

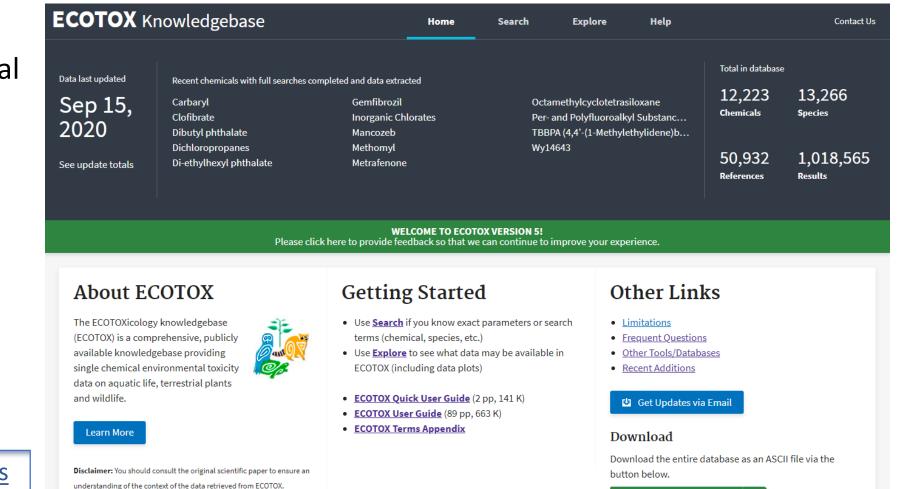
Utilizing automated and semi-automated data analytic tools for curating data in the ECOTOX Knowledgebase

Dale J. Hoff U.S. EPA ORD/CCTE/GLTED Duluth, MN

SETAC North America 41st Annual Meeting, SciCon₂ 15-19 November 2020

Office of Research and Development Center for Computational Toxicology and Exposure

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.


Identifying Empirical Evidence: ECOTOX Knowledgebase

Curated database providing single chemical environmental toxicity data for aquatic life, terrestrial plants and wildlife

- Comprehensive literature searches
- Literature review
- Data extraction

ECOTOX presentations/posters J. Olker ID: 1.14.16 C. Elonen ID: 5.17.09

www.epa.gov/ecotox

Download ASCII Data

G

SEPA

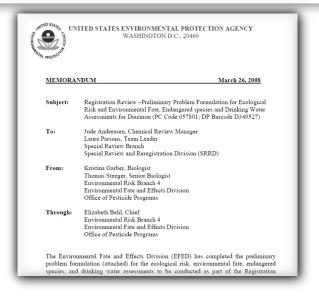
Uses of the ECOTOX Knowledgebase in Environmental Decision Making

Aquatic Life Ambient Water Quality Criterion for Selenium – Freshwater 2016

> U.S. Environmental Protection Agency Office of Water Office of Science and Technology Washington, D.C.

- EPA People Locator
- EPA Region 4 Ecological Screening Values
- Combustion Guidance for Human Health (some defaults in here used at times)
- Superfund Risk Assessment (variety of links)
- Superfund: Natural Resource Damages and Ecological Risk Assessments

Environmental Decision Makin


Used for Ambient Water Quality Criteria for Aquatic Life since 1985.

Used for Ecological Risk Assessment for Office of Pesticides for chemical registration and re-registration (FY19 – 30 chemicals).

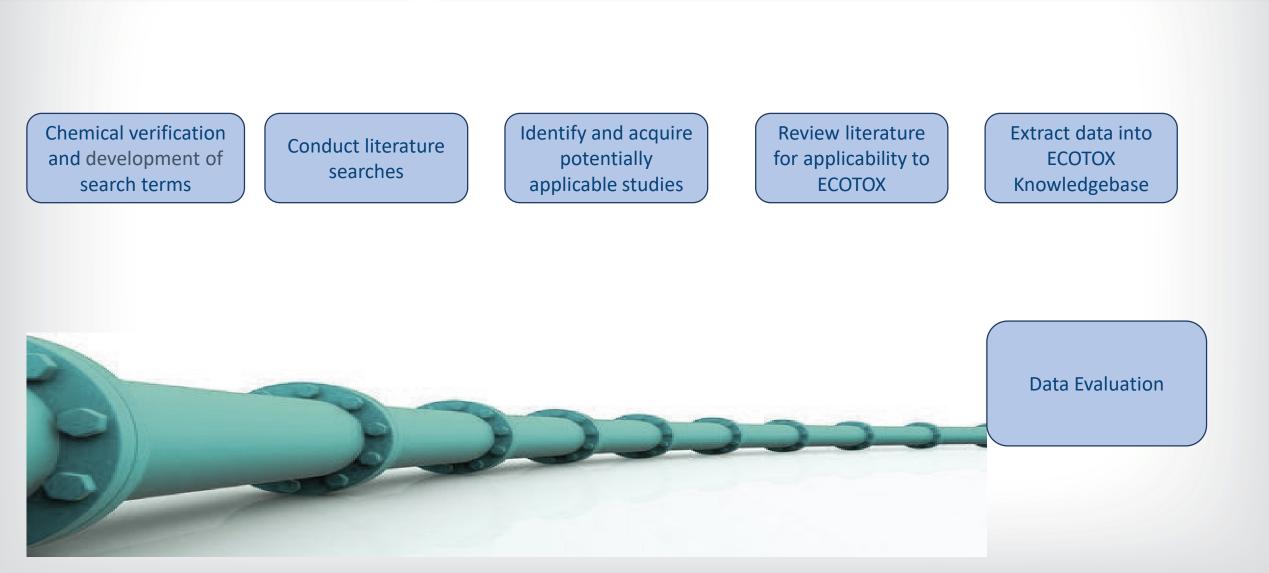
Used by Regions and States for hazardous waste site assessments and in emergency response

Providing ecological hazard data for the prioritization and assessment of chemicals for TSCA/Lautenberg Act

Providing ecological toxicity data for PFAS to researchers, EPA ERA Forum, DoD Tri-Services ERA Work Group, and others

Ecological Hazard

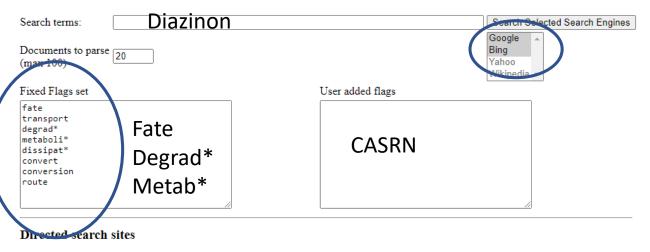
Ecological hazard data are extracted from the EPA ToxValDB database where it had been compiled from the EPA ECOTOX database. Although data are available for a variety of species, only data for aquatic species are used in the current illustration. The data can come from any of the following study types: mortality:acute, mortality:chronic, reproductive:acute, reproductive:chronic, growth:acute, growth:chronic (all from ECOTOX). The types of effect levels are LDxx/LCxx/ECxx/EDxx where xx can range from 1% to 100%, and LOEL/NOEL/LOEC/NOEC. Values must be in units of mg/L. For each chemical, the lowest toxicity value was separately determined for acute and chronic studies, regardless of species. The


Need for high volume rapid data identification for assessment purposes

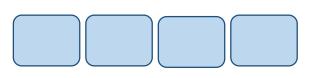
- The accelerated pace of chemical risk assessment for ecological receptors
- Discovery of "new" chemicals of ecotoxicological concern
- Increase in number and diversity of journals
- Changing landscape of toxicity data used for ERA
- Decreasing dependency of traditional whole animal testing for ERA

- Development of tools to expedite gathering of information to focus shortened time frames on data integration and professional judgement
- Development of tools that can sort rapidly through BROAD keyword searches (e.g. chemical name)
- Digital formats of journals allow for use of data analytic applications
- Shift from apical endpoints to NAMs requires transparent development of controlled vocabulary for systematic data curation
- Providing a means to take full advantage of existing data before conducting new toxicity studies

ECOTOX Data Curation Pipeline



Chemical verification and development of search terms


Ecotox Task 1 - Search Engine(s) Search

Provided: Sep. 4th, 2020

Save message and link number numerical sorting added: Sep. 23rd, 2020

California Department of Pesticide Regulation	https://www.cdpr.ca.gov/docs/chemical/monster2.htm
EPA Chemistry Dashboard	https://comptox.epa.gov/dashboard
University of Hertfordshire PPDB: Pesticide Properties DataBase	https://sitem.herts.ac.uk/aeru/ppdb/en/search.htm
RED documents	https://archive.epa.gov/pesticides/reregistration/web/html/status.html
Office of Pesticide Programs Pesticide Chemical Search	https://ofmpub.epa.gov/apex/pesticides/f?p=CHEMICALSEARCH:1
Food and Agriculture Organization of the United Nations	http://www.fao.org/home/en/
World Health Organization	http://apps.who.int/pesticide-residues-jmpr-database/
Cornell University Extoxnet	http://pmep.cce.cornell.edu/profiles/extoxnet/index.html
PAN Pesticides Database	http://www.pesticideinfo.org/Search_Chemicals.jsp

Computer Assisted Search Term Generation

Enter Chemical Name Select Search engine (e.g. Google) for web scrubbing

Enter fixed/default or other optional "flags" or "tags to assist in finding synonyms or related terms.

Application-Programing Interface (API) to query established online chemical identification resources to return synonyms, product formulation names, alternate CASRN, etc.

Text mining: highlights flags/tags within document

Users more rapidly find associated terms

In this example, Metabolites are identified

Chemical verification and development of search terms

Diazinon

rage 49 01 97

26 0

27 0

28 0

4.1.2 Distribution

rage

+

(a) Humans

Poklisetal. (1980) detected diazinon in tissues (blood, bile, adipose, liver, brain, and kidney) after intentional oral ingestion of diazinon. No other data on tissue distribution of diazinon in humans were available to the Working Group.

(b) Experimental systems

In experimental animals, diazinon is widely distributed to tissues after absorption. The elimination half-life of diazinon in the blood of male Wistar rats given intraperitoneal doses of 20 mg/kg bw or 100 mg/kg bw was estimated to be 4 hours and 6 hours, respectively (Tomokuni et al., 1985). Similarly, immediately after administration of intravenous (10 mg/kg bw) and oral (80 mg/kg bw) doses in rats, plasma concentrations of diazinon indicated half-lives of 4.7 and 2.9 hours, respectively (Wu et al., 1996). Most diazinon in the plasma (89%) is bound non-covalently to albumin and other plasma proteins (Wu et al., 1996; Poet et al., 2004). By 8 hours after intravenous administration (20 mg/kg bw) to rats, the concentration of diazinon was significantly higher in the kidney than in the liver, or brain (Tomokuni et al., 1985). After intravenous dosing (1 or 10 mg/kg bw), diazinon was distributed and eliminated rapidly in male Sprague-Dawley rats, and concentrations of diazinon in saliva were comparable to plasma concentrations of non-protein-bound diazinon (Lu et al., 2003).

4.1.3 Metabolism

(a) Overview of metabolism of diazinon Organophosphate pesticides are subject to similar metabolic pathways in humans and experimental animals in vivo (Casida & Quistad, 2004); see also Section 4.1.3 of the Monograph on Malathion in the present volume. Biotransformation of organophosphates occurs primarily in the liver, and to a lesser extent in

the small intestine, after oral exposure (Barr & Angerer, 2006). After absorption by the dermal or oral route, diazinon is rapidly biotransformed by several enzymes - including cytochrome P450 (CYP), paraoxonases, and carboxylesterases (CES) - to water-soluble metabolites that are rapidly eliminated (see Fig. 4.1). Both desulfuration and dearylation of diazinon are mediated by CYP. The bioactive diazoxon metabolite can be detoxified by paraoxonase (PONI)-catalysed reactions (Costa et al., 2013), yielding alcohol and diethylphosphate products. Alternatively, diazoxon can be subject to inhibition of CES function (Crow et al., 2012; Fig. 4.1). The oxon metabolite can escape detoxication by CES or PON1 in the liver and instead covalently modify (and inhibit) various serine hydrolase enzymes, including the B-esterase targets butyrylcholinesterase, acetylcholinesterase, and CES (Casida & Quistad, 2004; see Fig. 4.2). The bioactive oxon metabolite is generated by CYP-catalysed desulfuration (Buratti et al., 2005; Barr & Angerer, 2006). If the oxon is not degraded by hepatic paraoxonase or carboxylesterases, it can escape the liver and instead covalently modify (and inhibit) various serine hydrolase enzymes, including the B-esterase targets butyrylcholinesterase, acetylcholinesterase, and carboxylesterases (Casida & Quistad, 2004; see Fig. 4.2). Generation of the oxon metabolite is a bioac tivation reaction, because the oxon is a much more potent inhibitor of B-esterases than the parent compound (Casida & Quistad, 2004). In general, analytical measurement of the oxons in blood is difficult due to the small quantities of metabolite that are formed and its relative instability (Timchalk et al., 2002). Nevertheless, the oxons are potent inhibitors of serine hydrolases, exhibiting bimolecular rate constants of inhibition varying from 103 to 107 M-1s-1, depending on the hydrolase and the specific oxon (Casida & Quistad, 2004; Crow et al., 2012). Most important with respect to the insecticidal and toxicological

activity of the oxon is acetylcholinesterase, the

29 Aligeret, 2000). Alter absorption or oral route, diazinon is rapidly biotransformed several enzymes - including cytochrome P450 (CYP), paraoxonases, and carboxylesterases (CES) - to water-soluble metabolites that are rapidly eliminated (see Fig. 4.1). Both desulfuration and dearylation of diazinon are mediated by CYP. The bioactive diazoxon metabolite can be detoxified by paraoxonase (PONI)-catalysed reactions (Costa et al., 2013), yielding alcohol diethylphosphate products. Alternatively, be subject to inhibition of CES diazoxon ca tunction (Crow et al., 2012; Fig. 4.1). The oxon metabolite can escape detoxication by CES or PONI in the liver and instead covalently modify

5	5 0
50	5 5
5	7 3
5	8 2
59	9 1

SEPA

Conduct literature

searches

-	-	-
WR002	ECOTOX Literature Searc	h for Diazinon 2019
Anita Pomplun, GDIT	MEN	<u>A</u> ORANDUM
Anne Pilli, GDIT	To:	Colleen Elonen, EPA
Arne Anderson, GDIT	From:	Brian Kinziger, GDIT
Brian Kinziger, GDIT	CC:	Anne Pilli, GDIT
Chris Suomi, GDIT	CC:	Arne Anderson, GDIT
Colleen Elonen, EPA	Search Conducted by:	Conductor
Gage Sachs, GDIT	Document Drafted by:	Drafter
ennifer Olker, EPA		
lennifer Olsen, GDIT		
ohn Frisch, GDIT	Project:	WR002 ECOTOX
Kara Tudor, GDIT	Chemical:	Diazinon
Katie Nehiba, GDIT	Report Year:	2019
Fravis Karschnik, GDIT	Chemicals of Concern:	chem of concern
Tyler Gephart, GDIT	UNIFY Title Search String:	
		3
		Literature Search
		Tommo
		Terms

Conducted in Abstract Sifter Plus*

Center for Computational Toxicology and Exposure, EPA's PubMed Abstract Sifter. The United States Environmental Protection Agency's Center for Computational Toxicology Exposure. Software.

https://doi.org/10.23645/epacomptox.10324379.v1

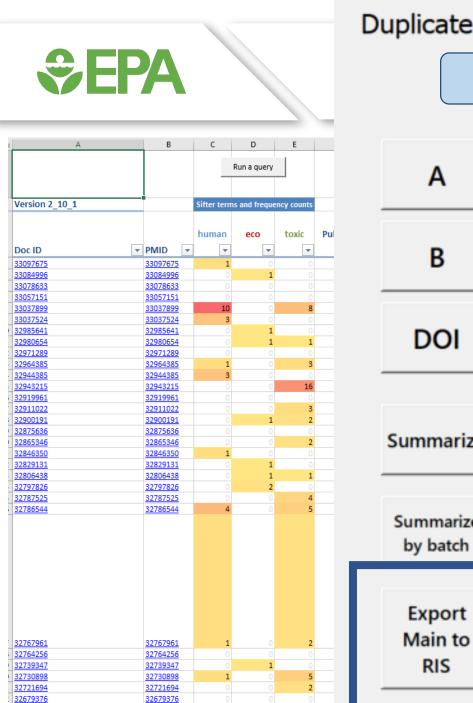
*Customized for Ecotoxicology

Tyler Gephart, GDIT	UNIFY Title Search String:						0	uota Che	ck					
								uota che						
		3	Hero	Proquest	PubAg	PubMed	Science Direct FT	Science Direct TK	Scopus	Springer	Theses	USGS	Web of Science	
		Literature Search Terms	Y	V	V	Y		Y	Y	V	7	V	•	Send
		diazinon												

SEPA

Conduct literature searches


Web Services Automated searches of several citation index databases


1.) PubMed

2.) PubAg - Agricola

3.) Proquest

- 4.) Science Direct Title & Keywords
- 5.) Science Direct Full Text
- 6.) Theses: PMC library of dissertations and theses
- 7.) Web of Science
- 8.) USEPA Hero database
- 9.) Full text of Springer Nature articles
- 10.) Scopus-Elsevier title abstract and Key words
- 11.) USGS collection of employee pubs

Conduct Duplicate han literature searches <- Click here to find duplicates by Column A identifier А В <- Click here to find duplicates by Column B identifier DOI <- Click here to find duplicates by DOI <-Click here to summarize Main sheet results Summarize Summarize <-Click here to summarize batch results by batch

<-Click here to send all Main sheet rows to RIS

e				
-				
5		Ν	0	Р
£				
5				
5				
£				
- D	- V	olur 👻	Issue 🔻	Pages
106818		Jui	issue :	1 0500
(<u>596-x</u>		187	11	6
<u>).1835885</u>		35		-
1509-8	_	10	1	. 173
<u>927-8</u> 662-y		192	11	6
,		18		
<u>.111364</u>		206		1113
<u>.0809</u>)840-x	_	250		1108
1040-x	-	9	24	
20.141285		745		1412
110186				1101
<u>583</u>	+	444	10	1525
<u>39</u> 4		54	19	12383-123
_				
- <u>20.141512</u>		749		1415
0.122296	-	1156	D: 0	1222
114579 .461346		265 1626	Pt B	4613
).1805078		83	17-18	
<u>ox.0c00100</u>		33	9	2310-23
(
1				
đ				
0				
		-	_	
62008081352	26	8 10	3	
1 <u>35</u>		607	C	1138
118		81		1069
e.2020.1277		261		1277
e.2020.1275	<u>90</u>	260		1275

⇒EPA

iv/ECOTOX Searches/PFAS/PFAS Quarterly Update April 2020/ECOTOX PFAS Quarterly Update April 2020 All Downloads.ris

Identify and acquire potentially applicable studies

- 0 ×

Tag Browser Search Browse MeSH Tree He	eatmap Browser Prioritized Lists		Document Preview Pie Chart Bar Chart
Evidence Stream	~	-	Cellular Response of Freshwater Green Algae to
Tag	Code(s)	Count	Perfluorooctanoic Acid Toxicity
 Ecotoxicity (animal and plant) 		10686	
 Human 		8162	Xu, D.; Li, C.; Chen, H.; Shao, B. Ecotoxicol. Environ. Saf. (2013)
 Animal (all) 		8098	
Environmental Fate (beta)		7730	
 Animal (human health models) 		6226	No Abstract available
 In Vitro 		4024	▼ Health Outcomes
 Plant 		2066	Mortality (100%)
[No Tag]		1688	▼ Topic Models
 Physical Chemistry (beta) 		637	Topic 58: toxicity, pfoa, pfos, effects, mixtures, acid, acute, perfluorooctanoic, combined, mixture
			(87%)
			Topic 61: model, pfoa, exposure, data, pharmacokinetic, pfos, based, modeling, pbpk, concentrations
			(13%)
▼			

Score	Training Item?	Included?	RefID	Title Year	Authors	Journal
1			s89	Cellular Response of Freshwater Green Algae to Perfluoro 2013	Xu, D.; Li, C.; Chen, H.; Shao, B.	Ecotoxicol. Environ. Saf.
0.818			s743	Toxicity of Polyfluorinated and Perfluorinated Compounds 2012	Ding, G.; Wouterse, M.; Baerselman, R.; P	Arch. Environ. Contam. Toxicol.
0.293			s8218	Cellular response of freshwater green algae to perfluoroo 2013	Xu, Dongmei; Li, Chandan; Chen, Hong; S	Ecotoxicology and Environmental Safety
0.293			s4662	Cellular response of freshwater green algae to perfluoroo 2013	Xu, D.; Li, C.; Chen, H.; Shao, B.	Ecotoxicol Environ Saf
0.293			s17595	Cellular response of freshwater green algae to perfluoroo 2013	Xu, Dongmei; Li, Chandan; Chen, Hong; S	Ecotoxicology and environmental safety
0.293			s1317	Cellular response of freshwater green algae to perfluoroo 2013	Xu, D. M.; Li, C. D.; Chen, H.; Shao, B.	Ecotoxicology and Environmental Safety
0.293			s10301	Cellular response of freshwater green algae to perfluoroo 2013	Xu, Dongmei; Li, Chandan; Chen, Hong; S	Ecotoxicology and environmental safety
0.293			s10300	Cellular response of freshwater green algae to perfluoroo 2013	Xu, Dongmei; Li, Chandan; Chen, Hong; S	Ecotoxicology and environmental safety
0.293			s15351	Cellular response of freshwater green algae to perfluoroo 2013	Xu, D. M.; Li, C. D.; Chen, H.; Shao, B.	Ecotoxicology and Environmental Safety
0.283			s8293	Spatial distribution, seasonal variation and risks of legacy 2019	Wang, Yuan; Shi, Yali; Cai, Yaqi	Science of The Total Environment
0.283			s1485	Spatial distribution, seasonal variation and risks of legacy 2019	Wang, Y.; Shi, Y. L.; Cai, Y. Q.	Science of the Total Environment
0.283			s17668	Spatial distribution, seasonal variation and risks of legacy 2019	Wang, Yuan; Shi, Yali; Cai, Yaqi	Science of the total environment
	_	_	10503			

All references loaded in Swift Review and Evidence Stream "Filter" applied.

Ecotoxicity evidence stream identifies titles and abstracts with Ecologically relevant Taxa

SWIFT Review Evidence stream filters to limit content to Ecological Taxa

> SWIFT SREVIEW Desktop Version (1.21) Search Strategies

> > mos.emoise@weiver-fliws

In this example, 18,631 References were reduced to 10,686 by applying the evidence stream filter

EPA

3

Identify and acquire potentially applicable studies

Ecotoxicity (animal and plant)

tiab :("Norway Rat" OR "Rattus norvegicus" OR "Rainbow Trout" OR "Oncorhynchus mykiss" OR "Water Flea" OR "Daphnia magna" OR "Zebra Danio" OR "Danio rerio" OR "Fathead Minnow" OR "Pimephales promelas" OR "House Mouse" OR "Mus musculus" OR "Common Carp" OR "Cyprinus carpio" OR "Bluegill" OR "Lepomis macrochirus" OR "Domestic Chicken" OR "Gallus domesticus" OR "Japanese Medaka" OR "Oryzias latipes" OR "Mallard Duck" OR "Anas platyrhynchos" OR "Goldfish" OR "Carassius auratus" OR "Corn" OR "Zea mays" OR "African Clawed Frog" OR "Xenopus laevis" OR "Green Algae" OR "Pseudokirchneriella subcapitata" OR "Honey Bee" OR "Apis mellifera" OR "Bread Wheat" OR "Triticum aestivum" OR "Soybean" OR "Glycine max" OR "Northern Bobwhite Quail" OR "Colinus virginianus" OR "Water Flea" OR "Ceriodaphnia dubia" OR "Nile Tilapia" OR "Oreochromis niloticus" OR "Rice" OR "Oryza sativa" OR "Channel Catfish" OR "Ictalurus punctatus" OR "Yellow Fever Mosquito" OR "Aedes aegypti" OR "Earthworm" OR "Eisenia fetida" OR "Silver

Page 81 of 210

~25,000 Scientific & common names from all species with toxicity data identified in ECOTOX Knowledgebase + Generic species habitat tags (e.g. AQUATIC,AVIAN TERRESTRIAL, BENTHIC)

SWIFT SREVIEW Desktop Version (1.21) Search Strategies

swift-review@sciome.com

₽EPA		Identify and acquire potentially applicable studies	
SWIFT ACTIVESCI LENER ECOTOX Project	Se	etac PFAS 🔍 🕒 🗅 🗠 📼 🌣	💄 hoff.c
Screen Reference			Add New Revi

5655175: The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish Wang, S., Zhuang, C., Du, J.; Environ Pollut; Pg201-209; 2017

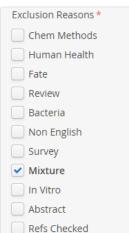
<u>Web Link</u>

Both carbon nanotubes (CNTs) and perfluorooctane sulfonate (PFOS) are used widely. There is considerable concern regarding their ecotoxicity. CNTs might interact with PFOS in water and result in different impacts compared with those after single exposures. To our knowledge, the developmental toxicity of PFOS in the presence of multi-walled carbon nanotubes (MWCNTs) in the early life stage of zebrafish (from 3 h post fertilization (hpf) to 96 hpf) was investigated for the first time in this study. The embryos and larvae were exposed to PFOS (0.2, 0.4, 0.8, and 1.6 mg/L), MWCNTs (50 mg/L), and a mixture of both. Compared with PFOS exposure, the adverse effects induced by PFOS on the hatching rate of zebrafish embryos and the heart rate and body length of zebrafish larvae were reduced in the presence of MWCNTs, and mortality and malformation were also alleviated. In addition, zebrafish larvae exposed to PFOS showed decreased activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as decreased levels of reactive oxygen species and malondialdehyde, in the presence of MWCNTs reduces the developmental toxicity of PFOS in the early life stage of zebrafish.

B.Howard 5.17.04

Currently Screening: Level 1 - Title & Abstract

A Web-Based Literature Identification Platform for the ECOTOXicology Knowledgebase, Powered by Deep Learning.

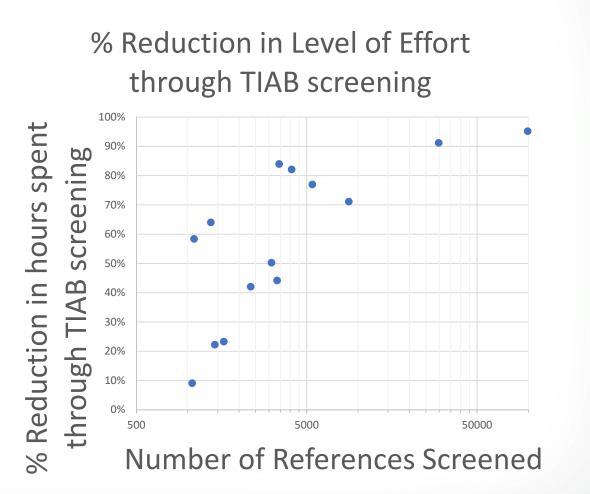

Include/Exclude Question

0.4%

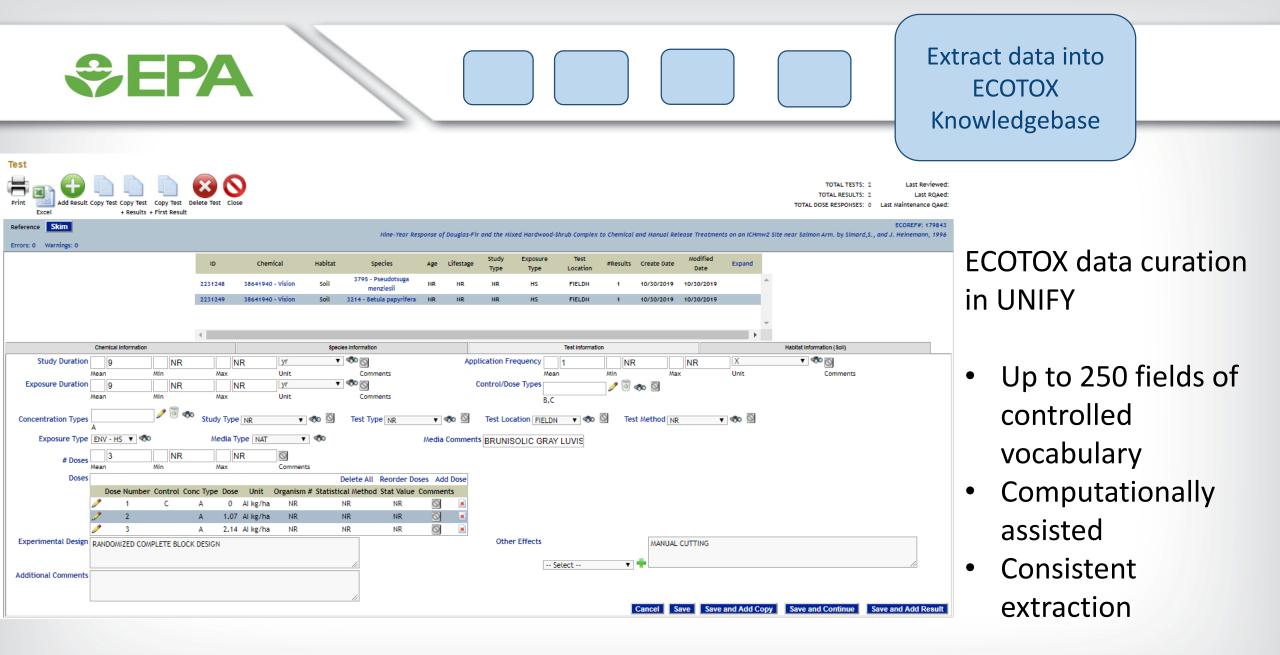
Include this reference?*

Yes, include the reference
No, exclude the reference

EcoTox


Ecotox Modifications to Swift-Active Screener

~ 100,000 abstracts from ECOTOX Knowledgebase archives were used to develop algorithms to prioritize TIABs most likely for inclusion for language learning models AND if excluded, predict exclusionary reasons status

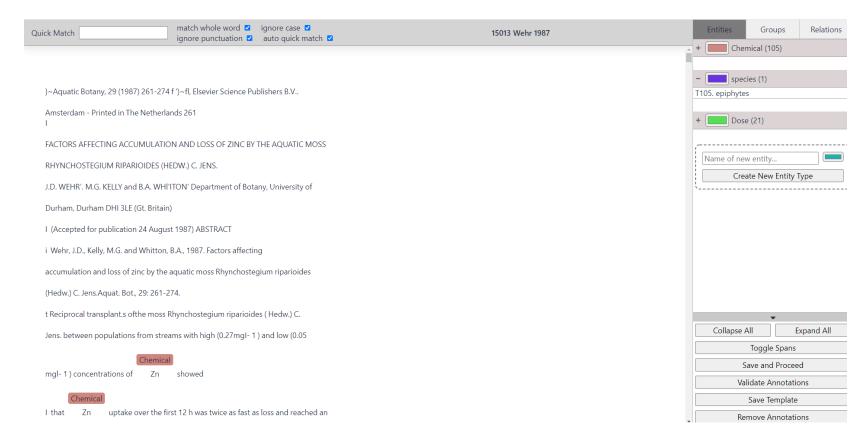


Measurable improvement in Efficiency using analytic tools

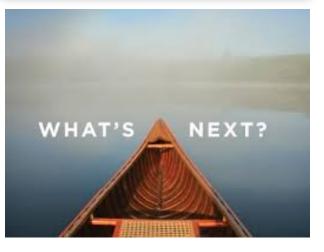
	# Refs		Baseline normalized hrs/5000 refs	% change
Baseline	5000	127	127	0%
	Actual # Refs	Actual # of hrs		
PFAS	3443	14	87	-84%
Gemfibrozil	1369	13	35	-64%
Methomyl	1630	32	41	-23%
Clofibrate	5386	32	137	-77%
Chlorates	2345	35	60	-42%
Wy14643	1089	12	28	-58%
Carbaryl	8830	65	224	-71%
Dicamba	3106	39	79	-50%
Dicloran	1061	25	27	-9%
Clothianidin	1444	29	37	-22%
Thiamethoxam	3350	48	85	-44%
Phthalic acid	4076	19	104	-82%
Asbestos	29768	66	756	-91%
Nitrates	98902	120	2512	-95%

Average of 58% reduction in hours spent through TIAB screening / 5000 references

\$EPA


Extract data into ECOTOX Knowledgebase

ON THE HORIZON


- Next priority is to develop automated/semi-automated capabilities for data extraction from identified .PDF documents
- Existing Controlled Vocabulary ready made for "Entity Definitions"

Automated/Semi-Automated Data Extraction

Developing Data Evaluation Tools

Collaboration with USEPA's Office of Water

A DV.											Co
Office of Water DEF Preview DER DER ID: 345 Last Modified: 10/19/2020	Return to Dashboard	Sharpe,R.L., J.P. Benskin, Sulfonate Toxicity, Isomer- (Oncorhynchus mykiss). En	Specific Accumulati	on, and	Mater	nal Ti	ansfer in Ze	brafish (Da	nio rerio) an		
Save Workflow St	tatus: QAing 🗸	Assigned To: Brian Kinziger	~								
Data Evaluation R	eport on the Effect	ts of Potassium perflue	prooctanesulf	fonat	e on	Fis	h Danio	rerio			
The DER template below he	is been populated with ECOT	OX data coded in UNIFY. Fill in any	supplemental infor	mation	to prep	oare	he DER for t	he Risk Ass	essor's evalua	ition.	
Part A: Overview											Colla
Storage Conditions: N Solubility in Water (uni General Notes: The concentration of I Ecotoxicological evalu	ts): approximately 500 mg				[26]. [2	26] Be	each SA, Nev	/sted JL, Co	ady K, Giesy	JP. 2006.	
Primary Reviewer:	Anne Pilli	Dat	e: 10/12/2020		EPA		Contractor	Sign Ele	ctronically		
		Dat	e:		EPA		Contractor	Sign Ele	ctronically		
QA Reviewer:					EPA		Contractor	Sign Ele	ctronically		
Secondary Reviewer:		Dat	e:		LIA						
Secondary Reviewer: (At least one reviewer Save Top of page Citation:	should be from EPA for sensit tudy title, journal, volume, a			eryllium		e to t	he common	guppy, J. W		ontr. Fed. 45(10): 2110-

Application pulls objective data extracted from existing records

۲

- UNIFY platform now has ability for curators to add subjective observations
- Allows multiple reviewers
 - Primary
 - QA
 - Secondary

Acknowledgements - Coauthors

U.S. EPA ORD, CCTE

Great Lakes Toxicology and Ecology Division

Colleen Elonen Jennifer Olker <u>General Dynamics Information</u> <u>Technology</u>

Arne Anderson

Anne Pilli

Christina Suomi

Katie Nehiba

Tyler Gephart

Thank you! hoff.dale@epa.gov

*Mention of software packages platforms is not an endorsement.