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October is Children’s Health Month:

Raising Children’s Environmental Health Awareness

Children’s health outcomes result from multiple causes: L e
- genetics, nutrition, socioeconomic factors [ oo | —
- prenatal and childhood exposure to environmental factors. https://www.epa.gov/children/
e Respiratory diseases
Adverse birth outcomes: * Childhood cancer
- preterm birth, low birth weight, birth defects, infant mortality * Neurodevelopmental disorders
- USA occurrences: ~3% birth defects and 11% low birth weight. * Obesity

e Adverse birth outcomes

Assessing developmental toxicity during pregnancy:

- critical role in setting health and environmental policy
- teratogenesis is a major concern in animal models of human relevance (e.g., pregnant rats, rabbits).

New Approach Methodologies (NAMs):
- shifting developmental hazard detection to in vitro data, in silico models, and biological pathways

- embryonic stem cell (ESC) lines are among the most promising alternatives to pregnant animal testing.
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Disclosure: research on pluripotent stem cell lines

Compliance: All work involving human embryonic stem (hES)
BB netionat nstutes ofeair | celllines is compliant with Executive Order 13505 (issued 2009)
e S - = to ensure that is ethically responsible, scientifically worthy, and
‘ conducted in accordance with applicable law.

Funding: This research was performed under EPA’s Chemical
Safety for Sustainability Research Program, Research Area 5
Virtual Tissue Models’ (VTMs).

https://stemcells.nih.gov/research/registry.htm

Our hESC cell lines are registered in the NIH Human Embryonic Stem Cell Registry:
WAOQ9 (H9): NIH Approval Number: NIHhESC-10-0062 —_, NStemind Stemina Biomarker Discovery
RUES2: NIH Approval Number: NIHhESC-09-0013 EPA contract EP-D-13-055
Other pluripotent stem cell lines:
Episomal hiPSC Line (Gibco-A18945) Vala Sciences. Inc
Endodermal hiPSC line (Allele Biotech #ABPSC-HDFAIPS) — @ VALA EPA contract EP-D-13-054
J1 mouse ESC line (ATCC® SCRC-1010™)




Novel features of pluripotent hESC lines:

DT BESIN « Self-renewal: cells proliferate and replicate themselves

7

indefinitely when cultured under appropriate conditions.

27  Differentiation: maintain the potential to:
i) form most cells of the embryo/fetus (pluripotency)
ii) self-organize into rudimentary structures (autopoiesis).

= * Embryology: hESC monolayers recapitulate the ‘epiblast’ of
JIESARIIR  an early embryo (GD 5-7 mouse, week 2-3 human).

primitive Pluripotent ESC lines capture many key features of
- | embryogenesis that are uniquely covered in guideline

prenatal developmental toxicity studies.
(e.g., OECD TG 414, organogenesis in pregnant rat/rabbit)

From the Kyoto Collection 4



Will a primitive hESC type live up to the challenge of NAMs?

TIMELINE OF THE HUMAN Week 8

EMBRYONIC PERIOD Week 4 (Carnegie Stage 20)
(Carnegie Stage 13)

Week 3
(Carnegie Stage 8)

https://embryology.med.unsw.edu.au/embryology

* does not encompass the full complexity of anatomical development;

* blind to the precise spatial-temporal control of cell-cell interactions in vivo ;

* misses developmental effects secondary to maternal or placental toxicity;

e uncertainty of post-organogenesis vulnerability and post-natal manifestations;
* cross-species extrapolation (mESC to human, hESC to animals);

 |limited xenobiotic metabolism and other ADME considerations (toxicokinetics);
e uncertainties in translatability to the intact embryo (toxicodynamics).



A lot of work has been done using mESC and hESC lines in vitro

Detailed literature review of conceptual and practical considerations that must be given
for readiness of mESC and hESC data in regulatory toxicology (e.g, NAMs).
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ESC testing data available in the open literature

1,533 PubMed > 333 (Al relevance) = curation

naope < Studies >

.................

.....

1 a 1 11 a1 1
1 1 1 1 1 1

N Baker, K Tsaioun: Abstract Sifter, SWIFT,
MeSH terms, Chemicals Dashboard, ...
working in unison

1,250 annotated chemicals:
18 publications tested > 10 compounds (primary)
174 publications tested 1-9 (evidentiary support)

Most overlapping compounds:
all-trans retinoic acid (17), 5-fluorouracil (16),
and methotrexate (14) - all strong teratogens.

Most common use categories:
pharma: anti-infective agents, enzyme inhibitors
chemical: pesticides.

Now includes ToxCast STM dataset




devTOX9P assay: Stemina Biomarker Discovery, EPA contract EP-D-13-055

mwnoetcts | Developmental and |@
PartB Reproductive Toxicology -/
Explore this journal =
Original Article

Establishment and Assessment of a New Human
Embryonic Stem Cell-Based Biomarker Assay for
Developmental Toxicity Screening

Pluripotent H9 human embryonic stem cell
metabolomics assay that “... identified the
potential developmental toxicants in the test
set with 77% accuracy (57% sensitivity, 100%

LTI e specificity).
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Using the H9 devTOX9 platform to profile the ToxCast library

TOXICOLOGICAL SCIENCES, 174(2), 2020, 189-209

SOT | &

academic.oup.com/toxsci

OXFORD

Profiling the ToxCast Library With a Pluripotent
Human (H9) Stem Cell Line-Based Biomarker Assay for
Developmental Toxicity

Todd]. Zurlinden
Richard S. Judson
Jessica A. Palmer

,* Katerine 5. Saili,* Nathaniel Rush," Parth Kothiya,*
,*Keith A. Houck,* E. Sidney Hunter," Nancy C. Baker,*
5 Russell S. Thomas @ ,* and Thomas B. Knudsen @ **
*Mational Center for Computstional Taxicology (NOCT) and "Mational Health and Environments1 Effects
Research Laboratory (MHEERL), Office of Research and Development (ORD), U.5. Environmentzl Protection

Agency (USEPA), Research Triangle Park, North Carolina 27711; "Leidos, Research Triangle Park, North
Caralina 27 711; and *Stemina Biomarker Discovery, Inc, Madison, Wisconsin 53719
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Targeted biomarker (TI)

Viable cell number (CV)
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ASSAY:  AEID1691 (STEINA7H97ORNCYSSIE

NAME: Methotrexate

CHID: 20822 CASRN: 59-05-2
SPID(S): TP0001302A08

M4ID: 27404030

HILL MODEL (in red):

tp a gw
val: 1.97 -1.08 3.96
sd:  0.0247 0.0229 1.06

GAIN-LOSS MODEL (in blue):

tp ga gw la 1w

val: 1.98 -1.08 3.92 0.721  3.48

sd:  0.0529 0.0226 1.08 35.1 171
CNST HILL GNLS

AIC: 74.32 -52.43 -48.44

PROB: 0 0.88 0.12

RMSE: 1.1 0.07 0.07

MAX MEAN: 1.98 MAX MED: 1.96 BMAD: 0.134

TI: 0.0588 HIT-CALL: 1 FITC: 41 AC50: 0.0828

FLAGS:

(o] (;OOH
NH
? H
NZ | NS
)% Z Hs
N~ N7 ON

Methotrexate
T1=0.059, CV=0.062

COOH

o—-z

1065 ToxCast Ph I/1l chemicals at
single-conc. or multi-conc.;

data pipelined to in vitro-db_v3
database (>1125 features);

available in EPA’s CompTox
Chemicals Dashboard;

ToxCast_STM dataset includes
controls for data quality.

https://comptox.epa.gov/dashboard

Zurlinden et al. (2020) Toxicol Sci

19% positivity rate, indicative of teratogenic potential as a
potential developmental hazard prediction.




Targeted biomarker (TI)

Viable cell number (CV)

Example: vitamin-A and its morphogenetic metabolite (all-trans Retinoic acid)

- 3 N AN %
P e 28 P (J
. % ¢ " o
£ D_Q—B{ : 168 g : g 8e8 % all trans Retinoic acid
3 g °3 Tl = 0.003 uM, CV = NA
T - c - dLEL rat = 2.5 mg/kg/day (> mLEL)
O.(I)Ol 0_'01 011 ; ll() 0.:)01 0.I01 011 ; 1I0 dLEL rabbit = 0.5 mg/kg/day (= mLEL)
Concentration (uM) Concentration (uM)
o SORRED
E.le g e s oy i la8 om0 88 -
g ° g Retinol (vitamin-A)
D n | Tl =NA, CV=NA

0.003 0.03 0.3 1 3 10

Concentration (uM)

] ] I I ] ] 1 1
0.003 0.03 0.3 1 3 10

Concentration (uM)

(True Negative)
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Targeted biomarker (TI)

Viable cell number (CV)

-

Example: R-enantiomer (Fluazifop-P-butyl) is the active herbicide

lg o § ) \‘N | 0] O
o nm o g ©o 9 7%
0 o o 8 0 o - 8 . o .
i gv e et =18 86 g0 o Fluazifop butyl
- . Tl = not active, CV = no effect
—— T ? ———— dLEL rat = 10 mg/kg/day (< mLEL)
.03 021210030 100 0.03 0.3 1 3 10 30 100 dLEL rabbit = 90 mg/kg/day (mLEL)
Concentration (uM) Concentration (uM)
o] ™ )
& o & F:PK;Iiit:L\ 0//\\”//\\C%
g |9 88 ge8 ma._g_n_g_._,_:/
. Fluazifop-P-butyl
. ) Tl =26 uM, CV = 40.8 uM
——— <" dLEL rat = 5 mg/kg/day (< mLEL)
0.03 0.3 1 3 10 2320 100 I l : \ : ' ' :

Concentration (uUM)

0.03 0.3 1 3 10 30 100

Concentration (UM)

dLEL rabbit = 50 mg/kg/day (mLEL)
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Example: Benomyl and its conversion product (Carbendazim)

Targeted biomarker (TI) Viable cell number (CV)
S - D - O
E T E 0 CH
@ 3
2 " g Benomyl
o TI=3.53 uM, CV =3.63 uM
- o_a.._u.a.o_..J - - dLEL rat = 62.5 mg/kg/day (< mLEL)

r T T T T 1 ! ! ! ! ! ! dLEL rabbit = 180 mg/kg/day (mLEL)

0.001 0.1 1 10 100 0.001 0.1 1 10 100

Concentration (uM) Concentration (uM)

NH
e C[%NH /CH3
N >——o
0

Log Decrease
1
1
Log Decrease
0

8
° H&j 6 ee o8 8° Carbendazim
TI=6.12 uM, CV = no effect
T ; - dLEL rat = 20 mg/kg/day (< mLEL)
o1 o1 1 3 10 001 o1 1 3 10 dLEL rabbit (no ToxRefDB entry)

Concentration (uM) Concentration (uM)




Example: false negatives (not detected in ToxCast STM)

Targeted biomarker (TI)

Viable cell number (CV)

= A OH
g - g ° ] HO
3 3
5o oo o . .
s 88 88 8 o 8 S 8o g8 8 T Diethylstilbestrol (DES)
A 8 TI=NA, CV = NA
- 2 dLEL rat = 0.03 mg/kg/day (= mLEL)
—r T 1 T 1 T T T T T T T (no rabbit data in ToxRefDB)
0.003 0.03 0.3 1 3 10 0.003 0.03 0.3 1 3 10
Concentration (uUM) Concentration (UM)
Ol n
ke S
e} (0} [o]
£ - eshSecoBingy g8y | | | - {8o8eBoscBlHogens
81 (o) (o} g‘ (o]
= =]
~ 0 Cyclopamine

Concentration (UM)

Concentration (uM)

TI=NA, CV =NA
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Exam pIe: pharmacological angiogenesis inhibitors

Targeted biomarker (TI) Viable cell number (CV)
o)
HO . . .
\mm synthetic thalidomide analog
s
g 3 5HPP-33
3 3 TI=10.5, CV = 16.4
. " (no rat or rabbit data)
0.001 0.1 1 10 100
Concentration (uM) Concentration (uUM)
- s ] g 8 . -
E . synthetic fumagillin analog
S - 8
A [a]
9w / 5
-NEJ” T T ;3'
IR . it i i el =
o T - TNP-470
3e104 ' o.cl)oa ' o.'oa I of3 ; 3e104 ' o.cI>03 ' o.'os 013 ; TI = 0017’ CV = 0020
Concentration (UM) Concentration (uUM) (nO rat or rabb|t data)
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Does the STM biomarker really predict a teratogenic threshold?

STM platform

Colleagues at Dow Chemical’s Predictive Toxicology group, led
by Ed Carney™, tested T.I. predictions for the two structurally \
diverse angiogenic inhibitors using a 48h rat WEC platform.

5HPP-33:
 T.I. predicted by hESC was 10.5 uM
* AC50 observed at 21.2 uM (embryo viability)

SHPP-33
'3
‘ &

3.1uM

TNP-470:

 T.I. predicted by hESC was 0.02 uM % ; ‘h
* AC50 observed at 0.04 uM (dysmorphogenesis) ' iﬂ -
Phenotypic consequences differed but the Ellis-Hutchings et al. (2017) Reprod Toxicol

threshold T.I. predicted by the ToxCast_STM data
was just under the AC50 observed.

15



Does the STM biomarker predict something new? sort of ...

 We used RNA-seq profiling to examine how the exposed embryos reacted to
threshold concentrations of 5SHPP-33 and TNP-470 after 4 hr exposure in rat WEC.

* Several pathways uniquely affected by each compound, but some in common:
- splicesome-RNA metabolism

RN 00 0 SRR 000 A0 000 0 D R

! = ! [
o o [ o % o
= I @ - ] -

Saili, Franzosa et al. (2019) Curr Opin Tox

- proteasome-ubiquitination

SCIENTIFIC
REPORTS

natureresearch

Thalidomide Inhibits Human iPSC
Mesendoderm Differentiation

by Modulating CRBN-dependent
Degradation of SALL4

David G. Belair (%, Gang Lu?, LauraE. Waller?, Jasan A. Gustin?, Nathaniel D. Collins! &
Kyle L. Kolajat*

Thalidomide’s teratogenicity
triggered by cereblon (CRBN)
— proteasomal degradation
of SALL4 in human iPSC
progenitors of limb-bud
mesoderm.

Belair et al. (2020) Scientific Reports
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Performance check

« Qualification on 42 well-curated reference compounds
often used to validate alternative DevTox platforms?.

 Balanced Accuracy (BAC) = 82% (0.65 sensitivity, 1.00
specificity).

- These performance measures are consistent with the

nriainal nharma trainad madal [Dalmar at Al 20121

o
CASRN Chemical (M) (M)
302-79-4  all-trans-Retinoic acid NA 0.003
69-74-9 Cytarabine hydrechloric  0.083 0.054

2 Methotrexate
iphenhydramine hydrc  3.76

50-35-1 Thalidomide NA 127
oro A
298-46-4  Carbamazepine NA 2.29
ulfan
mpici

19774-82-4 Amiodarone hydrochlor NA 51

Many assays that have undergone a validation exercise
were tested with a limited set of data-rich chemicals,
often inflating predictive capacity of 80% or higher.
This situation has hampered regulatory acceptance of
individual alternative assays.

1 Genschow et al. 2002; West et al. 2010; Daston et al. 2014;
Augustine-Rauch et al. 2016; Wise et al. 2016

vastatin
avwudine
xametha d
dometha L] X
127-07-1 Hydroxyurea 237 749
99-66-1 Valpreic acid 271 155
-a1- phenylhyd
51-52-5 6-Propyl -2-thiouracil NA NA D
4449-51-8 Cyclopamine
6055-19-2 Cyclophosphamide mor NA
-53- thylstilb I
107-21-1  Ethylene glycol NA NA NTP
57-30-7 Phencbarbitel sodium NA® NA D
81-8. Warfarin
69-7. Salicylic acid 79
103 etami
79-0i rylami
50-7 pirin
80-0! isphe
94-2 utylparab
58-0 affei

464-49-3 D-Camphor

54-85-3  Isoniazi d

ropylene glyc
68-26-8  Retinol
cchari
-03- ium L-
599-79-1  Sulfasalazine NA®

Zurlinden et al. (2020)

- True Positive

- False Negative

- True Negative
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Performance evaluation against ToxRefDB chemicals

100% |

80%

60%

40%

Performance (classifier)

20% S

St”‘ngencyOfcr"te”.afor_[?e»v:r?)f-»vv-'*"’777'777777777777777

Scaling Criteria (ToxRefDB)
- BM-42 reference

- dLEL < mLEL, rat OR rabbit
- dLEL < 200 mg/kg/day
- LEL for any study type

0% m
model ToxVal Low
# chems 1040 432

Medium High
285 127

Zurlinden et al. (2020)

Predictivity of the hESC
biomarker declines as fetal
outcomes gain less
concordance between rat-
rabbit studies, and
concurrent maternal
toxicity.
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Implications of weak sensitivity?

* Predictive power of an assay depends on its biological relevance

as well as the standard against which the prediction is validated: " Notso )\
~ fastlll )
- ORN/CYSS biomarker may be missing important pathways; B
- pluripotent H9 cells may be missing relevant developmental processes. O
O

With ~1K in vitro assays in ToxCast/Tox21, can we use machine
learning and mechanistic models to better characterize the
biological domain of applicability?

19



What human relevant pathways are detected or not?

Sensitive Domain

Insensitive Domain

Annotation System Keystone Pathway /Process #MIEs Class
GOTERM_BP_DIRECT G0:0014066~regulation of phosphatidylinositol 3-kinase signaling 6 ™
KEGG_PATHWAY hsa04068:FoxO signaling pathway 8 ™
KEGG_PATHWAY hsa04510:Focal adhesion 13 P
GOTERM_BP_DIRECT G0:0007200~phos pholipase C-activating G-protein coupled receptor signaling pathway 10 FN
INTERPRO IPR001723:Steroid hormone receptor 7 FN
GOTERM_MF_DIRECT G0:0005496~steroid binding 5 FN
RTK GPCR
Ligands Ligands
True Positive Space ] l False Negative Space I l

>

e

RAS-RAP

MAPK-ERK1

Signaling AKT1
CDK2

% i—Pl3K~— SpicT

@

PIP3 =—3 PIP2

.....

> mitochondrion

<
<

14

-3-3

A

GSK3B

Calcium
Signaling

Nuclear Receptor
Ligands

* Mapped ToxCast_STM correlations for well-
curated chemicals onto 337 ToxCast_NVS targets;

 flow of regulatory information to AKT/FOXO
signaling in the sensitive domain (true positives);

* G(q) signaling and steroid hormone signaling in
the insensitive domain (false negatives).

Positive predictivity in the hESC model
is driven to FOXO, a key regulator of
proteasome-ubiquitination.

Zurlinden et al. (2020) Toxicol Sci 20



Let’s try again ... but with all additional ToxCast assays

Validate

Validate

Validate

Validate

Validate

Training (183 chems) Test (249 chems)
@ Feature Selection/Model Building Test on held
out chemicals

=

maximize prediction

LR_lasso_strong_regulanzation

0.0 0.2 0.4 0.6

minimize residual error

——== ST
~== STM score Cm_lasso_strong_mgul% STM score
i F I

kN
nn_1 , o
Ne LR_fidge_strong_reguisrization .
svv I
nn_2 I . zation
cec I SRS
= ; z cec I
@ LR rnidge weak _regularization T — — )
3 | 2 | R KNN
= SVM -
ion
nn_3 e
RF -
nidge_strong_regulari ] -
_ridge_strong_regular 1 ne

Unsupervised feature reduction (107)

Algorithms
KNN K Nearest Neighbors

NB  Naive Bayes
SVM  Support Vector Machine
NN Neural Network (n hidden layers)
RF  Random Forest
LR  Logistic Regression
GBC Gradient Boosting Classification

Bayesian regularization - used to shrink
assay selection based on residual error.

(----) ROC AUC for DevTox prediction using
STM hit call alone.

Zurlinden et al. (manuscript in preparation)
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Training model (STM + 7 model)

90.0% Credible Interval

ToxCast_STM is strongest predictor of prenatal

ST

developmental toxicity in ToxCast/Tox21;

ATG_XBP1_up

XBP1 induces UPR and independently targets
FOXO1 for proteasomal degradation; AR_AUC_agonist

NVS_SCN1A_down

SCN1A picked up some false negatives (e.g.,

cyclopamine); ACEA_ESR1_down
. . ATG_EGR1_up

Estrogenic and androgenic pathways are

outside the STM biological domain; BSK_PLAUR_up

NVS TSPO _down

TSPO mitochondrial 18K translocator that

pharmacologically represses XBP1 activation. -2 -1 0 1 >

negative predictors positive predictors

Zurlinden et al. (work in progress) 22



Does the integrated statistical model perform better than ESCs?

Zurlinden et al. (work in progress)

Model Curation n sens PPV BAC Scaling Criteria (ToxRefDB)
STM none 432 0.325 0.803 37.3 - dLEL < 1000 mg/kg/day
low 432 0.364 0.567 60.4 - dLEL < 200 mg/kg/day
medium 285 0.512 0.537 66.5 - dLEL < mLEL, rat OR rabbit
high 127 0.667 0.556 - concordant response, rat AND rabbit
very high 42 0.654 1.000 - BM-42 reference
STM+7 train 183 0.593 0.836 - Train with most confident compound set
test 249 0.300 0.469 54.5 - Test on the remainder
Rat subset | | 90%Cl > 0.5 135 0.480 0.783 55.2 || ]
90%Cl >0.7 68 0.736  0.848  60.1 A subset of test chemicals
90%Cl >0.8 23 0813 o0ss7 @8 | | with higher confidence in the
Rabbit subset  90%Cl >0.5 110 0.429 0.574 50.2 model can achieve training-
90%Cl >0.7 58 0.710 0.595 58.3 level performance.
90%Cl >0.8 31 0.722 0.650 59.8 -
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Augmentation correlated with the mouse J1 cell (mESC) assay

Goosecoid (GSC) gastrulation marker (day4) and Cardiomyocyte differentiation (day 9)

A\
e = '<\-'/“ Inner Cell Mass
""" Pluripotent Stem Cells
O ¢
Ectoderm °
m«— °‘°o° Epiblast
T3¢
Posterior Primitive Streak l Anterior Primitive Streak
l Primitive Streak l

Mesodefmm A Lol ) Endoderm

Monitor Differentiation across time in stem cells

< T

e gt TS

Pluripotent Day 1 Day 2 Day3 Day 4 Day 5 Day 6 Day7 Day 8 Day 9

Potency also correlated with
effects on mESC growth and
differentiation.

Correlation of ToxCast Gene Targets and effects on mESCs

ADRA2C
AHR

CEBPB
CREB3
CYP1A1
CYP1A2
CYP2C19
CYP2C9
CYP2D6
DT40

FOS
JUN
MAOA
MMP3
MTF1

GSC_Differentiation-*
GSC_Differentiation-*

GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*

GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*

D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*

D4_Cell-*

D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*

NFE2L2
NOS1
NR1I12
NR4A2
OXTR
POU2F1
PPARA
RARA
RORA
RXRB

SMAD1
SOX1
SP1
SREBF1
TACR1
THRB

(T5p0)

Qx8PL)

GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*

GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*

GSC_Differentiation-*

GSC_Differentiation-*
GSC_Differentiation-*

GSC_Differentiation-*
GSC_Differentiation-*
GSC_Differentiation-*

D4_Cell-*

D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*
D4_Cell-*

D4_Cell-*
D4_Cell-*

D4_Cell-*

Hunter et al. (manuscript in clearance for submission)
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Molecular characterization of a Toxicological Tipping Point

* hESCs tracked in mesendodermal lineage classified teratogenicity

based on SOX17 (87-94% accuracy) [Kameoka et al. 2014];

* all-trans retinoic acid (ATRA) is an endogenous signal in mesendodermal
patterning (T.I. = 19 nM in hiPSCs [Palmer et al. 2017]);

 what would a ‘toxicological tipping point’ on hiPSC

: . : . 5
differentiation look like with ATRA at the molecular level: d endoderm
’Pmesoderm
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bation

The tipping point reflects an imbalance on genes regulated by Eomesodermin (EOMES) a
T-box family member that drives endodermal specification and mesodermal delamination
during primitive streak formation (gastrulation).
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EOMES is regulated by FOXO: at least in memory T-cells!
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Transcription factor Foxo1 represses T-bet mediated effector
functions and promotes memory CD8+ T cell differentiation
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14263
2Department of Biology, Randolph-Macon College, Ashland, VA 23005

SUMMARY

The evoluhonary conserved Foxo transeniption factors are important regulators of quiescence and
longevity. Although, Foxol 1s known to be mmportant in regulating CDS™ T cell trafficking and
bomeostasis, its role in functional differentiation of antigen stmulated CDS™ T cells 15 unclear.
Herein, we demonstrate that inactivation of Foxol was eszential for mstructing T-bet transenption

factor-mediated effector differentiation of CDS™ T cells. The Foxol inactivation was dependent on

mTORCI kinase, as blockade of mTORC] abrogated mTORC?2 mediated Akt (Serd73) kinase
phosphorylation, resultng in Fox}.)l -dependent smitch from T-bet to Eomesodermin transcniption
factor activation and increase in memory precursors. Silencing Foxol ablated interleukin-12 and
rapamycin enhanced CDS™ T cell memory responses, and restored T-bet mediated effector
functions. These results demonstrate an essential role of Foxol mn actively repressing effector or
terminal differentiation processes to promote memory CDS™ T cell development, and identify the
functionally diverse mechanisms utilized by Foxol to promote quiescence and longevity.

Cancer Immunology, Immunotherapy (2018) 67:691-702
https://dol.org/10.1007/500262-018-2120-5
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N-acetyl cysteine protects anti-melanoma cytotoxic T cells
from exhaustion induced by rapid expansion via the downmodulation
of Foxo1 in an Akt-dependent manner

Matthew J. Scheffel' - Gina Scurti’ - Megan M. Wyatt' © . Elizabeth Garrett-Mayer® - Chrystal M. Paulos’ -
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Abstract

Therapeutic outcomes for adoptive cell transfer (ACT) therapy are constrained by the quality of the infused T cells. The rapid
expansion necessary to obtain large numbers of cells results in a more terminally differentiated phenotype with decreased
durability and functionality. N-acetyl cysteine (NAC) protects against activation-induced cell death (AICD) and improves
anti-tumor efficacy of Pmel-1 T cells in vivo. Here, we show that these benefits of NAC can be extended to engineered T
cells and significantly increases T-cell survival within the tumor microenvironment. The addition of NAC to the expansion
protocol of human TIL 138381 TCR-transduced T cells that are under evaluation in a Phase I clinical trial, demonstrated that
findings in murine cells extend to human cells. Expansion of TIL138381 TCR-transduced T cells in NAC also increased
their ability to kill target cells in vitro. Interestingly, NAC did not affect memory subsets, but diminished up-regulation of
senescence (CD57) and exhaustion (PD-1) markers and significantly decreased expression of the transcription factors EOMES
and Foxol. Pharmacological inhibition of the PI3K/Akt pathway ablates the decrease in Foxol induced by NAC treatment of
activated T cells. This suggests a model in which NAC through PI3K/Akt activation suppresses Foxol expression, thereby
impacting its transcriptional targets EOMES, PD-1, and granzyme B. Taken together, our results indicate that NAC exerts
pleiotropic effects that impact the quality of TCR-transduced T cells and suggest that the addition of NAC to current clinical
protocols should be considered.

‘... Foxol-dependent switch from T-bet to

Eomesodermin transcription
factor activation...

‘... PI3K/Akt activation suppresses Foxo1l
expression, thereby impacting its transcriptional
targets EOMES ...
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Does regulation of proteasomal function explain hESC positivity?

Insulin
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AKT/IP3K signaling to FOXO1 was the winning pathway
in correlating NVS biochemical targets to STM positivity

RNAseq rat WEC found the proteasome-ubiquitination
as an early feature for 2 chemicals predicted positive

Activation of XBP1 was second only to STM as the
winning feature across the broader ToxCast portfolio
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Ueki and Kadowaki (2011) Nature

HYPOTHESIS: hESC-positivity linked to altered
homeostatic control of the FoxO1 axis as a
negative regulator of hESC differentiation.
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Expanding the molecular landscape of tipping points

Biomarker-based Assay in a hESC Germ Layer
Reporter +/- Metabolic Screen
2D HTS screening platform for developing endoderm +/- metabolism

screening that utilizes a transgenic hESC line with fluorescent protein
reporters for representative germ layer genes.

hPSCs seeded in 2D 384-
well plate.

384w assay

Definitive endoderm media
is added to induce
differentiation.

53
2 ‘g » 8
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r—wu 35 E additional hepatic metabolism
9 ga 3 method
o= o .
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B Chemical -8~ DAPI+ cells High content imaging to identify
g_ —®— SOX17+ cells percentage of differentiated
§E:;' 100} (SOX17+) and pluripotent cells.
k] o o
%] . .
é = Chemicals that increase or
22 g decrease hPSCs endoderm
soxi7.cso Dose (MM) differentiation are prioritized
Kameoka . et al. (2014). Toxicol Sei. 137(1):76-90. for further evaluation.

John Gamble, Chad Deisenroth (work in progress)

Gene Expression Signature-based hEBT in hiPSC

Prioritized chemicals undergo gene expression analysis ina 3D
organotypic culture model to provide temporal information on lineage
deviation and data streams for calculating tipping point thresholds.

hPSCs seeded and
aggregated in 3D 96-well
ultra low adherence plate.

96w ULA

Spontaneous germ layer
differentiation of hPSCs in

embryoid body (EB).
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Multi-lineage qPCR gene
signature revealing
perturbations to
differentiation pathways.
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Temporal and mechanistic

evaluation identify a point of
departure for chemicals that
- impact early embryonic
ot development.

Time-course chemical
exposure acquiring samples

Saili K. et al. (2020). Rep. Tox. 91(1):1-13.
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Computational models for NAMs:
predicting developmental toxicity and translation to human pregnancy

HTS data-driven models can confidently predict developmental toxicity potential in
pregnant rat/rabbit study designs; but ...

... there are limitations of mESC and hESC platforms for classifying teratogenic across a
mechanistically diverse landscape of chemicals (pathways, metabolism, complexity, ...);

bringing embryology into the fold will further improve mechanistic understanding in
translating NAM data to probabilistic effects and early lifestage phenotypes.

I’ll end with two new ways to evaluate the embryo suggesting why
sophisticated computer models are needed in the immediate future.
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Cell State Manifold: single-cell transcriptome profiling

Cao et al. (2019) Nature 566

Wong et al. (2015) Development 146

2018 v

perturbed system that propagate chemical injury to toxicological tipping point, ultimately
manifesting as a structural defect or altered physiological function.



Epiblast: spatial dynamics of mesodermal birth

chordamesoderm paraxial mesoderm

lateral plate mesoderm

Primitive streak

(hallmark of gastrulation) PEEE S8 LY, Ak % e
. . . . 2 % v.ﬁ
- position matters B e e
- SOX, FOX, HOX NI G e - extraembryonic mesoderm

in vivo counteroart of :
"It is not birth, marriage, or death but gastrulation which is truly the

most important time in your life.” - Lewis Wolpert

nopegricer, Civive 31



Acknowledgements

\-EMmryo é e
N

science in ACTION

Virtual Tissue Models: Predicting How Chemicals Impact Human Development

Virtual Tissues Team (CCTE/BCTD)

Todor Antonijevic

Nancy Baker — Leidos/SCDCD

John Cowden (M)

Chad Deisenroth

John Gamble (ORISE)

Jill Franzosa

Sid Hunter

Richard Judson

Nicole Kleinstreuer (now NTP/NICEATM)
Kate Saili (now OAQPS)

Imran Shah

Richard Spencer — General Dynamics
Rusty Thomas

Doug Young (M)

Todd Zurlinden (now CPHEA)

Stemina Biomarker Discovery, Madison WI

Michael Colwell
Jessica Palmer

Dow Chemical Company, Midland Ml

Ed Carney
Rob Ellis-Hutchings
Raja Settivardi

DRP team for EST

Nancy Baker - Leidos

George Daston — Procter & Gamble Co.

Burkhard Flick — BASF (Berlin)

Michio Fujiwara — Astellas Pharma Inc. (Japan)
Thomas Knudsen — USEPA

Hajime Kojima — NIHS (Japan)

Aldert Piersma — RIVM (Netherlands)

Horst Spielmann — Berlin (retired)

Noriyuki Suzuki — Sumitomo Chemical Co. (Japan)
Katya Tsaioun — Johns Hopkins University

32



