	NVS NR and transporter assays	Cell-free binding
	Odyssey Thera	Receptor complexes and stabilization of coactivator interaction
Cell stress and cytotoxicity	Viability and cell stress assays across platforms	88+ assays

Looking for consistency in MOA and concentration ranges (this is just a subset of assay technologies for demonstration)

Mitochondria: *Consistency in MOA* Concentration ranges by technology; the NCCT Seahorse technology suggests 1-10 uM, similar to Tox21 MMP assay

Liver:

Clearly CYPs, Phase II transferases, and nuclear receptor interactions occuring May occur at concentrations greater than mitochondria or cell cycle bioactivity

Consider reviewing the curves more specifically for a single chemical weight-of-evidence.

Mystery substance A: brief consideration of weight of evidence

United States Environmental Protection Agency

- 282/919 assays active: high hit-rate; consider that ToxCast contains a focus on NR-related processes, cell stress, and liver.
- Mitochondrial endpoint notes:
 - NCCT MITO positive, suggests decrease in basal oxygen consumption and max respiration indicative of Complex I inhibition (~3-7 uM)
 - TOX21 MMP assay positive (~9 uM)
 - APR_HepG2 mito assays several positive much higher concentrations (50 uM+).
 - Cytotoxicity limit is estimated at ~12 uM.
- Liver/cell stress endpoints:
 - LTEA
 - LDH assay in LTEA system suggests AC50 ~83 uM.
 - Effects on multiple transporters in LTEA (BSEP, MRP3, MRP2, OCT1, OATP1B1,etc.) (20-40 uM)
 - Effects on multiple Phase I enzyme expression inc CYP3A, CYP4A in LTEA (20-40 uM)
 - Acox1 expression altered in LTEA (suggests hepatic mitochondrial activity altered), along with other indicators of stress/apoptosis (BAX/BCL2-like 11) (~60+ uM)
 - Multiple inflammatory markers upregulated in LTEA and BSK
 - It is difficult to discern if effects on mitochondria and cell cycle precede or coincide with effects on Phase I-II metabolism and transport.
 - TOX21 and ATG suggest consistent PPAR activity (gamma), possibly PXR, GR, and other nuclear receptors (ToxCast AR model is equivocal).

- Troglitazone
- Treatment for Type II diabetes, works primarily by activating $\ensuremath{\mathsf{PPAR}}\ensuremath{\gamma}$
 - Also involved in immune response via decrease in NF-KB
- Drug removed from market due to DILI, with several proposed mechanisms, including:
 - Mitochondrial toxicity [Electron transport chain inhibitor (Complex I) at low micromolar concentrations]
 - Inhibits of bile acid transport/cholestatic effects (e.g., BSEP)
 - Apoptosis
 - Formation of reactive metabolites/oxidative stress

Vignette two: Screening-level endocrine bioactivity assessment

Evaluate mystery compound B for endocrine bioactivity risk

Examine physicochemical properties such as logP, vapor pressure, and MW to get a better sense of whether the chemical was suitable for the current *in vitro* assay suite

Analytical chemistry: was the chemical present and in the DOA for current ToxCast?

ToxCast negatives: what does a negative mean? Outside of domain of applicability (DOA)?

EXECUTIVE SUMMARY				Summary				
PROPERTIES ENV. FATE/TRANSPORT	🛓 Download 🔻 Column	s ~						Search query
HAZARD	Property	 Experimental average 	Predicted average	Experimental median 🗘	Predicted median \$	Experimental range	Predicted range	Unit
ADME	LogP: Octanol-Water	3.32 (1)	3.29		3.43	3.32	2.40 to 3.64	-
EXPOSURE	Melting Point	155 (7)	139	156	138	153 to 156	125 to 157	°C
BIOACTIVITY	Boiling Point	200 (1)	363		360	200	343 to 401	°C
BIOACTIVITY	Water Solubility	5.26e-4 (1)	9.62e-4		1.00e-3	5.26e-4	5.35e-4 to 1.31e-3	mol/L
TOXCAST: SUMMARY	Vapor Pressure	-	8.37e-7		3.43e-7	-	6.83e-8 to 2.59e-6	mmHg
EDSP21	Flash Point	-	190		190	-	188 to 192	°C
TOXCAST/TOX21	Surface Tension	-	46.0			-	46.0	dyn/cm
BUDGUDA	Index of Refraction	-	1.60			-	1.60	-
PUBCHEM	Molar Refractivity	-	68.2			-	68.2	cm^3
TOXCAST: MODELS	Polarizability	-	27.0			-	27.0	Å^3
SIMILAR COMPOUNDS	Density	-	1.17		1.17	-	1.14 to 1.20	g/cm^3
GENRA (BETA)	Molar Volume	-	200			-	200	cm^3
	Thermal Conductivity	-	150			-	150	mW/(m*K)
RELATED SUBSTANCES	Viscosity	-	9.66			-	9.66	cP
SYNONYMS	Henry's Law	-	1.26e-7			-	1.26e-7	atm-m3/mole
LITERATURE	LogKoa: Octanol-Air	-	8.38			-	8.38	-
LINKS				16 records				

Many successfully screened chemicals have been (but not limited to): logP -0.4 to 5.6 range; MW 180-480; log10 Vapor Pressure < 1.

Available QC data suggests that the substance is present in DMSO sample and stable over 4 months

associated bioactivity curves

structure Search

Search..

Active research is ongoing to better surface an • integrated analysis of analytic sample QC.

QC Data ID

Tox21 202992

Tox21_400088

T Filter assavs

Odyssey Thera (0 of 17 selected)

Attagene (0 of 165 selected)

CellzDirect (0 of 48 selected)

Bioseek (0 of 174 selected)

Apredica (0 of 108 selected)

Analytical chemistry: was the chemical present and in the DOA for current

ToxCast?

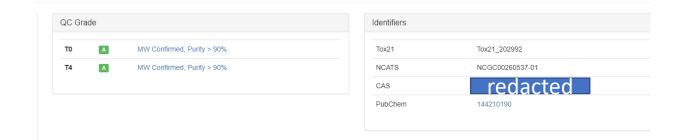
PROPERTIES

HAZARD

ADME

EXPOSURE

BIOACTIVITY


EDSP21

ENV. FATE/TRANSPORT

TOXCAST: SUMMARY

TOXCAST/TOX21

Not all QC data is currently displayed – but failures noted ٠ in the tripod site can indicate a possible problem with the representative sample (e.g., degradation).

What is an example of a substance that QC might tip us off we need different NAMs from what is currently in ToxCast?

PEPA United States Environmental Protect Agency	tion Home Advanced Search Batch Search Lists 🗸 I	Copy 🔻 Share 👻 Subr	mit Comment	Search all data							
	Naphthalene 91-20-3 DTXSI Searched by DSSTox Substance	D80209	913								
DETAILS	_	ToxCast/Tox21									
EXECUTIVE SUMMARY	QC Data ID										
PROPERTIES	Tox21 111023	Grade	Description No sample detected								
ENV. FATE/TRANSPORT	Tox21_202004				No sample detected						
HAZARD	Tox21_300008		Caution	No sample detected							
SAFETY	Assay Selection 0 Selected <	A Single As	ssay Can Have Multiple Charts 🏾	Representative Samples	s Only 🛃 Bioactivity	Summary - Number of Charts: 0					
▶ ADME	Active Inactive All										
► EXPOSURE	T Filter assays			e assays from the list of assays to view the sociated bioactivity curves							
▼ BIOACTIVITY	Bioseek (0 of 174 selected)	855									
TOXCAST: SUMMARY	◀ University of Pittsburgh Johnston La…										
EDSP21	•										
TOXCAST/TOX21	Tanguay Lab (0 of 19 selected)										

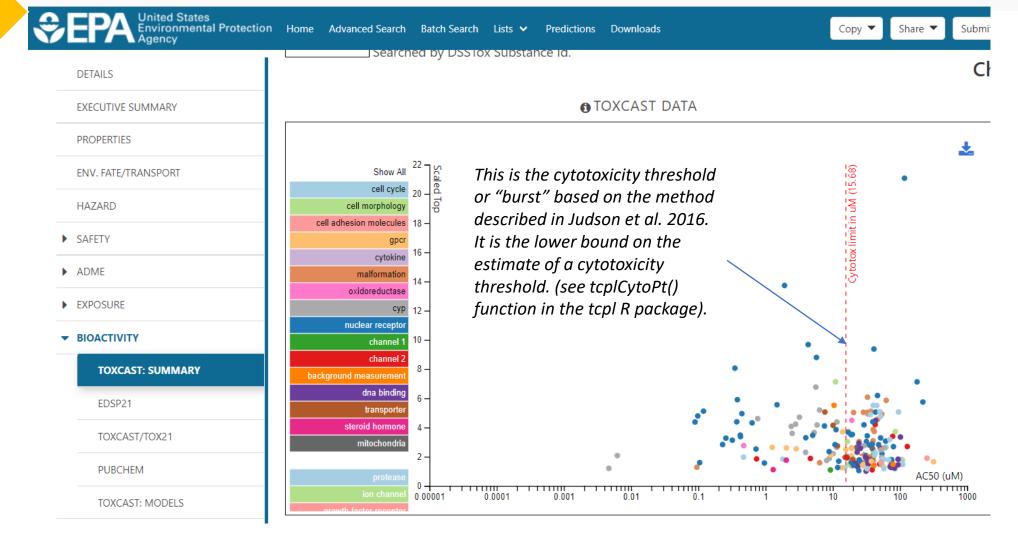
Mystery substance B: Models >>> single assays. And equivocals happen.

	Mystery substance B has positive ToxCast ER pathway agonist and ToxCast AR antagonist scores.									
Models available?	ToxCast: Models ToxCast Model Predictions									
ENV. FATE/TRANSPORT	➡ Download ToxCast Model Predictions ▼	★ Download ToxCast Model Predictions ▼ >0.1 = positive; 0.001-0.1 = equivocal								
	Model	Receptor	Agonist	Antagonist	Binding					
HAZARD	ToxCast Pathway Model (AUC)	Androgen	0.00	0.345	-					
ADME	ToxCast Pathway Model (AUC)	Estrogen	0.450	0.00	-					
► EXPOSURE	COMPARA (Consensus)	Androgen	Inactive	Active	Active					
▼ BIOACTIVITY	CERAPP Potency Level (From Literature)	Estrogen	Active (Weak)	-	Active (Weak)					
TOXCAST: SUMMARY	CERAPP Potency Level (Consensus)	Estrogen	Active (Weak)	Active (Strong)	Active (Weak)					
EDSP21										
TOXCAST/TOX21	CERAPP = consensus ER QSAR	(from 17 groups)								
PUBCHEM	COMPARA = consensus AR QS	AR								
TOXCAST: MODELS	ToxCast Pathway Model AUC E	ER = full ER model (18	assays)							
SIMILAR COMPOUNDS	, ToxCast Pathway Model AUC A	•	, ,							
GENRA (BETA)			ussuys;							

As of now, the models supported in the CompTox Chemicals Dashboard are endocrine-related but hope to expand to other published models in the future.

Consult the peer-reviewed literature for additional models and interpretations.

HT-H295R model for steroidogenesis



11DCORT

Bioactivity summary in the Dashboard

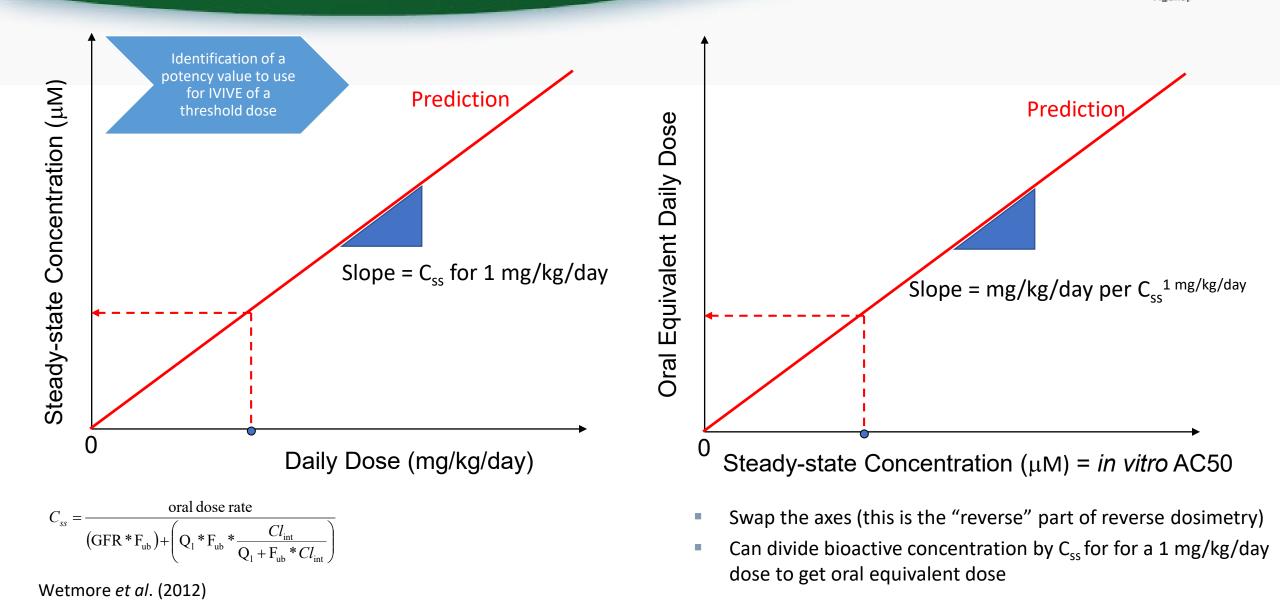
Selective or nonselective?

The cytotoxicity "burst" is useful for context.

Selective or nonselective?

- The latest Comptox Chemicals Dashboard release (version 3.5, July 2020 release) demonstrates a cytotoxicity threshold based on the latest ToxCast database (invitrodb version 3.3, released Aug 2020). This value can change as more cytotoxicity data become available, curve-fitting approaches for existing data change, or the "burst" calculation approach is updated.
- In invitrodb version 3.3, 88 assays are considered for the cytotoxicity threshold. A positive hit must be observed in 5% of these assays (noting that not all chemicals are screened in all 88 assays) in order to assign a cytotoxicity threshold. The cytotoxicity threshold is a median of AC50 potency values from the N assays with a hit. The cytotoxicity threshold visualized in the Dashboard is a lower bound on this estimate, calculated as the median cytotoxicity potency minus 3 times the global median absolute deviation.
- This is discussed further in a publication (<u>10.1093/toxsci/kfw148</u>) and the ToxCast Pipeline R package (tcpl) function, tcplCytoPt() (available on CRAN: <u>https://cran.r-project.org/web/packages/tcpl/index.html</u>).
- If fewer than 5 cytotoxicity assays demonstrate a positive hit, a default of 1000 micromolar is assigned for the chemical.
- The lower bound estimate of the cytotoxicity threshold or "burst" is useful context for ToxCast results. Bioactivity observed below the cytotoxicity threshold may represent more specific activity that is less likely to be confounded by cytotoxicity.
- It is possible that AC50 values above the cytotoxicity threshold are informative. If an assay has a parallel cytotoxicity assay in the same cell type, that may be more informative for interpreting that assay. Or, if a result is consistent with an AOP relevant to the chemical with assay AC50 values above and below the cytotoxicity threshold, those data may be meaningful.

User application dictates "selectivity"


Selective or nonselective?

- AC50 < burst?
- AC50 0.5log₁₀ distance from burst?
- AC50 < parallel viability assays?
- How else to filter ToxCast data: 3+ caution flags and curves with both low efficacy and potency values below the concentration range screened
- Other related ideas:
 - What other assays appear active in a similar concentration range?
 - Is there consistent support for MOA(s), or is it nonspecific activity?

- Data change: curve-fitting, addition of new data
- Models change: improvements, more data, etc.
- The CompTox Chemicals Dashboard release from July 2020 is now using ToxCast invitrodb version 3.3: https://doi.org/10.23645/epacomptox.6062479.v5
- All ToxCast data and endocrine models (CERAPP, COMPARA, ER, AR, steroidogenesis) can currently be accessed from within invitrodb.
- Data downloads for NCCT: <u>https://www.epa.gov/chemical-</u> research/exploring-toxcast-data-downloadable-data
- We anticipate a new ToxCast release in 2021.

Steady state in vitro-in vivo extrapolation assumption: blood::tissue partitioning ≈ cells::medium partitioning

ntal Protection

IVIVE via high-throughput toxicokinetic data and models

Identification of a potency value to use for IVIVE of a threshold dose

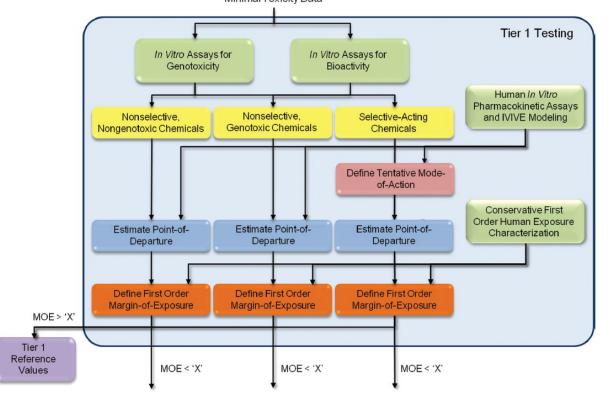
- Operationally, the httk R package (v 2.0.2) can be downloaded from CRAN or GitHub for reproducible generation of administered equivalent doses (AEDs).
- AC50 or LEC (micromolar) * (1 mg/kg/day/Css (micromolar)) = AED prediction
- Httk package optionally implements multiple models that can have increasing complexity based on data available (e.g., using pbtk model or including interindividual toxicokinetic variability).

3.3 mg	æ	mol	1e6 µmol	 = 14.45523 μmol/L = μΙ		0.1 μ	M 1	mg/k	kg/day		07 ma/ka/ka/ka/ka/ka/ka/ka/ka/ka/ka/ka/ka/ka		0 6
L	1000 mg	228.291 g	mol	- 14.45525 μποι/ε - μι			14	14.45523 μΜ		= 0.007 mg/kg/day = AED9			132
	ed States conmental Protection icy			s 🗸 Predictions Downloads			Сору 🔻	Share	e 🔻 Submit (Comment	Q Search all data		
DETAILS		Seal	ched by DSSTox Sul	ostance Id.		IVIV	E						
EXECUTIVE SUMMA	RY	La Download ▼ Co	olumns 🖌									Search query	
PROPERTIES													
ENV. FATE/TRANSPO	ORT	Label		\$	Measured	\$	Predicted	\$	Computed	\$	Unit		\$
		In Vitro Intrinsic He	19.9		-		-		uL/min/million hepatod	ytes			
HAZARD		Fraction Unbound in Human Plasma			0.04		-		-				
► SAFETY		Volume of Distribut	tion		-	-			5.01	L/kg			
- ADME		Days to Steady Stat	te		-		-		1		Days		
_		PK Half Life			-		-		31.7		hours		
IVIVE	IVIVE		Human Steady-State Plasma Concentration				-		3.3		mg/L		
► EXPOSURE						6 record	de		Css here is :	from 95	th quantile (Note	that	

Css here is from 95th quantile (Note that 95th concentration quantile is the same population as the 5th dose quantile).

Bioactivity:exposure ratio requires exposure

Comparison to exposure predictions for a bioactivity:exposure ratio


- Total population predictions are based upon consensus exposure model predictions and the similarity of the compound to those chemicals monitored by NHANES. The method for the total U.S. population was described in a 2018 publication, <u>"Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways"</u>.
- When available, demographic-specific predictions are based upon a simpler, heuristic model described in the 2014 publication <u>"High Throughput Heuristics for Prioritizing Human Exposure to Environmental</u> <u>Chemicals</u>".

DETAILS	Isearched by DSSTox Substance I	Expos	ure Predictions (mg/kg	-bw/day)	
EXECUTIVE SUMMARY	🛓 Download 🔻				Search query
PROPERTIES					
ENV. FATE/TRANSPORT	Demographic	\$	Median	95th Percentile	
	Ages 6-11		6.30e-5	5.82e-3	
HAZARD	Ages 12-19		2.68e-5	2.00e-3	
SAFETY	Ages 20-65		2.05e-5	1.61e-3	
ADME	Ages 65+		1.61e-5	2.18e-3	
	BMI > 30		1.69e-5	1.45e-3	
EXPOSURE	BMI < 30		2.67e-5	2.26e-3	
PRODUCT & USE CATEGORIES	Repro. Age Females		1.11e-5	1.57e-3	
CHEMICAL WEIGHT FRACTION	Females		1.11e-5	9.09e-4	
	Males		3.89e-5	3.34e-3	
CHEMICAL FUNCTIONAL USE	Total		5.50e-5	2.04e-2	
TOXICS RELEASE INVENTORY			10 records		
MONITORING DATA	0.007 mg/kg/day	Bioacti	vity:exposure ratio = B	ER95 - 0.343	
EXPOSURE PREDICTIONS	0.0204 mg/kg/day				

Use of predictive science in chemical safety should include risk-based approaches like BER

Specific vs. nonspecific modes-of-action and the challenge of hazard labeling

Thomas et al. 2013 suggested a framework for hazard assessment that would be largely customized based on MOE (or now, BER).

Use of predictive science in chemical safety should include risk-based approaches like BER

 Now, ~6 years later, Thomas et al. (2019) suggest a computational toxicology blueprint that represents evolution of the same concept

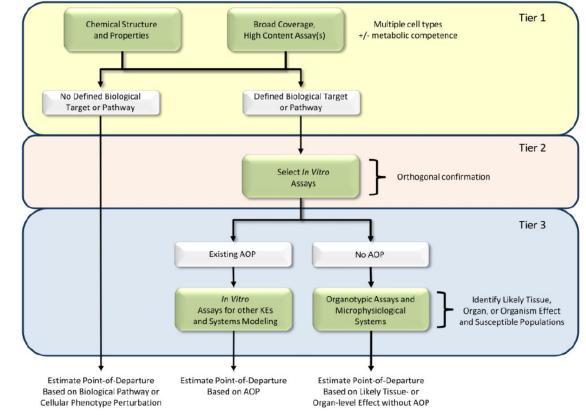


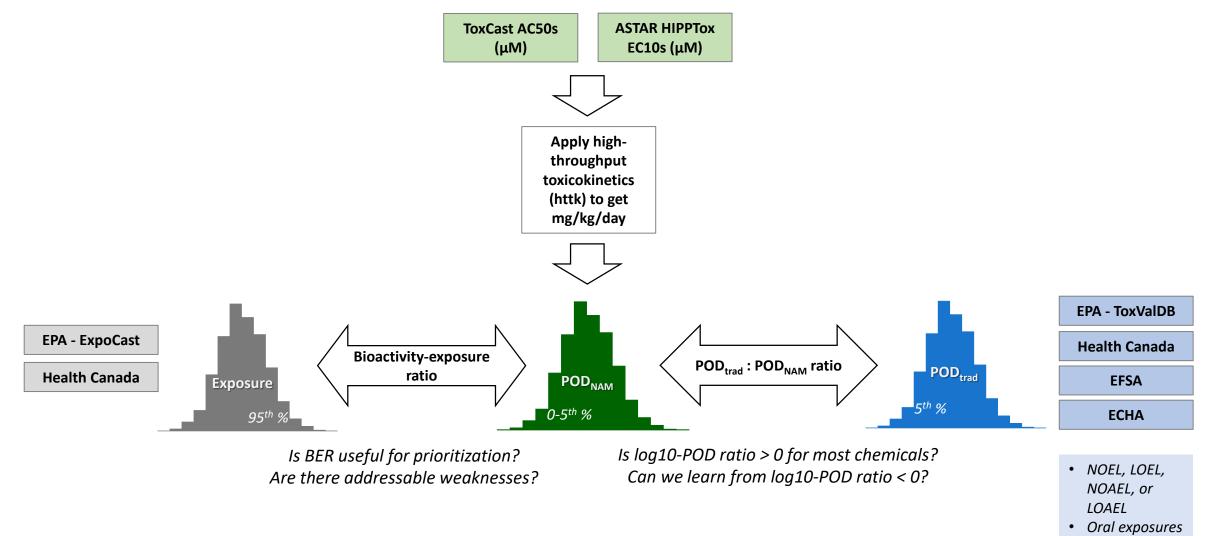
Figure 2. Tiered testing framework for hazard characterization. Tier 1 uses both chemical structure and broad coverage, high content assays across multiple cell types for comprehensively evaluating the potential effects of chemicals and grouping them based on similarity in potential hazards. For chemicals from Tier 1 without a defined biological target / pathway, a quantitative point-of-departure for hazard is estimated based on the absence of biological pathway or cellular phenotype perturbation. Chemicals from Tier 1 with a predicted biological target or pathway are evaluated Tier 2 using targeted follow-up assays. In Tier 3, the likely tissue, organ, or organism-level effects are considered based on either existing adverse outcome pathways (AOP) or more complex culture systems. Quantitative points-of-departure for hazard are estimated based on the AOP or responses in the complex culture system. Screening level assessment example: combine NAMs for exposure, in vitro bioactivity, and toxicokinetics

 Conducted by Accelerating the Pace of Chemical Risk Assessment (APCRA)

BIRMINGHAM

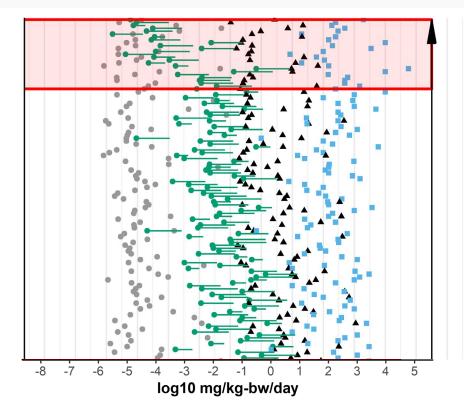
"international cooperative" ٠ collaboration of government agencies convened to address barriers and opportunities for the use of new approach methodologies (NAMs) in chemical risk assessment" (Paul Friedman et al., accepted)

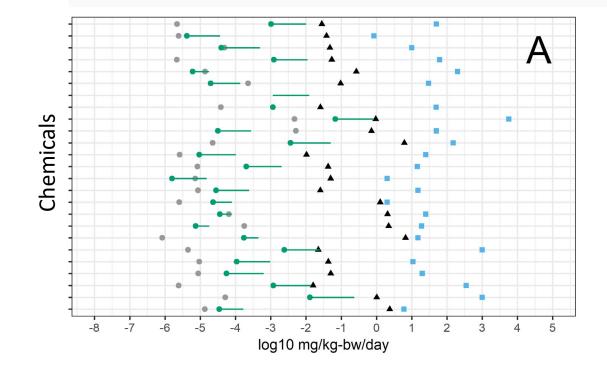
TOXICOLOGICAL SCIENCES, 2019, 1-24


doi: 10.1093/toxsci/kfz201 Advance Access Publication Date: September 18, 2019 **Research Article**

Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization

(APCRA partners for these two case studies)


Case study workflow


• Mg/kg/day

Prioritize chemicals based on BER for all bioactivity or for some target bioactivity

ExpoCast • POD-NAM • max AED • POD-traditional

For 448 substances, ~89% of the time, the point-of-departure based on ToxCast (POD-NAM) was less than the NOAEL/LOAEL values available from animals.

Conclusions

- Bioactivity data, including ToxCast, may help inform hazard prediction for weight-of-evidence, screening, and new approach methodologies-based points-of-departure for risk assessment.
- A high-throughput toxicokinetic approach to in vitro to in vivo extrapolation can translate bioactivity data in micromolar concentrations to administered equivalent doses for comparison to exposure or other *in vivo* data.
- The Comptox Chemicals Dashboard provides a data browsing and downloading capability to support weight-of-evidence evaluations and screening.
 - Consider that operationally, the steps taken to prepare a dataset for a single chemical weight-of-evidence evaluation may be different from preparation of a dataset for many chemicals.

Acknowledgments

- Thank you for listening.
- Thank you NURA for inviting and hosting us.
- Thank you: Tony Williams, John Wambaugh, and Richard Judson.
- Please reach out to us if you need support or explanations for a specific case, or if you find issues.
- Paul-friedman.katie@epa.gov

EPA's Center for Computational Toxicology and Exposure