

Advancing the SeqAPASS Pipeline from Sequence to Structure to Evaluate Protein Conservation for Species Extrapolation

Carlie A. LaLone

Predict Susceptibility

Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

Chemical Safety Evaluation

- Protect human health and the environment
 - Ensure that chemicals in the marketplace are reviewed for safety
- Challenging mission:

ntal Protection

- Tens of thousand of chemicals are currently in use and hundreds are introduced annually
- Many have not been thoroughly evaluated for potential risk to human health and the environment
 - Chemicals tested across species: Even more sparse

Reduce Animal Testing at the US EPA

- EPA Administrator Andrew Wheeler signed directive (Sept. 10th 2019) to reduce animal testing
 - Calls for the Agency to:

tal Protection

- Reduce its request for, and funding of, mammal studies by 30% by 2025
 - That is ~5 years from today!
- Eliminate all mammal study requests and funding by 2035
 - That is ~ 15 years from today

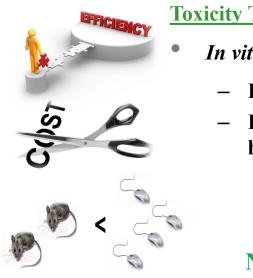
How do we get there? NAMs

Transformation of Toxicity Testing

Historically:

Whole animal test

- Observe Toxic Outcome - Examples
 - tumor development


Disturbance

Molecular

Target

• mortality

Resource intensive

Toxicity Testing in the 21st Century:

- In vitro and in silico methods
 - Pathway-based approaches
 - Focus on disturbance of the biological pathway
 - Predictive of the observable toxic effects

Observed

Toxic Effect

New Approach Methods (NAMs)

- Informatics
- High throughput
- Systems biology
- OMICs

Enabled by evolution of the science and technology

Biological Pathway

Model Organisms for Toxicity Testing

• <u>Assumed</u> that sensitivity of species to a chemical is a function of their relatedness

Human Health Risk Assessment

Ecological Risk Assessment

۲

 \simeq

Cannot Test

Use of Surrogates

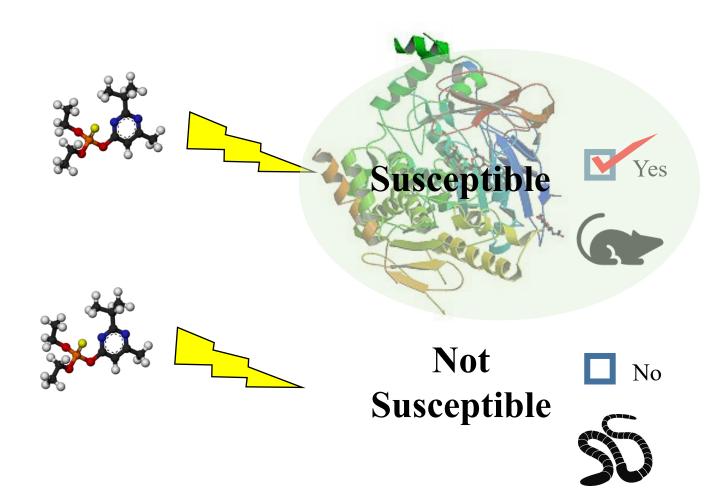
Representative species across a diversity of organism classes

MTMTLHTKASGMALLHQIQGNELEPLNRPQLKIPLERPLGE VYLDSSKPAVYNYPEGAAYEFNAAAAAAAQVYGQTGLPYG PGSEAAAFGSNGLGGFPPLNSVSPSPLMLLHPPPQLSPFLQ PHGQQVPYYLENEPSGYTVREAGPPAFYRPNSDNRRQGGR ERLASTNDKGSMAMESAKETRYCAVCNDYASGYHYGVWSC EGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQACRLR KCYEVGMMKGGIRKDRRGGRMLKHKRQRDDGEGRGEVG SAGDMRAANLWPSPLMIKRSKKNSLALSLTADQMVSALLA EPPILYSEYDPTRPFSEASMMGLLTNLADRELVHMINWAKV PGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFA PNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEF VCLKSIILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLM

Structure

Function

Improvements in bioinformatics


Yes or No Susceptible or Not Susceptible Structural-based comparisons of similarity Predicted binding affinity

Considering chemical sensitivity?

Factors that make a species sensitive

- Exposure
- Dose
- ADME
- Target receptor availability
- Life stage
- Life history
- etc.
- etc.

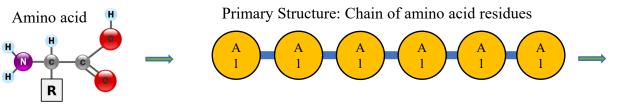
Simple question to address:

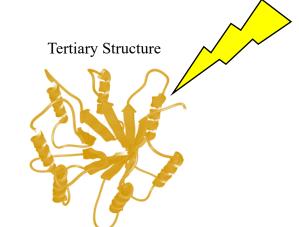
Is the known chemical target available in a species for a chemical to act upon?

Yes or No

Likely susceptible or Not likely susceptible (at least through the known mechanism)

New Approach Methods: Species Extrapolation


New tools and technologies have emerged


- Improved sequencing technologies
- Large databases of sequence data

- **Focus on the molecular machine: The Protein**
 - Large biomolecule assembled from amino acids encoded in genes

- Many functions (e.g., catalyze reactions, structural/mechanical functions, cell signaling, immune response, etc.)
- Evaluate protein similarity between species
 - Moving away from empirical testing and qualitative understanding of molecular target (protein) conservation to <u>quantitative measures</u>

TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245

doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016 Research article

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

Society of

Toxicology

www.toxsci.oxfordjournals.org

OXFORD

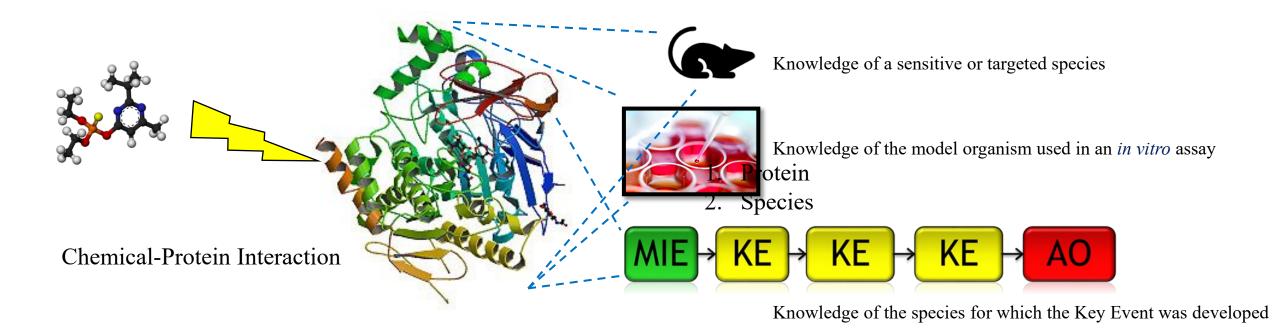
Carlie A. LaLone,^{*,1} Daniel L. Villeneuve,^{*} David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,^{*} and Gerald T. Ankley^{*}

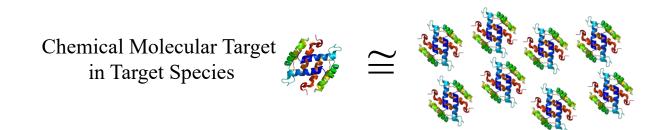
<u>Sequence Alignment to</u> <u>Predict Across Species</u>

https://seqapass.epa.gov/seqapass/

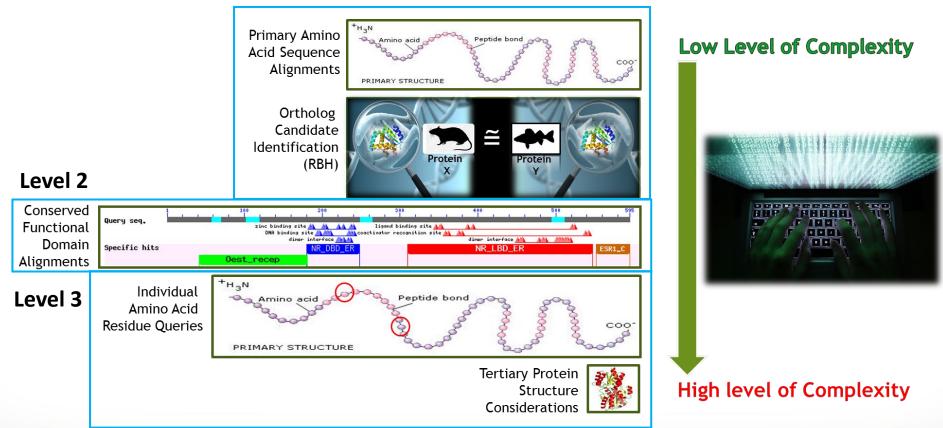
Susceptibility

(SeqAPASS)





What information is required for a SeqAPASS query?

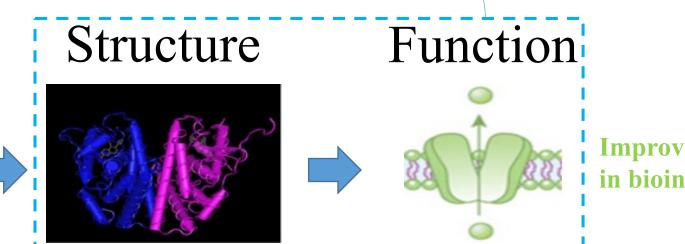

Compare to <u>Millions</u> of Proteins From <u>Thousands</u> of Species

Greater similarity = Greater likelihood that <u>chemical can act on the protein</u> <u>Line of Evidence</u>: Predict Potential Chemical Susceptibility Across Species

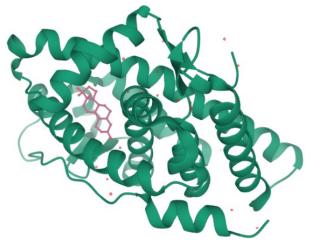
Set EPA

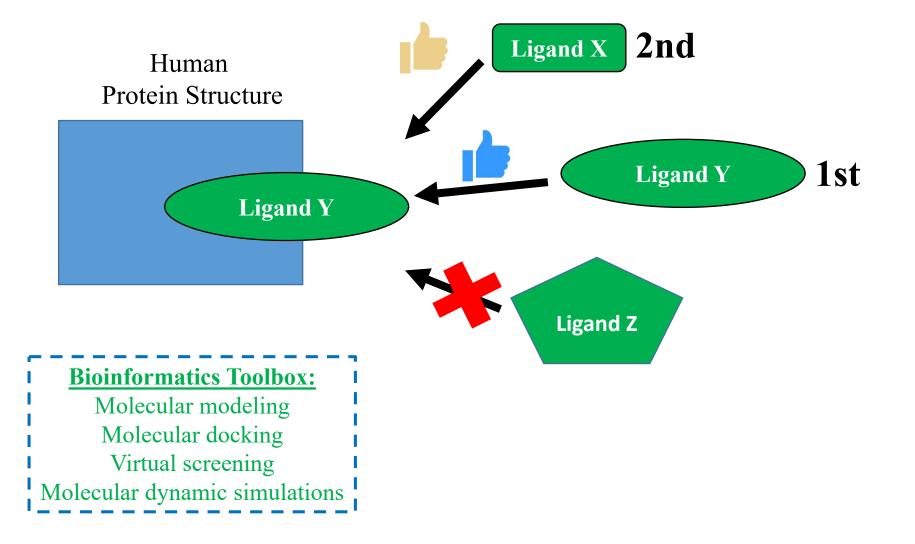
Strategic Automated Approach for Assessing Protein (Molecular Target) Similarity

Level 1

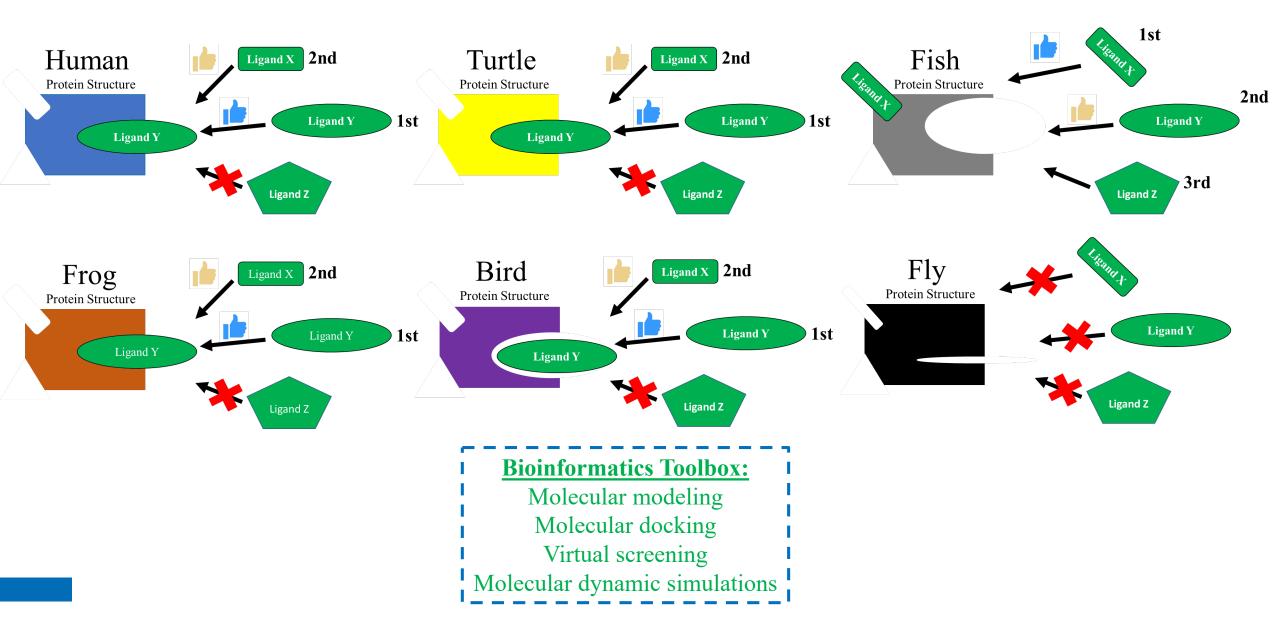

Flexibility to use Existing Knowledge

MTMTLHTKASGMALLHQIQGNELEPLNRPQLKIPLERPLGE VYLDSSKPAVYNYPEGAAYEFNAAAAANAQVYGQTGLPYG PGSEAAAFGSNGLGGFPPLNSVSPSPLMLLHPPPQLSPFLQ PHGQQVPYYLENEPSGYTVREAGPPAFYRPNSDNRRQGGR ERLASTNDKGSMAMESAKETRYCAY DYASGYHYGVWSC EGCKAFFKRSIQGHNDYMCPAY UTDKNRRKSCQACRLR KCYEVGMMKGGIRKDR HAKHKRQRDDGEGRGEVG SAGDMRAANLWPSPLMIN, SKKNSLALSLTADQMVSALLA EPPILYSEYDPTRPFSEASMMGLLTNLADRELVHMINWAKV PGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFA PNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEF VCLKSIILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLM


Yes or No Susceptible or Not Susceptible


Structural-based comparisons of similarity Predicted binding affinity Improvements in bioinformatics

Advances in Drug Discovery/Development



Structure derived from X-ray crystallography

Application to Species Extrapolation

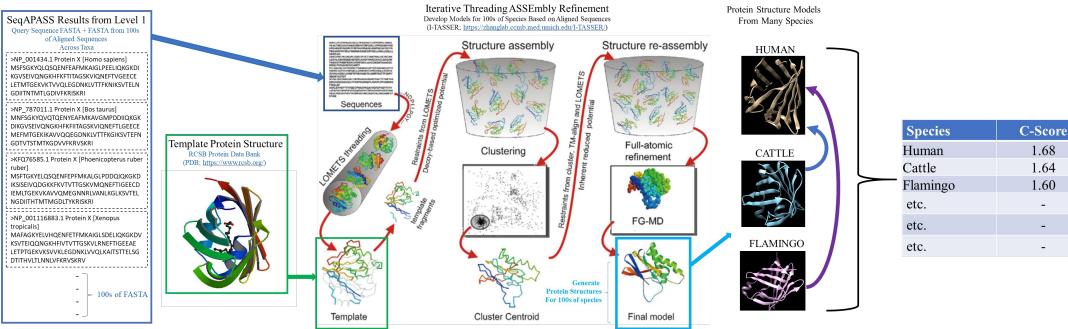
Structure

MTMTLHTKASGMALLHQIQGNELEPLNRPQLKIPLERPLGE VYLDSSKPAVYNYPEGAAYEFNAAAAANAQVYGQTGLPYG PGSEAAAFGSNGLGGFPPLNSVSPSPLMLLHPPPQLSPFLQ PHGQQVPYYLENEPSGYTVREAGPPAFYRPNSDNRRQGGR ERLASTNDKGSMAMESAKETRYCAVCNDYASGYHYGVWSC EGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQACRLR KCYEVGMMKGGIRKDRRGGRMLKHKRQRDDGEGRGEVG SAGDMRAANLWPSPLMIKRSKKNSLALSLTADQMVSALLA EPPILYSEYDPTRPFSEASMMGLLTNLADRELVHMINWAKV PGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFA PNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEF VCLKSIILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLM

RMSD

1.3+/-1.3

1.4 + / - 1.3

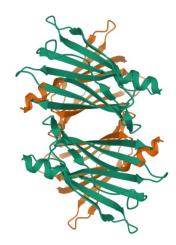

1.5 + / - 1.3

TM-Score

 0.95 ± -0.05

 0.94 ± -0.05

0.94 + -0.05



Graphic Modified from Zhang et al., 2019 I-TASSER gateway: A protein structure and function prediction server powered by XSEDE Figure 1

Liver Fatty Acid Protein

Transthyretin (TTR)

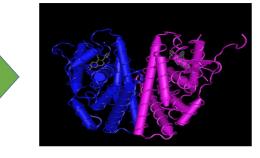
Comparison to Human LFABP	Chain 1 (TM-score)	Chain 2 (TM-score)	Aligned Length	RMSD	n_identical/ n_aligned	SeqAPASS % similarity
Human	1.00000	1.00000	127	0.00	1.000	100
Orangutan	0.99766	0.885385	127	0.20	0.976	97.71
Rat	0.99696	0.99696	127	0.23	0.827	85.04
Cattle	0.99761	0.99761	127	0.21	0.811	85.04
Water Flea	0.90965	0.89030	126	1.34	0.397	27.32
Marine worm	0.92609	0.89960	126	1.18	0.349	27.02
Round worm	0.89736	0.47865	126	1.45	0.286	18.32
Fruit Fly	0.95687	0.93550	126	0.90	0.278	18.93

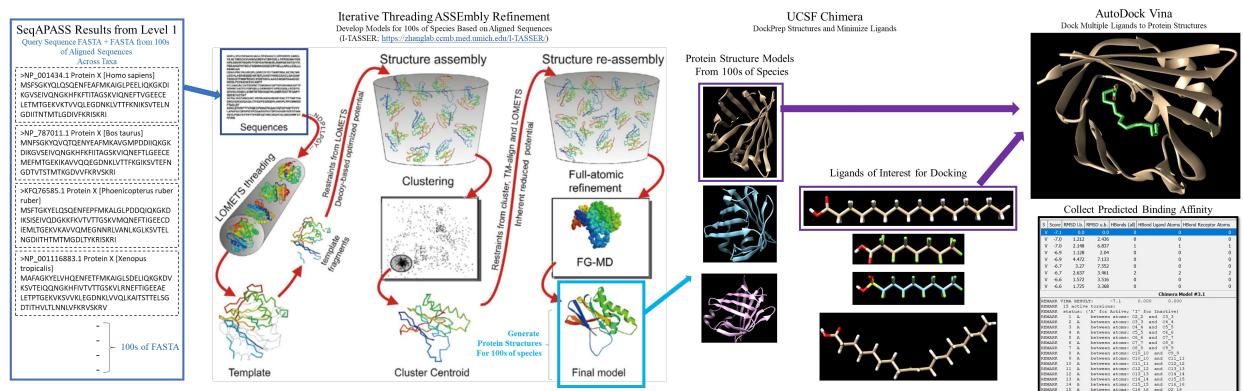
Comparison to Human TTR	Chain 1 (TM-Score)	Chain 2 (TM-Score)	Aligned Length	RMSD	N_identical/n _aligned	SeqAPASS % similarity
Human	1.00000	1.00000	147	0.00	1.000	100
Orangutan	0.86434	0.86434	144	1.86	0.861	89.81
Cattle	0.86403	0.86403	144	2.02	0.743	86.11
Red Deer	0.87384	0.87384	144	1.94	0.729	83.57
Bar Tailed Godwit	0.87155	0.85562	145	2.08	0.662	74.65
Three Toed Box Turtle	0.85385	0.83860	144	1.99	0.650	66.88
Zebrafish	0.84586	0.83580	145	2.18	0.497	48.53
Acorn worm	0.79295	0.80791	132	2.03	0.333	28.79

Capturing structural similarity metrics to understand conservation of chemical targets across species

Protein Stability Change Upon Mutation Step 1: Please provide a wild-type structure (PDB format) Description Upload y Choose Step 2: Description Disclaimer No PDB files will be retained on Singl the system after being uploaded by the user. Mutation

Combine SeqAPASS predictions to structure Level 3 of SeqAPASS – identify amino acid differences across species DUET predict stability changes from amino acid differences across species


Upload your own structure:	OR	Provide a 4-letter PDB code: (Example: 2OCJ)	Human Amino Acid Position	Type 1 Primates, Ruminants, Whales/dolphins	Type 2 Rodents and other mammals, Fish, Amphibians,	<u>Type 3</u> Aves, Lepidosauria Chondrichthyes	<u>Type 4</u> Crocodylia	SeqAPASS Level 3 Prediction of Similar to Human	Mutation in DUET	Stability Change from DUET (ΔΔG, kcal/mol)
tep 2: Please provide	the mutatio	n information			Testudines			LFABP Template		
	the mutatio	in mormation	50	Phenylalanine (F)	Valine (V) Isoleucine (I)	Valine (V) Isoleucine (I)	Phenylalanine	Yes No No	F50V F50I	-1.196 (Destabilizing) -0.808 (Destabilizing)
Single mutation		Systematic			Leucine (L)	Leucine (L)		No	F50L	-0.893 (Destabilizing)
Mutation (Example: I232T)		Residue (Example: 1232)	54	Alanine (A)	Threonine (T)	Threonine	Threonine	Yes No	A54T	-0.195 (Destabilizing)
Mutation chain (Example: A)	OR	Mutation chain (Example: A)	81	Threonine (T)	Alanine (A) Glycine (G)	Alanine	Threonine	Yes No No	T81A T81G	-0.749 (Destabilizing) -0.023 (Destabilizing)
			93	Threonine (T)	Threonine Valine	Alanine		Yes Yes No	T93V T93A	0.031 (Stabilizing)
Submit		Submit	97	Asparagine (N)	Glycine	Glycine	Glycine	Yes No	N97G	-1.004 (Destabilizing) 0.521 (Stabilizing)


Combined sequence and structure: another line of evidence toward conservation

Structure

MTMTLHTKASGMALLHQIQGNELEPLNRPQLKIPLERPLGE VYLDSSKPAVYNYPEGAAYEFNAAAAANAQVYGQTGLPYG PGSEAAAFGSNGLGGFPPLNSVSPSPLMLLHPPPQLSPFLQ PHGQQVPYYLENEPSGYTVREAGPPAFYRPNSDNRRQGGR ERLASTNDKGSMAMESAKETRYCAVCNDYASGYHYGVWSC EGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQACRLR KCYEVGMMKGGIRKDRRGGRMLKHKRQRDDGEGRGEVG SAGDMRAANLWPSPLMIKRSKKNSLALSLTADQMVSALLA EPPILYSEYDPTRPFSEASMMGLLTNLADRELVHMINWAKV PGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFA PNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEF VCLKSILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLM

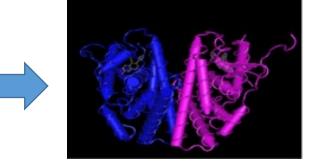
Graphic Modified from Zhang et al., 2019 I-TASSER gateway: A protein structure and function prediction server powered by XSEDE Figure 1

Predicting Binding Affinity

Application of SeqAPASS

MIE→ KE→ KE→ AO

SUN


MON TUE WED THU

MTMTLHTKASGMALLHQIQGNELEPLNRPQLKIPLERPLGE VYLDSSKPAVYNYPEGAAYEFNAAAAANAQVYGQTGLPYG PGSEAAAFGSNGLGGFPPLNSVSPSPLMLLHPPPQLSPFLQ PHGQQVPYYLENEPSGYTVREAGPPAFYRPNSDNRRQGGR ERLASTNDKGSMAMESAKETRYCAVCNDYASGYHYGVWSC EGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQACRLR KCYEVGMMKGGIRKDRRGGRMLKHKRQRDDGEGRGEVG SAGDMRAANLWPSPLMIKRSKKNSLALSLTADQMVSALLA EPPILYSEYDPTRPFSEASMMGLLTNLADRELVHMINWAKV PGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFA PNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEF VCLKSIILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLM

Structure

Function

Improvements in bioinformatics

Yes or No Susceptible or Not Susceptible Structural-based comparisons of similarity Predicted binding affinity

Acknowledgements

U.S. EPA, ORD

Marissa Jensen (University of Minnesota Dulu Sally Mayasich (ORISE) Sara Vliet (ORISE) Donovan Blatz (ORISE) Jon Doering (U of Lethbrigde) Colin Finnegan (Iowa State University))) **GDIT**

Thomas Transue Cody Simmons Audrey Wilkinson Badger Technical Services Joe Swintek

SeqAPASS v5.0

Home Request SeqAl	Request SeqAPASS Run	View SeqAPASS Reports	
	Choose Search Type By S	secies •	
	Query Species Search		
Add Query :	Species		
	Selected Query Species		
	Query Protein Search		
		Protein www.ncbl.nlm.nlh.gov/brotein	
L .	Query Proteins	- 03 89 8 4 4	
Final Query Pr	rotein(s) for Seq4PASS Run		1
Dament D	Clas	a	
			n
			TRUCK TO SHOLL TO MAKE TO MAKE T
			a c a c a carrier
			an I - I - I - I - I -

LaLone.Carlie@epa.gov https://seqapass.epa.gov/seqapass/