8EPA

www.epa.gov

Development of Toxicity Translator Models for Population Level Risk Assessment

Awkerman ${ }^{1}$, S Kadlec², D Miller ${ }^{2}$, N Pollesch ${ }^{2,3}$, S Raimondo ${ }^{1}$, M Thiel ${ }^{2,4}$, M Etterson ${ }^{2}$
${ }^{1}$ US EPA / ORD / Center for Environmental Measurement and Modeling / Gulf Ecosystem Measurement and Modeling Division, Gulf Breere, F
${ }^{2}$ US EPA / ORD / Center for Computational Toxicology and Exposure / Great Lakes Toxicology and Ecology Division, Duluth, MN
${ }_{4}$ UOak Ridge Associated Universitie

TOXICITY TRANSLATORS are environmental decisionmaking tools that use linked models to translate toxicity test observations into predictio
effects of anthropogenic stressors

Addresing 3 major extrapolation challenge Lab-to-field
Predicting effe
Predicting effects on real populations based on data from
laboratorystudies
2. Individual-to-population

Predicting effects at the population level based o
observed effectson individuals
3. Inter-species

Prediditing effects on untested species, including
threatened and endangered ones, based on effects threatened and endangered ones, based
observed in a few standard test species

$$
\begin{aligned}
& \text { Evaluating the effects of in } \\
& \text { scenarios on populations }
\end{aligned}
$$

$$
\begin{aligned}
& \text { scenarios on populations } \\
& \text { TTimin of exposure in rela }
\end{aligned}
$$

Timing of exposure in relation to presence of vulnerable life
Stages
Effects may depend on exposure history
This poster presents an update on four toxicity translators in various stages of development. Each taxiconomic group has a different set of vulnerabiitities, requiring a differen
computational approach to structuring the simulateo population:
Birds
$\frac{\text { Birds }}{\text { Distin }}$
Distinct, seauential breeding phases are present: success at
each checkpoint is directly tied to popopulation-tevel endpoints
Fish
$\frac{\text { Fish }}{\text { Reproduction and survival may be dependent on fish size; e.g. }}$
wintersurvival is decreased among fish <x wintersurvival is sedereased among fish < $\times x m$ length. Toxic
exposure may cause decreased growth. Invertebrates
$\frac{\text { Invertebrates }}{\text { Timing and variability in toxic exposure may affect the }}$ distribution of fiveniles and adutusin a poppulation via impact on survival and reproductive capacity. This in turn will ffect
the population growth rate.

Amphibians
Stage-based developmental delay may impede transition to

Applications of toxicity translators
How might changesto pesticide ap
How might changes to pesticide application dates effect
Population frowth of species X ?
Which life history trats are associated with vulnerabilityat the - Which lite historyt
U.S. Environmental Protection Agenc
Ofice of Research and Development
office of Research and Development

A toxicokineticictoxicodynamic (TTKTO) model for effects of endosultan on mysids $(1$. bahiol), coupled with
 This effects model 1 s line
Thusbe tal
Thil (2018).

Currentlyin use by uspeA for pesticide risk asesssment since 2014

 ontact: tutersson.Matte epap.avy https///wwwepa. gov/chenicallereserch//markov-chain-nest-productivity-model

FISH Size-structured integral projection model (IPM)

 specesentaiemincalcon
prest

 Contacts:

| EMPIRICAL |
| :---: | :---: |
| ESERVATIONS ABOUT | \(\begin{gathered}EFFECT AND

POPULATION MOD\end{gathered}\)

OBSERVATIONS ABOUT	
VITAL RATES, TOXICITY	ARE LINKED TO

References
Awkerman et al. (2019)
IEAM 16(2): 223-233 Awkerman et al. (2019)
IEAM 16(2): 223-233 Etterson and Bennett (2013)
IEAM 9 (4): $590-599$ IEAM 9(4): 590-599 Raimondo et al. (2017) IEAM
14(3): $369-380$. Thursby et al. (2018) ET\&C
37(10): $2633-2644$

Disclaimer
The views
The views expressed in this poster
those of the authors and do onot hose of the outhors and do
necessarily reflect the views or policies of the United States
Environmental Protection A aen

