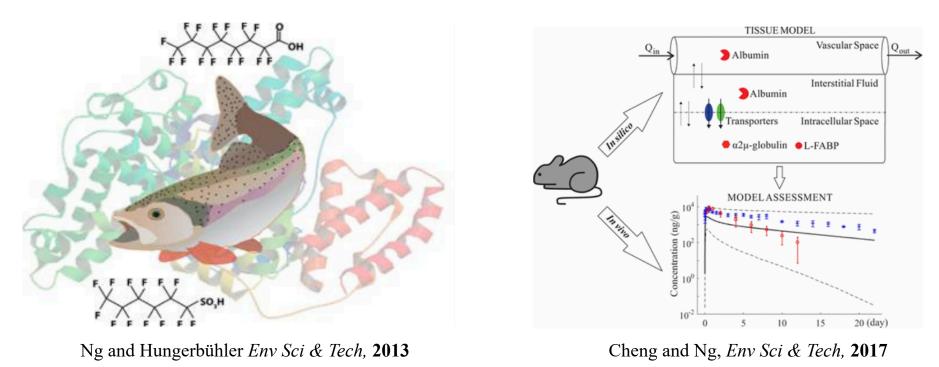

Estimating the Bioaccumulation Potential of Per- and Polyfluoroalkyl Substances (PFAS) Across Species by Integrative In Silico Approaches

<u>Weixiao Cheng¹</u>, Jon A. Doering², Carlie LaLone³, and Carla Ng¹

¹Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA ²National Research Council, US EPA, Duluth, MN ³Great Lakes Toxicology and Ecology Division, US EPA, Duluth, MN

INTRODUCTION

• Per- and polyfluoroalkyl substances (PFAS)



- Many PFASs are extremely persistent in the environment
- They have been detected in tissues from species as diverse as whales, birds, fish, and even invertebrates, covering the range of trophic levels

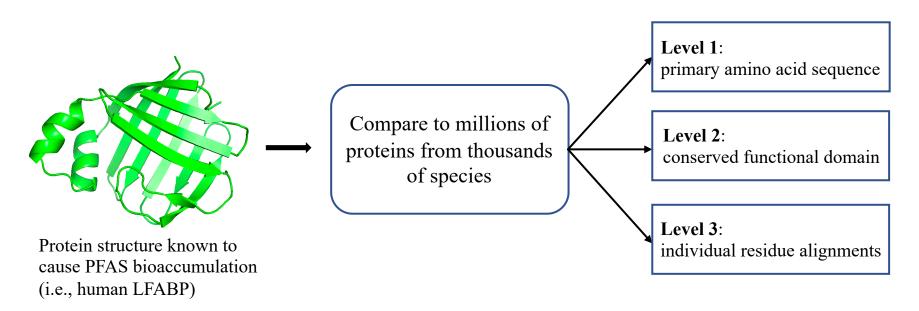
INTRODUCTION

• Bioaccumulation

- ✤ Accumulated in blood, liver, and kidney tissue
- ✤ Bind to proteins including serum albumin and liver-type fatty acid binding protein (LFABP)

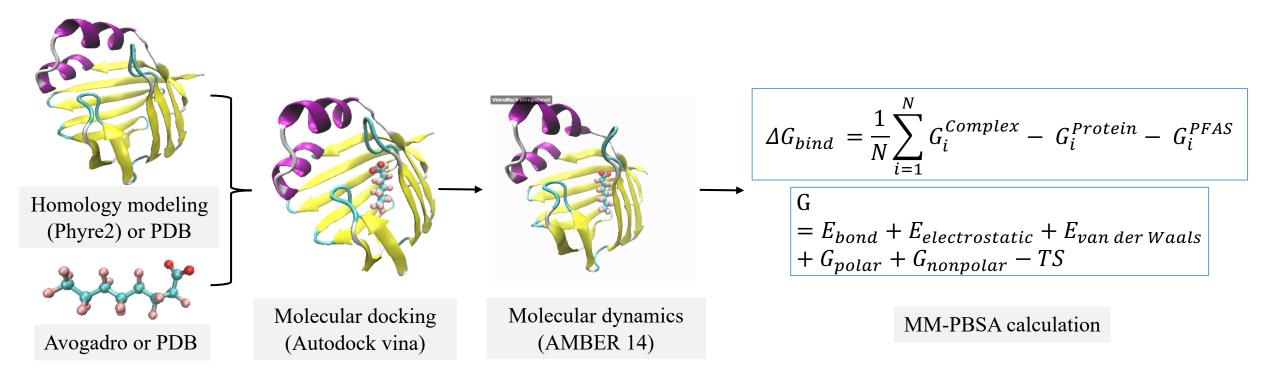
PFAS-protein interactions play an essential role in determining PFAS bioaccumulation potential in animals

INTRODUCTION


- Large number of PFAS
 - More than 4000 PFASs on global market, from OECD (Organization for Economic Cooperation & Development)
 - ✤ In silico methods hold great promise for evaluating bioaccumulation potentials
 - ✤ Integrative in silico approach including two complementary tools:
 - SeqAPASS
 - Sequence and structure of proteins;
 - No PFAS-protein interactions included, but can rapidly extrapolate for large number of species
 - > Molecular dynamics
 - Function of protein (i.e., protein binding affinity)
 - Slow, but provide additional insight into PFAS-protein interactions

METHODS

Gamma SeqAPASS Workflow



Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

METHODS

Molecular dynamics (MD) Workflow

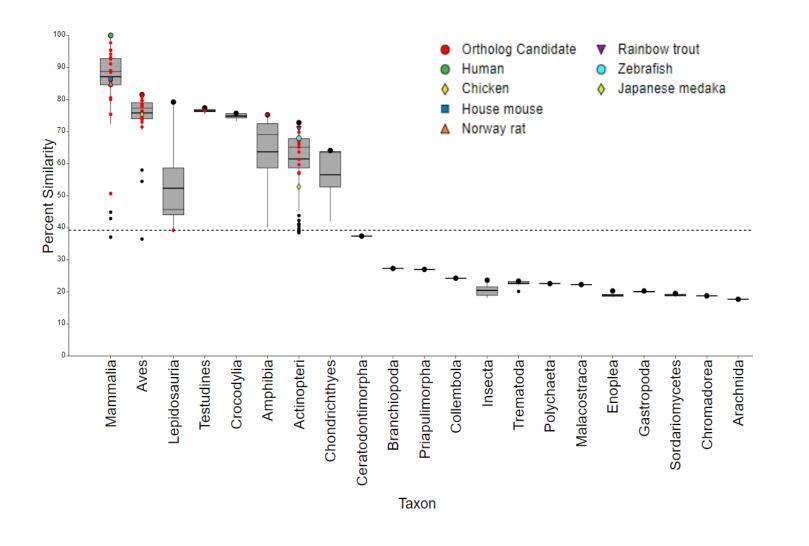
✓ **Protein binding affinity** is quantified by equilibrium association constant (K_A) :

$$K_A = e^{-\Delta G_{bind}/RT}$$

 $\Rightarrow \Delta G_{bind}$ - Free energy of binding

METHODS

Materials

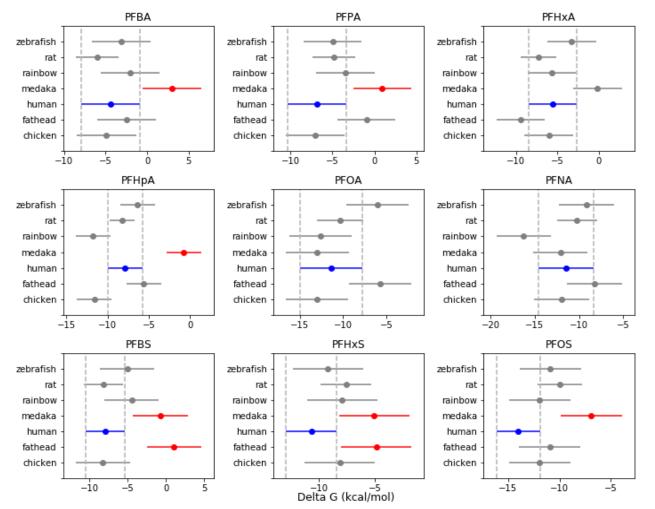

LFABP structures across 7 different species

- Liver-type fatty acid binding protein (LFABP) is used as protein proxy for bioaccumulation assessment
- <u>human and rat</u> LFABP structures are available in Protein Data Bank (PDB)
- <u>chicken, zebrafish, rainbow trout, Japanese medaka, and fathead minnow</u> structures were generated using Phyre2

9 PFAS structures

- <u>6 PFCAs</u>: PFBA(C4), PFPA(C5), PFHxA(C6), PFHpA(C7), PFOA(C8), PFNA(C9)
- <u>3 PFSAs</u>: PFBS(C4), PFHxS(C6), PFOS(C8)

• SeqAPASS – Level 1 & Level 2

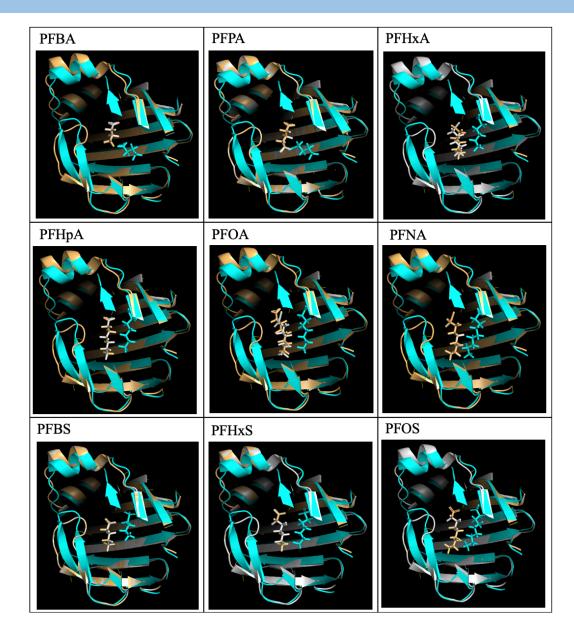

- 302 of the 347 aligned species are similar to human
- Fathead minnow did not have any common domains with the human query sequence
- No SeqAPASS Level 2 runs were <u>submitted</u> because no functional domains were identified as specific hits in NCBI's Conserved Domains database

• SeqAPASS – Level 3

 Table 1. Identification of Potential Critical Amino Acids Across Species

Human Amino Acid Position	<u>Type 1</u> Primates, Ruminants, Whales/dolphins	Type 2Rodents andother mammals,Fish,Amphibians,Testudines	<u>Type 3</u> Aves, Lepidosauria Chondrichthyes	<u>Type 4</u> Crocodylia	SeqAPASS Level 3 Prediction of Similar to Human LFABP Template	Mutation in DUET	Stability Change from DUET (ΔΔG, kcal/mol)
50	Phenylalanine (F)	Valine (V) Isoleucine (I) Leucine (L)	Valine (V) Isoleucine (I) Leucine (L)	Phenylalanine	Yes No No No	F50V F50I F50L	-1.196 (Destabilizing) -0.808 (Destabilizing) -0.893 (Destabilizing)
54	Alanine (A)	Threonine (T)	Threonine	Threonine	Yes No	A54T	-0.195 (Destabilizing)
81	Threonine (T)	Alanine (A) Glycine (G)	Alanine	Threonine	Yes No No	T81A T81G	-0.749 (Destabilizing) -0.023 (Destabilizing)
93	Threonine (T)	Threonine Valine	Alanine		Yes Yes No	T93V T93A	0.031 (Stabilizing) -1.004 (Destabilizing)
97	Asparagine (N)	Glycine	Glycine	Glycine	Yes No	N97G	0.521 (Stabilizing)

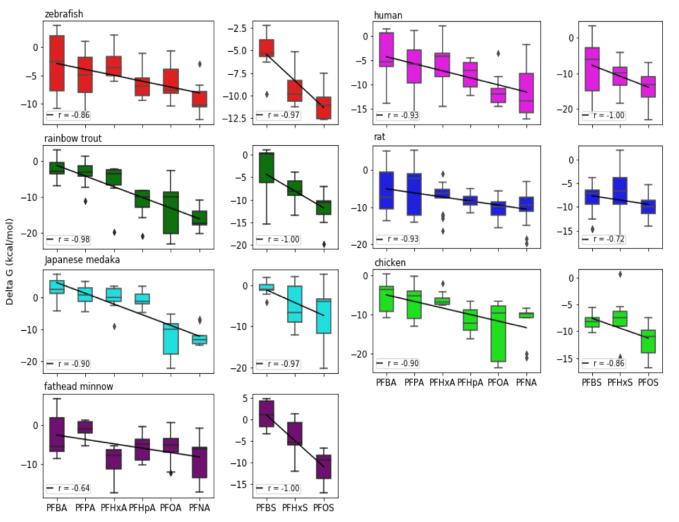
• MD Workflow



Multiple comparison (Tukey test) between human LFABP and other LFABPs for PFAS. Blue is human LFABP; red indicates significant difference (p < 0.05); gray means no difference from human LFABP (p > 0.05).

- Japanese medaka has significantly weaker LFABP binding affinity compared to human for all PFAS ligands (P < 0.05) except PFHxA, PFOA and PFNA</p>
- Fathead minnow shows significantly weaker LFABP binding affinity than human for PFBS and PFHxS (P < 0.05)

Statistical summary over all 9 tested PFAS for different LFABPs


LFABPs	Max ΔG_{bind}	Min ΔG_{bind}	Mean ΔG_{bind}
chicken	-4.89333	-12.9956	-9.2
human	-4.39333	-13.9894	-8.89
rainbow trout	-2.01111	-16.2389	-8.45975
rat	-4.85333	-10.3439	-8.06698
zebrafish	-3.12778	-10.8956	-6.44444
fathead minnow	1.024444	-10.9344	-5.25457
Japanese medaka	2.956667	-12.9867	-3.86617

The PFAS binding poses for human (cyan color), Japanese medaka (orange color) and fathead minnow (grey color) LFABP after sequence alignment indicates:

- the positions of all PFAS ligands are quite different between human and the two fish species
- the position of ligands is closer to the bottom of the LFABP binding pocket, the binding affinity also tends to be stronger

• MD Workflow

Insights into how the chemical structures of PFAS influence their protein binding behavior:

In all LFABP systems, a quite strong negative relationship was observed for both LFABP versus PFCAs and LFABP versus PFSAs, with the correlation coefficient ranging from -0.64 to -1.0.

Distribution of ΔG_{bind} for different PFAS-LFABP complexes across species

CONCLUSION

By integrating SeqAPASS and the molecular dynamics workflow, our approach:

- Provides insights into the bioaccumulation potential across different species from the evaluation of both the structure and function of the critical protein LFABP
- Suggests that rat, chicken, zebrafish and rainbow trout are better representative species than Japanese medaka and fathead minnow for predicting bioaccumulation and toxicity in humans