

Effects–Based Monitoring Under the Great Lakes Restoration Initiative: Evaluation of Spatial and Temporal Patterns in the Milwaukee Estuary

www.epa.gov

Introduction

- have been increasingly detected in the Great Lakes^{1,2}
- Area, the Great Lakes Restoration Initiative (GLRI) aims to Lakes ecosystems.
- help identify priority CECs/CEC mixtures in the Milwaukee Estuary area of concern (AOC) (Milwaukee, WI).
- CECs, caged fish studies with adult fathead minnows (**Fig. 1**) across the Milwaukee AOC.
- potential alternative ecotoxicological effects, 4 d composite water samples were concurrently collected, analyzed for a suite of pharmaceuticals and wastewater indicators, and screened for *in vitro* biological activity.

in the Milwaukee AOC for future ecotoxicological investigation and/or regulatory action.

1 University of Minnesota-Duluth, Duluth, MN 2 Great Lakes Ecotoxicology Division, US EPA, Duluth, MN 3 SC Johnson, Racine, WI

Figure 3. CECs detected at high frequency (>50% sites) across the Milwaukee Estuary AOC in (A) 2017 and (B) 2018. Data ratio-normalized to mean concentration within each chemical group; dark blue = higher relative concentrations, yellow = lower relative concentrations.

due to water quality benchmark exceedence in (A) 2017 and (B) 2018. *An additional 64 detected CECs could not be compared to WQ benchmarks.

Maloney, E.M.¹, G.T. Ankley ², B.R. Blackwell ², J.E. Cavallin ², D.J. Feifarek ³, K.M. Jensen ², M.D. Kahl ², S.T. Poole ², E.C. Randolph ², D.L. Villeneuve ²

Μ	ethods		
Study Details		CEC	
	2018		
<i>itu</i> exposures of caged <i>Pimephales promelas;</i> 2 fish/cage; 6M, 6F		Flag <u>high frequenc</u>	
gh tests; GLTED EPA Laboratory (MED; Duluth, MN), of Wisconsin-Milwaukee (UWM; Milwaukee, WI).		Evalu	
4 d composite/si	te		
Pharmaceutical); GCM99 (Wastewater Indicator) 180 Screened Analytes		C Flag chemicals exc	
estine (qPCR)	Liver (qPCR)	5	
jene, RTP, NC) Tr F47/D-Kbluc) ³ E P450 (CYP) 1A1,	rans-FACTORIAL [™] bioassay (Attagene, RTP, NC) Estrogen Receptor Agonist Assay (T47/D-Kbluc) ³ Gene Expression (qPCR; CYP1A1, VTG)	Dist Flag chemicals ide Flag chemicals ider	
sferase (UGT) 1A, adioimmunoassay one)			
) and F) ranges using [™]) and experimental and bioaccumulation	 Effect-Based Prioritization High-throughput Screening Applied ToxCast (toxeval, R) to identify CECs driving elevated Exposure-Activity Ratios (EARs)⁶ across sites. Effect-Driver Prioritization Utilized Random Forest Regression⁷ (randomForest, R) to identify significant chemical predictors of <i>in vivo</i> and <i>in vitro</i> effects. 	Identify mixture et Utilize adverse outcon	
s: ntrations to WQ) using ToxCast		CECs/mixtures requiring regulatory actio	

highlighting significant chemical drivers of elevated intestinal CYP 1A1 transcript abundance in 2017 study samples.

Site-specific effects:

- Chemical detects: 32 CECs detected in high frequency (>50 % of sites) across study years.
- Tris(2-butoxyethyl)phosphate CEC with highest max concentrations in both study vears.
- Environmental fate and toxicity benchmark analysis: 26 CECs flagged as vP (t_{1/2} > 120 d); 3 as vPB (t_{1/2} > 120 d; BCF > 2000); and 3 as vPvB (t_{1/2} > 120 d; BCF > 5000).
- 4 PAHs flagged due to exceedence of WQ benchmarks; 64 detected CECs flagged due to lack of WQ benchmarks.
- Chemical effect drivers: 8 CECs determined to be key drivers of elevated EAR values. 16 CECs defined as important predictors of elevated intestinal CYP1A1 transcripts.

30/180 CECs currently flagged as priority compounds (regulatory) and 21/180 CECs currently flagged as requiring further study.

Acknowledgements and References

Additional technical support and assistance was provided by K. Vitense, S. Corsi, M. Pronschinske Mention of products or trade names does not indicate endorsement by the U.S. federal government. The contents of this poster do not necessarily reflect U.S. EPA policy.

- 1. Choy et al. 2017; ISBN: BTP-R3017-2013.
- 3. Wilson et al. 2014; doi: 10.1038/onc.2014.78.

Erin Maloney | malon.625@d.umn.edu | 218-340-5231

Weight

vide

Catego

ation

CECs

rriority ategori

Non-priority

CECs/mixtures

C Prioritization Strategy

Characterize Chemical Detects cy (detected in >50% sites) and <u>high concentration</u> (upper quartile) CECs.

uate Environmental Fate Properties Flag CECs designated as P and/or B.

Compare to Toxicity Benchmarks ceeding water quality benchmarks and/or toxicity quotients.

tinguish Chemical Drivers of Effect lentified as key drivers of elevated EAR values (ToxCast). ntified as significant predictors of in vitro and in vivo effects (Random Forest)

Identify Priority Mixtures

ffects using analytical data (ToxCast) and in vivo/in vitro responses at study sites. ne pathways (AOPs) to identify potential adverse outcomes

and prioritize CEC mixtures.

Key Findings

- Significant elevation of antioxidant enzymes in several sites in Milwaukee AOC. Notable differences between transcript expression in intestines and livers.

Future Work

Derive toxicity quotients and evaluate exceedences in Milwaukee AOC. Prioritize CECs driving other in vivo and in vitro endpoints (not intestinal) CYP1A1 expression) using Random Forest Regression Utilize adverse outcome pathways to identify priority CEC mixtures defined

based on common mechanisms of action and/or through ToxCast analyses.

References 2. Elliott et al. 2017; doi.org/10.1371/journal.pone.0182868 4. Mansouri et al. 2018; doi.org/10.1186/s13321-018-0263-

5. ECHA-17-G-09-EN (doi: 10.2823/139408 6. Blackwell et al. 2018; doi: 10.1021/acs.est.7b01613. 7. Breiman et al. 2001; Random forests. Machine learning, 45(1), 5-32.