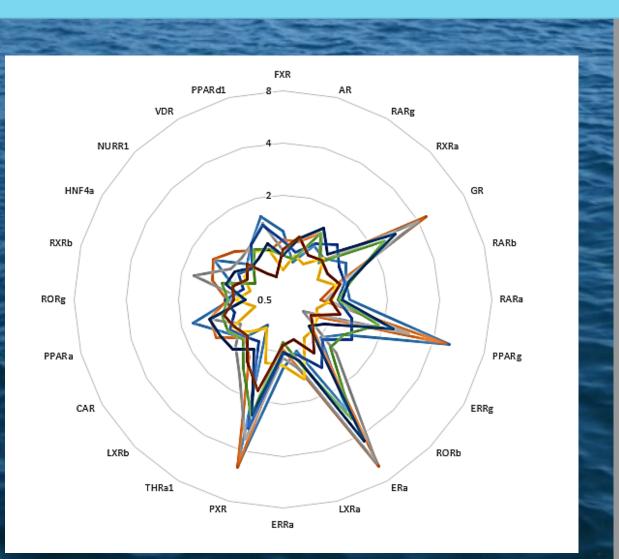

Evaluating Cross-species Differences in Nuclear Receptor-Ligand Interactions using a Multiplexed In Vitro Bioassay.

Five species intended to capture maximum variability in PPAR γ , PPAR α , RXR β , and GR sensitivity were selected for incorporation into a multiplexed in vitro bioassay.

Species-specific differences in sensitivity were detected for all ligands tested as well as for environmental samples.

Results suggest that effects-based monitoring employing human cell lines may misrepresent hazard to aquatic organisms for certain NRs.


Screening of additional chemicals in the assay developed may provide new insights into predicting cross-species sensitivity based on amino acid sequence conservation.

D.L. Villeneuve¹, G.T. Ankley¹, B.R. Blackwell¹, C.A. LaLone¹, A. Medvedev², S. Makarov², J.A. Doering³

¹ US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA: ² Attagene, Inc., 7030 Kit Creek Rd, Morrisville, NC, USA; ³ University of Lethbridge, Department of Biological Sciences, Lethbridge, AB, Canada

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Environmental Monitoring with Attagene TRANS-FACTORIAL Assay

> 300 samples screened

• PXR

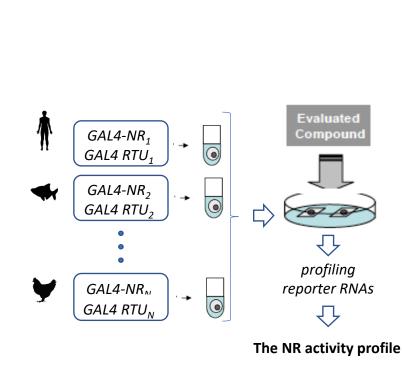
ERα

- PPARγ
- GR
- PPARα

• RXRβ

Do the human receptors adequately represent sensitivity of aquatic vertebrate receptors?

Among the most frequently detected nuclear receptor activities in surface water samples


Cross-species extrapolation

- To date, high throughput screening has been human centric
- Unclear how well mammalian HTS assays represent vertebrate diversity, let alone other phyla.
- Not feasible to include all taxa in a HTS screening program.

How can we strategically select the minimum number of representative species that cover the maximal range of variation in sensitivity and specificity?

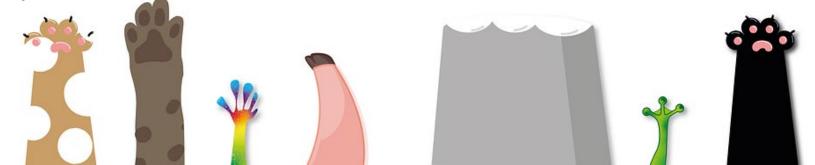
Attagene EcoTox FACTORIAL Assay

NR	Class	Species	Sequence ID
ER1		Danio rerio	NM_152959.1
ER2α	Fish	Danio rerio	NM_180966.2
ER2β		Danio rerio	NM_174862.3
ER1	Amphibian	Xenopus laevis	NM_001089617
ER2	Ampilibian	Xenopus laevis	NM_001130954
ER1	Reptilian	Chrysemys picta	NM_001282246
ER1	Avian	Gallus gallus	NM_205183
ERα	Mammalian	Homo Sapiens	NM_000125
ERβ	Marinalian	Homo Sapiens	NM_001437
AR	Fish	Danio rerio	NM_001083123
AR	Amphibian	Xenopus laevis	NM_001090884
AR	Reptilian	Chrysemys picta	XM_005279527
AR	Avian	Gallus gallus	NM_001040090
AR	Mammalian	Homo Sapiens	NM_000044
TRα	Fish	Danio rerio	NM_131396.1
TRβ	1 1511	Danio rerio	NM_131340.1
TRα	Amphibian	Xenopus laevis	NM_001088126
TRα	Reptilian	Chrysemys picta	XM_005294120
TRα	Mammalian	Homo Sapiens	NM_199334
ΤRβ	Marinalian	Homo Sapiens	NM_000461
ΡΡΑRγ	Fish	Danio rerio	NM_131467
ΡΡΑRγ	Mammalian	Mus musculus	NM_001127330
ΡΡΑRγ		Homo Sapiens	BC006811
PXR	Mammalian	Mus musculus	NM_010936

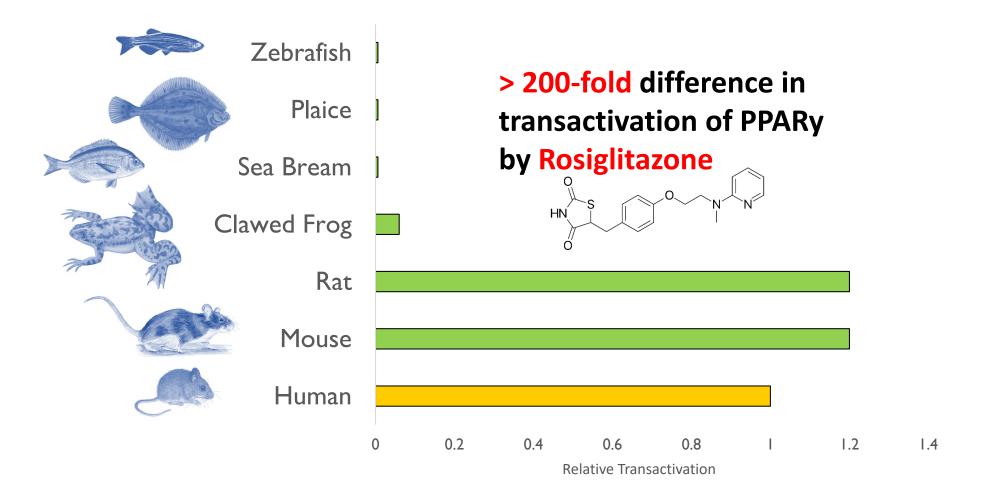
Considered 5 vertebrate classes Focused on endocrine NRs

Differences in sensitivity among vertebrate classes were generally minor for ER, AR, TR.

Fish PPARγ was substantially less sensitive to classic PPARγ agonists than mammals.

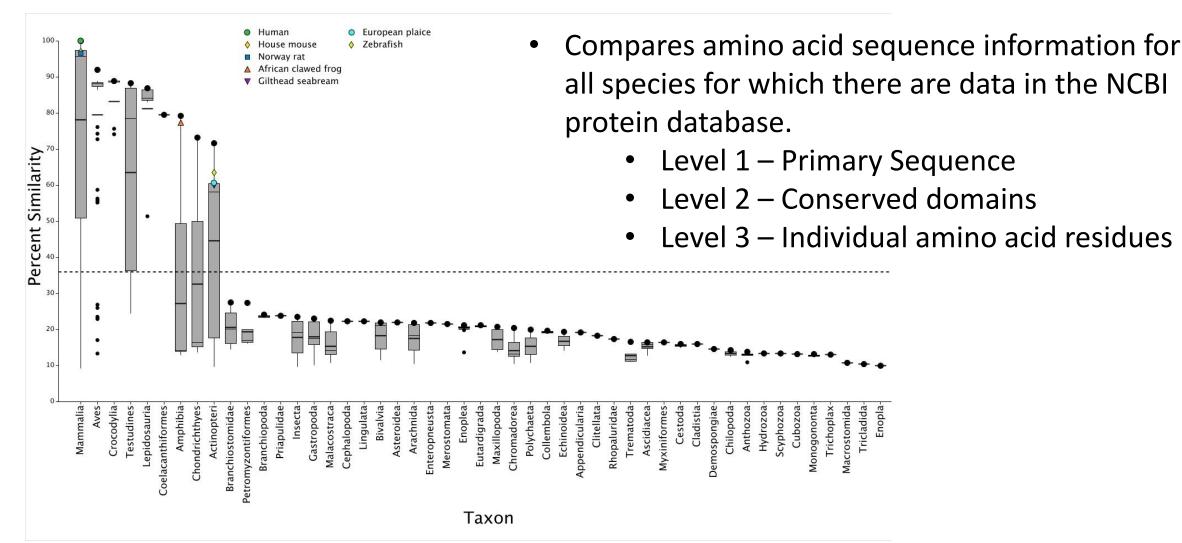

Medvedev et al. Harmonized cross-species assessment of endocrine and metabolic disruptors by EcoTox FACTORIAL assay. Environmental Science & Technology **2020** 54 (19), 12142-12153. DOI: 10.1021/acs.est.0c03375.

Species Selection


Is the selection of one representative vertebrate from each class the best way to cover the potential variability in sensitivity?

Could available information be used to guide a more strategic selection?

- Documented species differences in sensitivity to ligands
- Amino acid residues identified as critical to ligand binding in one or more species
- In silico analyses of conservation/variation in aa sequence using SeqAPASS



PPARγ – established cross-species differences

SeqAPASS

https://seqapass.epa.gov/seqapass/

Example SeqAPASS Level 3 - PPARy

- Only 4 positions showed important differences in amino acids among PPARy
- 2 positions known to significantly alter interaction of ligand (rosiglitazone) with PPARy

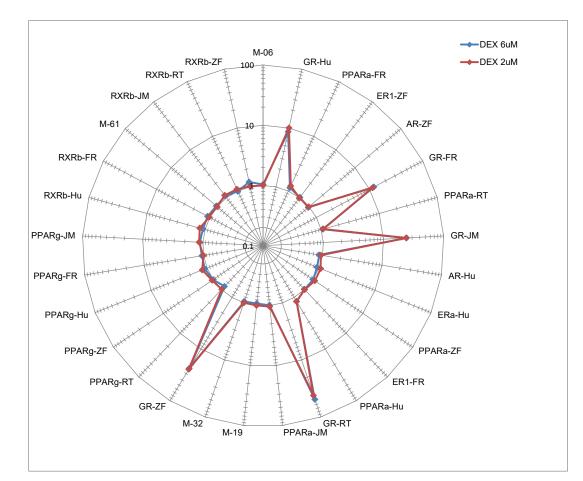
Таха	# of Species	Position 1 (Ile309)	Position 2 (Gly312)	Position 3 (Cys313)	Position 4 (Tyr355)	Susceptibility Prediction	
Human	1	I	G	С	Y	Yes	
All Mammals	107	I	G	С	Y	Yes	
Mallard-type	1	I	G	С	Y	Yes	
Most Birds	70	I	R	С	Y	No	
All Reptiles	19	I	R	С	Y	No	Strongly conserved among most birds,
All Amphibians	2	I	R	С	F	No	amphibians, reptiles
Ancient Fishes	9	F	R	С	I	No	
Most Fishes	61	F	S	С	I.	No	More variation among various orders of
Salmonid-type	3	V	R	I.	Т	No	fishes than across other vertebrate
Bonytongue-type	1	F	R	W	I.	No	classes
Zebrafish-type	2	F	S	Y	I	No	

Example SeqAPASS Level 3 - PPARy

- In silico mechanism for lack of Rosiglitazone binding to zebrafish PPARy is severe steric hindrance from Gly312Ser and Cys313Tyr mutation
- Comparing positions 312 and 313 of human to other species

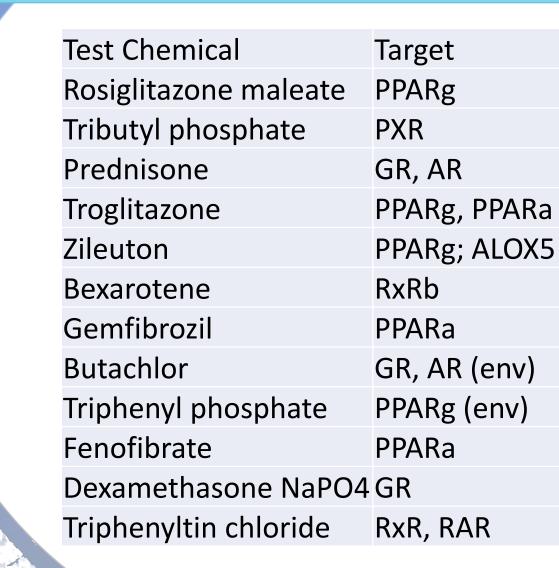
Taxa	Species	Position 284	Position 285	Susceptibility Prediction	Relative Transactivation
Mammal	Human	G	С	Yes	1.0
Mammal	Mouse	G	С	Yes	I.2
Mammal	Rat	G	С	Yes	I.2
Amphibian	Clawed Frog	R	С	No	0.06
Fish	Sea Bream	S	С	No	<0.006
Fish	Plaice	S	С	No	<0.006
Fish	Zebrafish	S	Y	No	<0.006

Strategic Approach

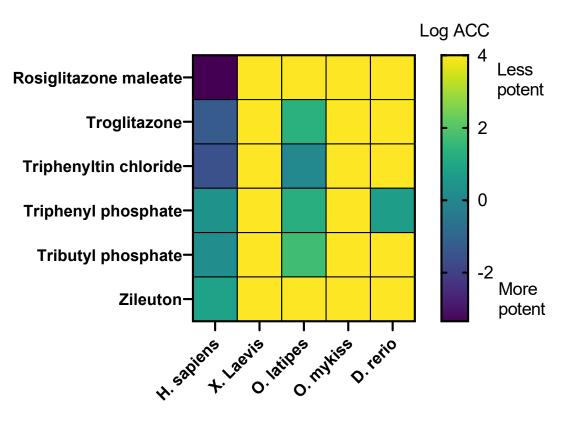

Similar types of analyses applied to GR PPARα RXRb

Selected a group of species that should capture maximum diversity in response for these four NRs (& genomes available)

- Human
- Xenopus laevis
- Rainbow trout
- Japanese medaka
- Zebrafish


Attagene XS-2 Factorial assay

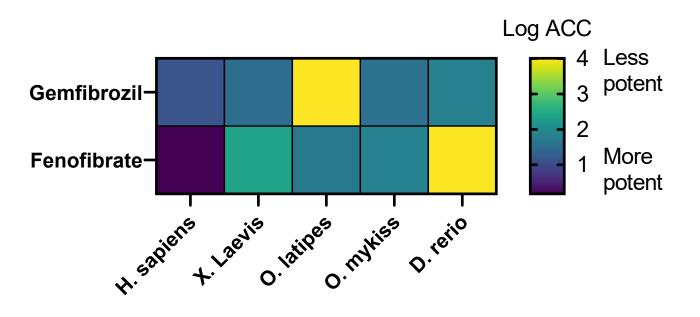
#	Name	Species	Latin names
1	GR	human	Homo Sapiens
2	GR	african clawed frog	Xenopus laevis
3	GR	rainbow trout	Oncorhynchus mykiss
4	GR	japanese medaka	Oryzias latipes
5	GR	Zebrafish	Danio rerio
6	PPARa	human	Homo Sapiens
7	PPARa	african clawed frog	Xenopus laevis
8	PPARa	rainbow trout	Oncorhynchus mykiss
9	PPARa	japanese medaka	Oryzias latipes
10	PPARa	Zebrafish	Danio rerio
11	PPARg	human	Homo Sapiens
12	PPARg	african clawed frog	Xenopus laevis
13	PPARg	rainbow trout	Oncorhynchus mykiss
14	PPARg	japanese medaka	Oryzias latipes
15	PPARg	Zebrafish	Danio rerio
16	RXRb	human	Homo Sapiens
17	RXRb	african clawed frog	Xenopus laevis
18	RXRb	rainbow trout	Oncorhynchus mykiss
19	RXRb	japanese medaka	Oryzias latipes
20	RXRb	Zebrafish	Danio rerio
21	ERa	human	Homo Sapiens
22	ER1	Zebrafish	Danio rerio
23	ER1	african clawed frog	Xenopus laevis
24	AR	human	Homo Sapiens
25	AR	Zebrafish	Danio rerio



- 14 chemicals in concentration-response
- Surface water extracts

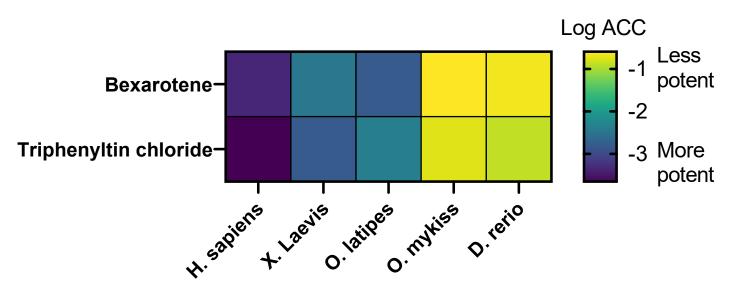
Test Chemicals

Results - PPARγ



Predicted Susceptible

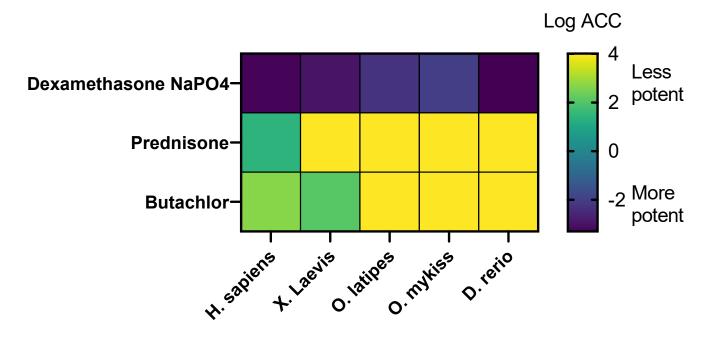
Таха	Homo sapiens	Xenopus laevis	Oryzias latipes	Oncorhynchus mykiss	Danio rerio
Rosiglitazone	Y	N	N	N	N
	1.0	0.06	<0.006	<0.006	<0.006


- As predicted, only human PPARγ was sensitive to rosiglitazone
- Among the other PPARγ agonists, Xenopus and rainbow trout were insensitive
- Japanese medaka, selected to represent "most fishes" showed partial sensitivity to some, but not all ligands.
- Zebrafish were sensitive to TPP, but not other ligands

Results - PPAR α

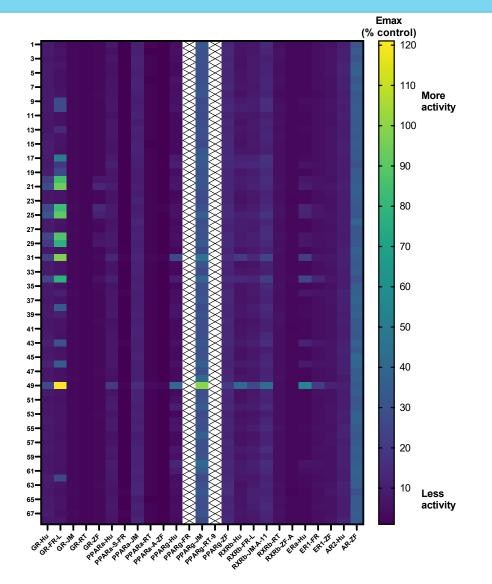
- Rainbow trout PPARα was insensitive to gemfibrozil
- Zebrafish PPARα was insensitive to fenofibrate
- Results suggest that aa residues critical to binding gemfibrozil and fenofibrate may differ

Results - RXRβ



 Rainbow trout and zebrafish RXRb were less sensitive to RXRb ligands than the other species tested.

Results - GR


Predicted Susceptible

Таха	Homo sapiens	Xenopus laevis	Oryzias latipes	Oncorhynchus mykiss	Danio rerio
Dexamethasone	Y	Y	Ν	Ν	Y

- Predictions were qualitatively accurate
 for dexamethasone but reflected
 different sensitivity, not overall
 susceptibility
- Need to metabolically activate prednisone to the GR-active prednisolone complicates interpretation

Application to Environmental Monitoring

- 68 surface water samples screened
- Among the GRs, Xenopus GR was the most responsive GR-active compounds in environmental mixtures
- Among the PPARγ Japanese medaka PPARγ was the most responsive to the environmental mixtures
- Samples with the greatest activity were consistently elevated in all species, proportional to their intrinsic relative sensitivity.

Conclusion

- Effects-based monitoring employing human cell lines (hNR) are likely to yield different conclusions than if fish NRs were employed (at least for PPARγ, PPARα, RXRβ, and GR).
- Variations among different orders of fish may be as substantial as across other classes of vertebrates.
- Different chemical-specific profiles across species was consistent with a previous assumption that level 3 SeqAPASS analyses based on specific ligand-chemical interactions may not apply universally across relevant chemical space.
 - Complicates the ability to select a minimum number of species to capture maximum variability in sensitivity.
- Screening of additional chemicals using the XS-2 Factorial Assay may yield new insights that improve the ability to predict cross-species susceptibility based on aa sequence.

Image Credits

Slide 1

https://pixabay.com/illustrations/tissue-culture-science-culture-1469577/ https://pixabay.com/photos/mouse-rodent-rat-mice-pest-3194768/ https://pixabay.com/vectors/frog-amphibian-rainforest-jungle-46394/ https://cdn.pixabay.com/photo/2016/04/01/08/57/animal-1299070__340.png

Slide 3

https://pixabay.com/vectors/yoga-female-fitness-colorful-2756796/

Slide 5

https://pixabay.com/illustrations/paws-animals-diversity-cat-dog-5563696/