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The Chemicals and Products Database 
(CPDat)

• Comprised of chemical use and consumer product composition data from 
a variety of public sources; includes measured, modeled, and reported 
data

• Organized around a set of consumer product use categories (PUCs) 
optimized for exposure modeling

• Sustainable way to organize, update, and disseminate these data
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 Presence on other chemical lists
 Broad categorization of chemical use
 Therapeutic use
 Consumer product-based use
 Industrial process use

 Curated to a large number of relevant 
index terms

General use 
categories



What is CPDat?
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 MSDS-based composition information 
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 Includes range of reported weight 
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What is CPDat?

• Chemical composition of 
consumer products from 
ingredient lists
 Reported ingredients
 Predicted weight fractions 

based on structured reporting 
rules
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What is CPDat?

• Targeted and non-targeted 
measurement of chemicals in consumer 
products
 Measured weight fractions
 Confirmed presence
 Tentative identification

CPCat

CPCPdb

Ingredient
Lists

Measured
Data

Functional
Use Data

General use 
categoriesReported 

chemicals in 
products

Identification in 
product samples



What is CPDat?

• Categorization by functional use
 Reported functional use
 Harmonized functional use
 Function Predictions
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What is CPDat?

• Broad categorization of chemical use
• Comprehensive hierarchical categorization 

of chemical usage by consumer product 
type

• Functional use of chemicals
• Quantitative chemical composition for 

consumer products

CPCat

CPCPdb

Ingredient
Lists

Functional
Use Data

Measured
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 Allows for linking to consumer 
product exposure models

Maps to habits and practices 
(product use) data 

Maps to exposure algorithms 
– if chemical and product are 
known, models can be rapidly 
parameterized

Isaacs et al., 2019
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Phillips et al., 2017

Chemical Structure and 
Property Descriptors
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CPDat Data in the Dashboard



CPDat Data in the Dashboard



CPDat Data in the Dashboard

All category data for a chemical can be downloaded



CPDat Data in the Dashboard



Metadata

CPDat Data in the Dashboard



CPDat Data in the Dashboard



High-Throughput Consumer Exposure Model
(SHEDS-HT)

 CPDat has allowed for rapid 
parameterization of consumer exposure 
models, like the High-throughput Stochastic 
Human Exposure Model (SHEDS-HT)

 SHEDS-HT predicts aggregate population-
based human exposures to thousands of 
commercial chemicals in consumer 
products, consumer articles, and foods via 
inhalation, dermal, ingestion, and dietary 
pathways in a high-throughput manner

SHEDS-HT



Daily-level activity diary
• Time spent in microenvironments
• Energy expenditure (ventilation)

Relevant exposure factors
(e.g. weight, bathing and hand
washing behaviors, hand-to mouth
behaviors) 

Consumer Product 
Use Patterns

Chemical 
Ingredients and
Weight Fractions

Chemical Residues in
Foods

Indoor Chemical
Emission from Articles

SHEDS-HT

Population Exposures
mg/kg-BW/day

CPDat

SHEDS-HT



R package ‘ShedsHT”

 R Package with help documentation and User’s Guide
 Current model release
 Default input files (e.g. population, food diaries, 

CPDat data in correct form)
 Example run-specific input files
 Training materials
 Example current applications
 Solvent emissions from consumer products for 

government inventories 
 Dietary exposures to process-formed chemicals
 Exposures for chemical-product combinations to 

inform state decision-making

https://github.com/HumanExposure/SHEDSHTRPackage



• Different exposure models incorporate knowledge, assumptions, and data (MacLeod et al., 2010)

• We incorporate multiple models (including SHEDS-HT, ExpoDat) into consensus predictions for 1000s of 
chemicals within the Systematic Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 2014, Ring et 
al., 2019)

• Evaluation is similar to a sensitivity analysis: What models are working? What data are most needed? 

Hurricane Path Prediction is an 
Example of Integrating Multiple Models

Consensus Exposure Predictions with the 
SEEM Framework



Wambaugh et al. (2014)

• Use and production volume descriptors 
used to build parsimonious model for 
inferred exposure

• Five descriptors explain roughly 50% of 
the chemical to chemical variability in 
median NHANES exposure rates

• Same five predictors work for all 
NHANES demographic groups analyzed 
– stratified by age, sex, and body-mass 
index:
• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer use
• Production Volume

• What we are really doing is identifying 
chemical exposure pathway

Second Generation SEEM: Heuristics of 
Exposure



Evaluation Data for SEEM: Exposures 
Inferred  from NHANES

• Annual survey, data released on 2-
year cycle

• Separate evaluations can be done 
for various demographics

• ~2000 individuals per chemical, 
with statistical weights allowing 
inference for larger U.S. 
populations

• To date, we have used this to draw 
inference about median exposure 
rates CDC, Fourth National Exposure Report  (2011)

National Health and Nutrition Examination Survey



Wambaugh et al., 2014

• Use and production volume descriptors 
used to build parsimonious model for 
inferred exposure

• Five descriptors explain roughly 50% of 
the chemical to chemical variability in 
median NHANES exposure rates

• Same five predictors work for all 
NHANES demographic groups analyzed 
– stratified by age, sex, and body-mass 
index:
• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer use
• Production Volume

• What we are really doing is identifying 
chemical exposure pathway

R2 ∼ 0.5

Second Generation SEEM: Heuristics of 
Exposure



Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical 
Data Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent 
Organic Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society 
for Environmental Toxicology and Chemistry 
toxicity model (USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking 
(RAIDAR) Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator 
High Throughput (SHEDS-HT) Near-Field Direct 
(2017)

Isaacs (2017) 7511 Far-Field Industrial and Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. 
(2012)

645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. 
(2014) 

1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016,2017)

615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. 
(2016), Ernstoff et al. (2017)

8167 Dietary

Ring et al., 2018

SEEM3 Collaboration



Ring et al., 2018

We organize the 
models by the 
exposure pathways 
they cover!

SEEM3 Considers Pathway!



Pathway-Based Consensus Modeling

Intake Rate (mg/kg-BW/day) Inferred from 
NHANES Serum and Urine
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Predicting Relevant Pathways for a 
Chemical
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat 

(Food, Food Additive, Food 
Contact), NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, 
Stockholm Convention, CPDat 
(Pesticide), NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water 
Occurrence, NORMAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al., 2018



Ring et al., 2018

Of 687,359 chemicals evaluated, 30% 
have less than a 50% probability for 
exposure via any of the four pathways 
and are considered outside the 
“domain of applicability”

Consensus Modeling of Median Chemical 
Intake 



Exposure Predictions in the CompTox
Chemicals Dashboard

These are the exposure inferences used to calibrate the SEEM models.



Exposure Predictions in the CompTox
Chemicals Dashboard

What about a chemical without biomonitoring data?

• SEEM3 Predictions for Total Population
• SEEM2 Predictions for Other Cohorts



Summary

• Chemical use data are critical for understanding exposure pathways, 
parameterizing high-throughput exposure models, and extrapolating 
information to data-poor chemicals. 

• The results from multiple pathway-specific exposure models can be 
integrated into consensus predictions for median population exposure.

• The ExpoCast project is working to develop chemical use information and 
exposure predictions for thousands of chemicals, and to provide these data 
and tools via the Dashboard or other public platforms. 

• These “New Approach Methodologies” for exposure ultimately facilitate risk-
based prioritization of thousands of chemicals when integrated with in vitro 
bioactive concentrations that have been converted to an equivalent intake 
exposure. 
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