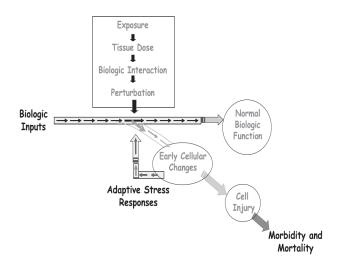


# Can We Identify Tipping Points between Adaptive and Adverse Perturbations from In Vitro Data?



Applying New Approach Methodologies to Risk Assessment: Consideration of Exposure and Compensatory Mechanisms

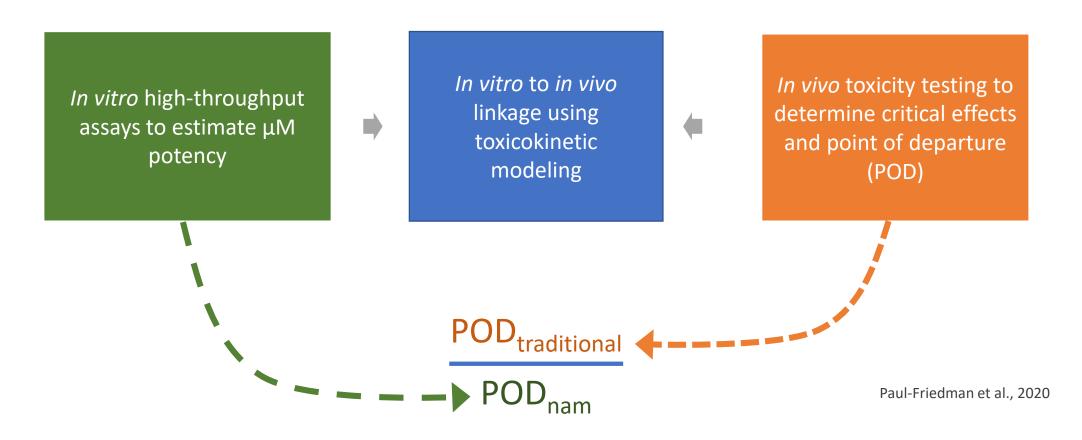
August 21, 2020


### Imran Shah

Center for Computational Toxicology & Exposure

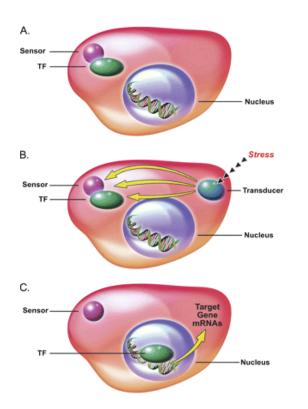
The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

### **EPA Context**


- Need new approach methodologies (NAMs) to evaluate thousands of untested chemicals effectively
- Chemicals cause toxicity via complex pathways that are poorly defined. Two main conceptual approaches to map adverse outcome pathways (AOPs):-
  - Specific receptor-mediated mechanisms (e.g. ER-mediated developmental or reproductive effects)
  - Non-specific adaptive stress response pathways (e.g. oxidative stress, unfolded protein response, etc.)
- We are interested in developing NAMs using in vitro and in silico models for systems-based analysis of toxicological pathways / AOPs
- Hypothesis: Increasing the level of chemical(s) beyond "tipping point" can overwhelm the adaptive stress responses and result in adverse outcomes
- Key questions:
  - 1. What *in vitro* approaches can serve as surrogates of tipping points?
  - 2. How do we estimate critical concentrations  $(c_{cr})$  at tipping points?
  - 3. How do  $c_{cr}$  compare with  $AC_{50}$  and with doses that produce toxicity?



Krewski et al., 2010

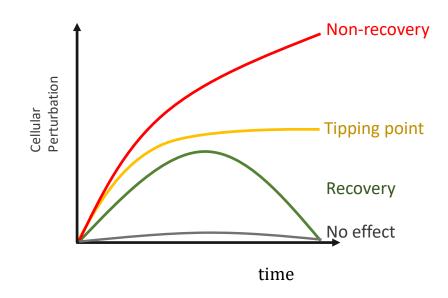

### NAMs for Risk-based Prioritization

NAMs: Any technology, methodology, approach, or combination of methods that can provide information about chemical hazard and risk assessment without using whole animals.



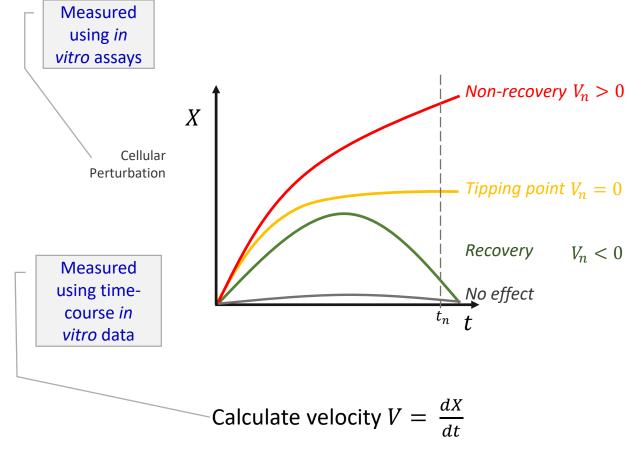
# Adaptive Stress Response Pathways

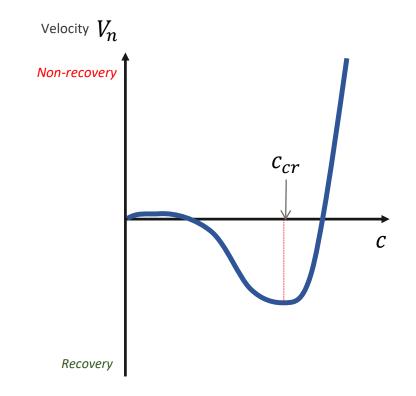
#### The Major Adaptive Stress response pathways




| Stress response pathway | Chemical inducers                                                                               | TF                      | Activated gene promoters            |
|-------------------------|-------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|
| Oxidative stress        | Quinones, hydroperoxides, heavy metals, trivalent arsenicals                                    | Nrf2                    | HMOX1, NQO1, GST2A                  |
| Heat shock response     | Heat, Heavy Metals                                                                              | HSF-1                   | HSPA6                               |
| DNA damage response     | Etoposide, Methyl Methanesulfonate,<br>N-Dimethylnitrosamine, Cyclophosphamide,<br>UV radiation | p53                     | CDKNIA, GADD45A, MDM2, BCL2, TP5313 |
| Hypoxia                 | Hypoxia, Cobalt, Desferriozamine,<br>Quercetin, Dimethyloxalylglycine                           | HIF-1                   | VEGF, TF, EPO                       |
| ER stress               | Tunicamycin, Thapsigargin, Caplain, Brefeldin A                                                 | XBP-1,<br>ATF6,<br>ATF4 | HSP90B1, HSPA5, DNAJB9              |
| Metal stress            | Heavy Metals                                                                                    | MTF-1                   | MT1E, MT2A                          |
| Inflammation            | Metal, PCBs, Exhaust Particles, Smoke<br>Particles                                              | NF-κB                   | IL1A, TNFA                          |
| Osmotic stress          | High salt, polyethylene glycol, mannitol                                                        | NFAT5                   | AKR1B1, SLC6A12, SLC5A3             |

Simmons et al., 2009


### Adaptive Stress Responses & Tipping Points

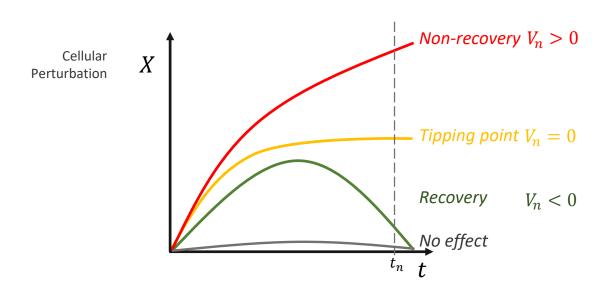

- Adaptive stress response pathways are invoked to maintain homeostasis
- Dysregulation of stress responses can cause toxicity or lead to disease
- For chemical-induced toxicity three potential outcomes of stress response activation:
  - No perturbation of cellular endpoints
  - Perturbation of cellular endpoints followed by recovery
  - Perturbation of cellular endpoints without recovery
- Claim: if the perturbation exceeds a critical level the "tipping point" – then recovery is not possible



(Shah et al. 2016)

### Identifying Tipping Points: from recovery to non-recovery






Tipping point concentration  $c_{cr}$  when  $dV_c = \frac{dV}{dc} = 0$ 

(Shah et al. 2016)

Shah et al. in prep

### Tipping points and region of adaptation



Calculate velocity 
$$V = \frac{dX}{dt}$$

Velocity  $V_n$ Non-recovery Region of **Adaptation**  $c_f$ Recovery

"Region of adaptation" defined by  $c_i < c_{cr} < c_f$ 

(Shah et al. 2016)

Shah et al. in prep

### Key Questions #1 & #2

### In vitro surrogates of tipping points Critical concentrations $(c_{cr})$ at tipping points

- Tipping points have been analyzed in three different in vitro models to demonstrate feasibility
- HepG2 cells using high-content imaging (HCI) to measure time-course cell phenotypic data (Shah et al. 2016)
- Developing rat neuronal networks and time-course microelectrode array data on electrophysiological activity (Franks et al. 2018)
- Induced pluripotent stem cells and time-course transcriptomic data during endodermal differentiation linked to ATRA signaling and toxicity (Saili et al. 2020)



A Section 508–conformant HTML version of this article is available at http://dx.doi.org/10.1289/ehp.1409029

#### Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure

Imran Shah, <sup>1</sup> R. Woodrow Setzer, <sup>1</sup> John Jack, <sup>2</sup> Keith A. Houck, <sup>1</sup> Richard S. Judson, <sup>1</sup> Thomas B. Knudsen, <sup>1</sup> Jie Liu, <sup>3</sup> Matthew T. Martin, <sup>1</sup> David M. Reif, <sup>4</sup> Ann M. Richard, <sup>1</sup> Russell S. Thomas, <sup>1</sup> Kevin M. Crofton, <sup>1</sup> David J. Dix, <sup>1</sup> and Robert J. Kavlock <sup>1</sup>

#### ARTICLE IN PRESS

Toxicology and Applied Pharmacology xxx (xxxx) xxx-xxx



Contents lists available at ScienceDirect

#### Toxicology and Applied Pharmacology

journal homepage: www.elsevier.com/locate/taap



Defining toxicological tipping points in neuronal network development<sup>★</sup>

Christopher L. Frank<sup>a,1</sup>, Jasmine P. Brown<sup>a,2</sup>, Kathleen Wallace<sup>a</sup>, John F. Wambaugh<sup>b</sup>, Imran Shah<sup>b</sup>, Timothy J. Shafer<sup>a,\*</sup>

Reproductive Toxicology 91 (2020) 1-13



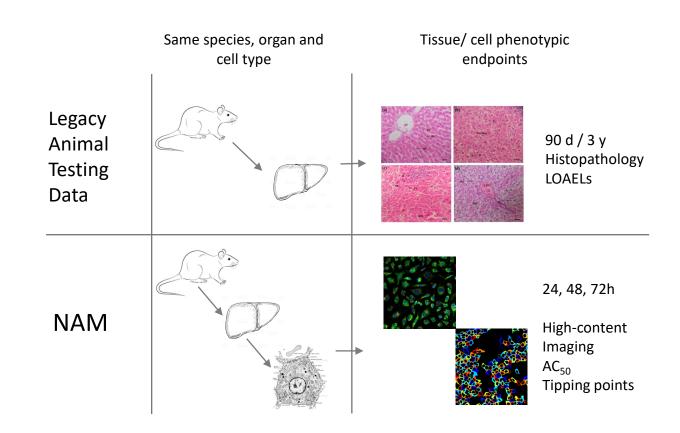
Contents lists available at ScienceDirect

#### Reproductive Toxicology

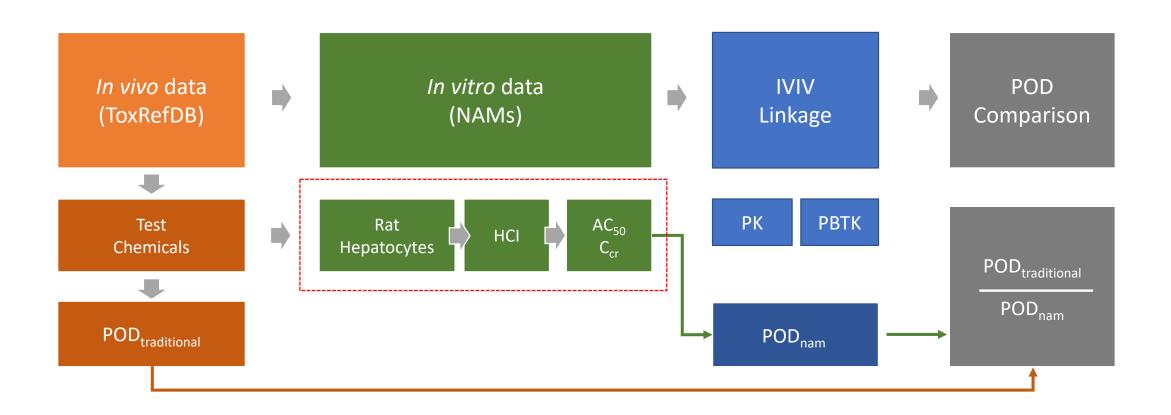
journal homepage: www.elsevier.com/locate/reprotox



Molecular characterization of a toxicological tipping point during human stem cell differentiation

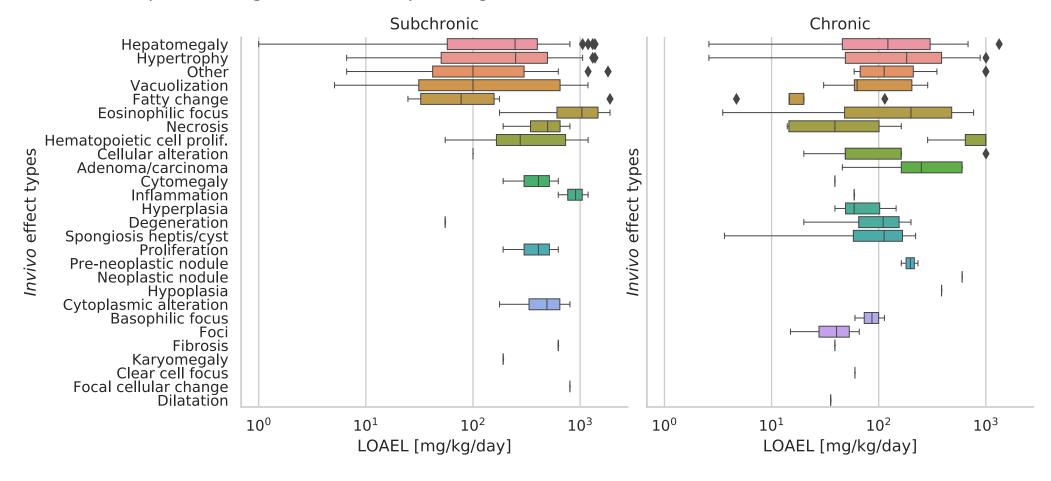



Katerine S. Saili<sup>a</sup>, Todor Antonijevic<sup>a,b,c</sup>, Todd J. Zurlinden<sup>a</sup>, Imran Shah<sup>a</sup>, Chad Deisenroth<sup>a</sup>, Thomas B. Knudsen<sup>a,\*</sup>


### Key Question #3

# Comparing critical concentrations with $AC_{50}$ and LOAELs

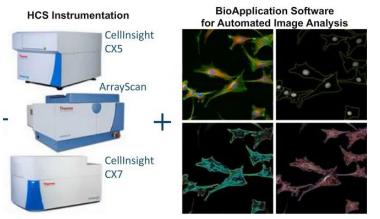
- Case-study with 51 rat hepatotoxicants
  - *In vivo r*epeat oral dose toxicity in rats:
    - 37 chemicals: Subchronic (90d)
    - 45 chemicals: Chronic (2 y)
    - Hepatic lowest observed adverse effect levels (LOAELs)
  - In vitro assay:
    - · Rat primary hepatocytes
    - 51 chemicals: 10 concentrations for 1, 2, 3 d
    - High-content Imaging (HCI) of cell phenotypes
    - ToxCast assay data (for comparison)
  - In silico:
    - Physiologically based toxicokinetic modeling (PBTK)
    - Estimate in vitro doses corresponding to POD values
- Compare POD<sub>traditional</sub> and POD<sub>nam</sub>
  - POD<sub>nam</sub> = AC<sub>50</sub> (using concentration-response analysis)
  - $POD_{nam} = \{c_{cr}, c_i, c_f\}$  (from tipping point analysis)



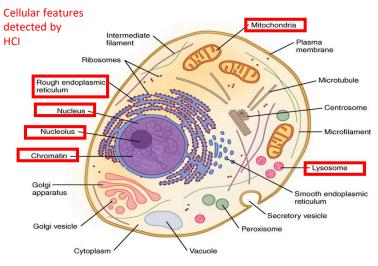

# Workflow



### Sub-chronic & Chronic Effects & LOAELs


Results from repeat-dose guideline toxicity testing studies

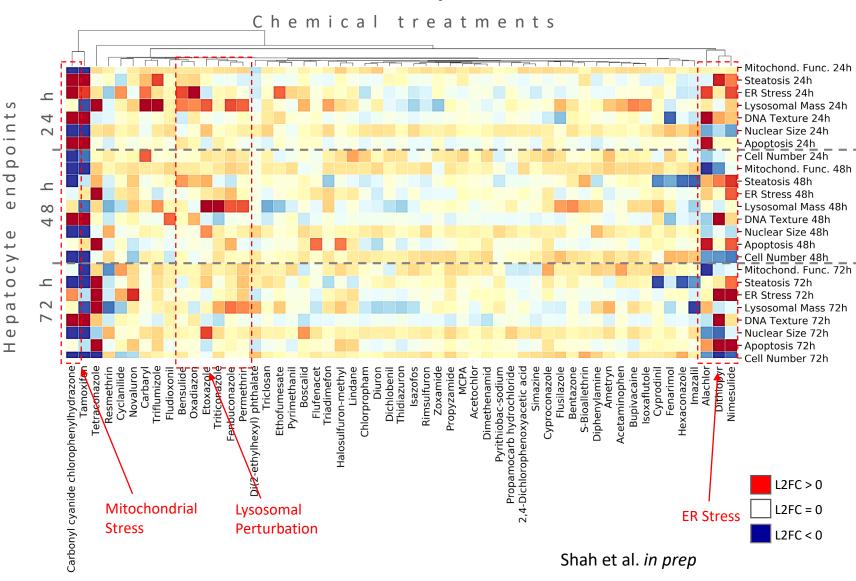


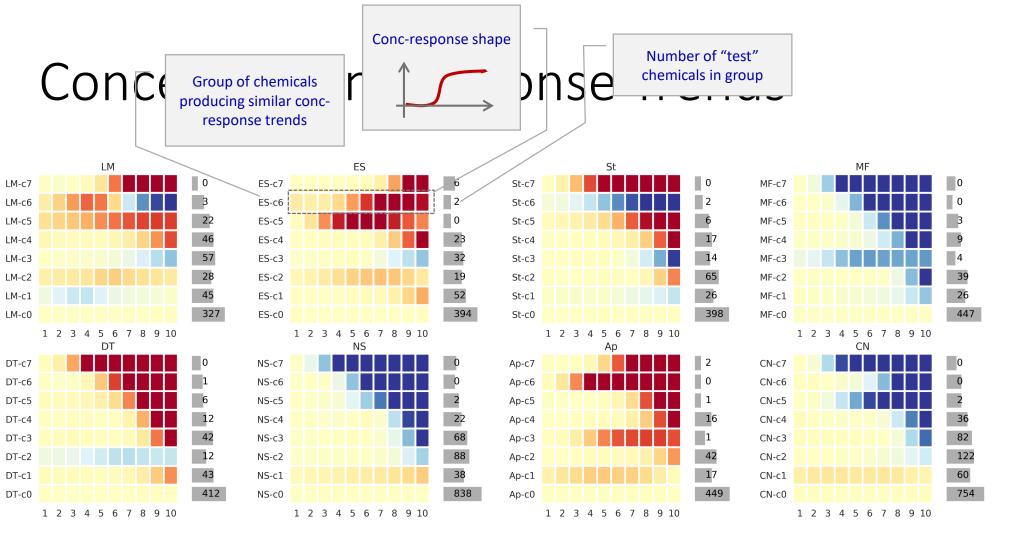

51 chemicals. ToxRefDB v2.0 production. LOAELs & effects filtered by oral admin. studies in rats only

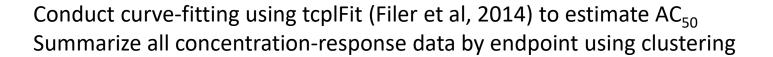
# Rat Primary Hepatocyte Assay

- Chemical treatments
  - Controls: (-) DMSO; (+) CCCP, Bupivacaine, Tamoxifen, Nimesulide
  - Conc: 0.2, 0.39, 0.78, 1.56, 3.12, 6.24, 12.5, 25, 50 and 100 μM
  - Duration: 24, 48 and 72 h.
- Assay: 384 Well High-content imaging (HCI) (conducted by Cyprotex)
  - St/Steatosis: LipidTox®
  - ES/ER Stress: GADD153 (CHOP)
  - MF/Mitochondrial function/mass: MitoTracker Red
  - LM/Lysosomal Mass: LysoTracker Red
  - Ap/Apoptosis: Cytochrome C
  - DT/DNA texture: Hoechst 33342
  - NS/Nuclear size: Hoechst 33342
  - CN/Cell number: Hoechst 33342



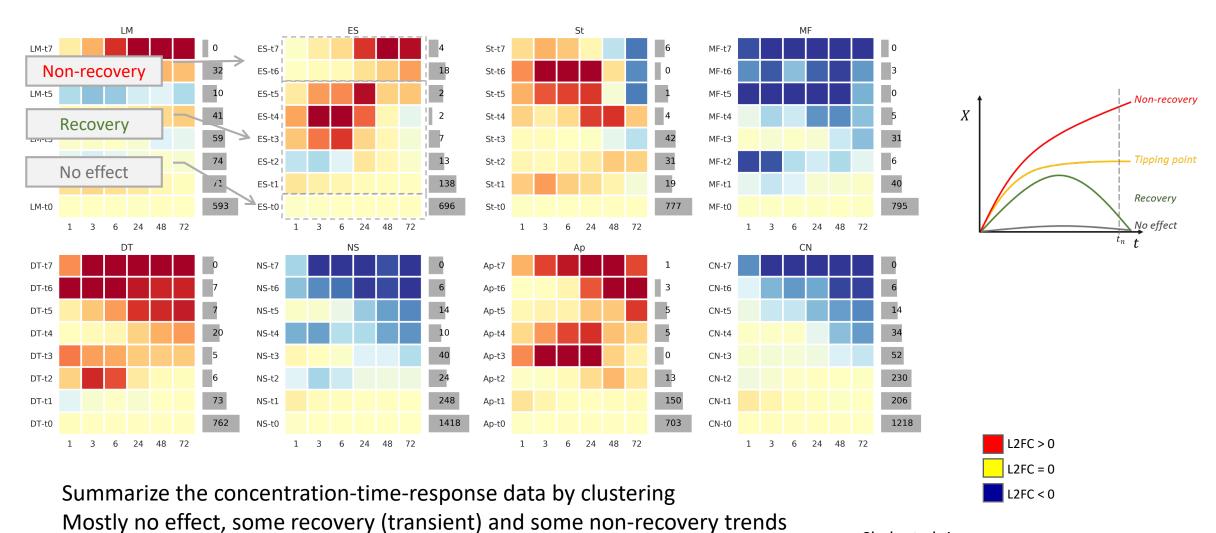

Thermofisher.com





Wikimedia.org

### Rat Hepatocyte HCI Effects – 50µM

- Log2 Fold Change (L2FC) by comparison with DMSO controls
- Summarize L2FC of all chemicals at 50µM
- Heatmap shows chemicals (columns) vs HCl features at 24, 48 and 72h and L2FC values (blue=decrease and red=increase)
- Phenotypic response categories
  - No significant effects
  - Mitochondrial stress ± cell death
  - Lysosomal mass ± cell death
  - ER Stress ± cell death

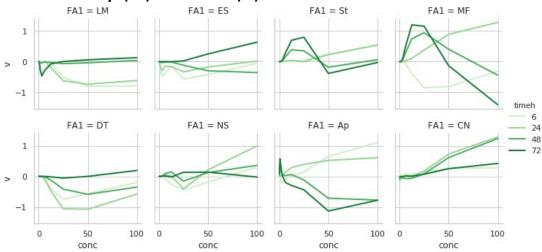




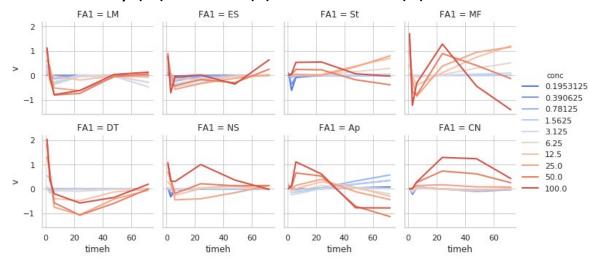




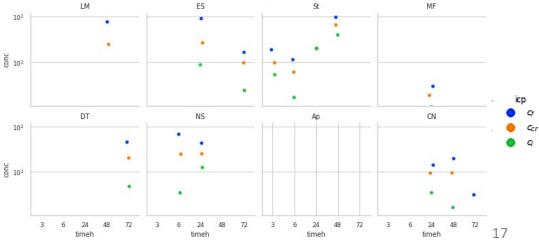

# Concentration-Time-Response Trends




# Calculating Tipping Points for each chemical


#### 1. Perturbation (X) vs time (t) for all concs (c)




#### 3. Velocity (V) vs conc (c)



#### 2. Velocity (V) vs time (t) for all concs (c)



### 4. Critical concentrations: $c_f$ , $c_{cr}$ , $c_i$



# Analyzed 51 Chemicals

In vitro high-throughput assays to estimate  $\mu M$  potency  $(POD_{nam})$ 



In vitro to in vivo
linkage using
toxicokinetic
modeling



In vivo toxicity testing to determine critical effects and point of departure (POD<sub>traditional</sub>)

Potency metrics:

Conc-response: AC<sub>50</sub>

Tipping points: c<sub>i</sub>, c<sub>cr</sub>, c<sub>f</sub>

Endpoints: 8

Exposure durations: 1, 2, 3 d

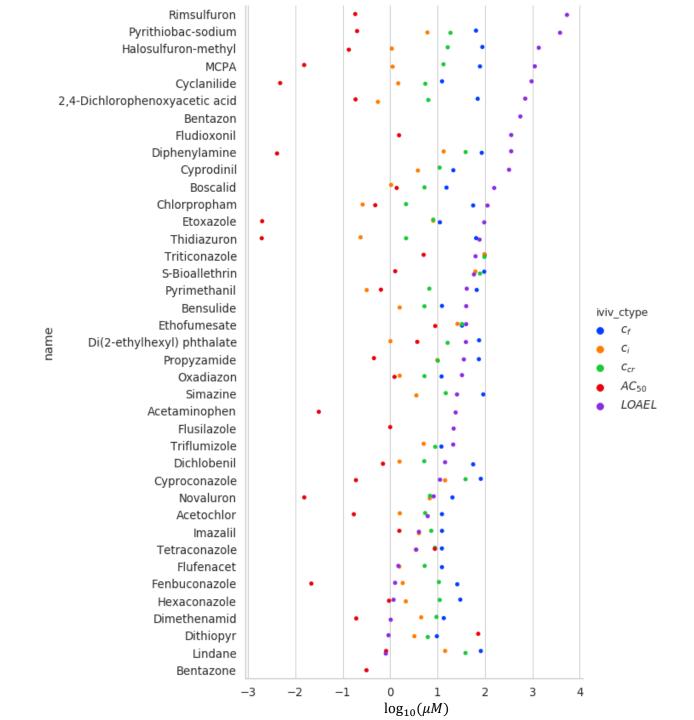
IVIV approaches:

Steady-state (SS)

PBTK: AUC, Cmax, Cave (90, 730d)

Study types: Subchronic and Chronic repeat-dose testing

PODs: LOAEL

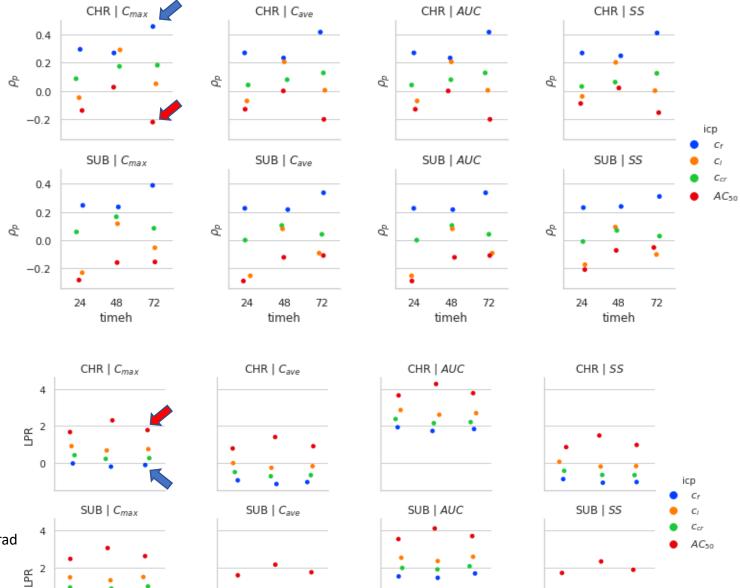

#### Comparing POD<sub>nam</sub> to POD<sub>trad</sub>

### *In vitro* (NAM)

- 24 h exposure
- $AC_{50}$  solution  $A_{50}$  across all endpoints

#### In vivo (Subchronic)

- 50<sup>th</sup> percentile of LOAEL values
- PBTK modeling to estimate venous C<sub>ave</sub>




### How close are POD<sub>nam</sub> to POD<sub>trad.</sub>?

- Use Pearson correlation  $(\rho_p)$
- $\rho_p: c_f > c_{cr} > c_i >> AC_{50}$
- $\rho_p$  best for 72 h *in vitro* exposure
- $C_{max}$  PBTK dose metric has maximum  $\rho_p$

### How health-protective are $POD_{nam}$ ?

- Use LPR = log10( POD<sub>traditional</sub>/POD<sub>nam</sub>)
- LPR $^2$ 2  $AC_{50}$  is the most conservative
- AUC is the most health-protective LPR>2
- Similar LPR for chronic and subchronic POD<sub>trad</sub>



72

timeh

24

timeh

72

72

timeh

Shah et al. in prep

72

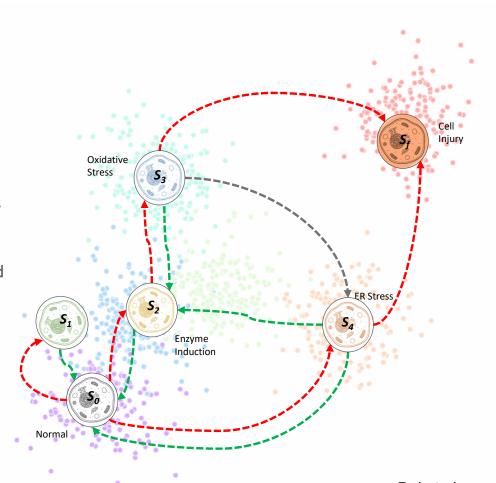
48

timeh

24

# Summary

#### 1. In vitro surrogates of tipping points


Using time-course *in vitro* data it may be feasible to identify a region of adaptation and critical points related to cellular non-recovery. This may not capture higher tissue-level adaptative responses but is a useful starting point for consider cellular resilience.

- 2. Estimating chemical critical concentrations at tipping points

  We hypothesize an adaptative region defined by  $c_i$ ,  $c_{cr}$ ,  $c_f$  that can be identified from time-course multi-parameter data. We estimate these critical concentrations using HCI.
- 3. Comparing tipping point concentrations with *in vitro*  $AC_{50}$  and LOAELS We estimated  $c_i, c_{cr}, c_f$  and  $AC_{50}$  for rat primary hepatocytes endpoints and compared them with rat subchronic and chronic hepatic LOAELs using PBTK. While  $AC_{50}$  are highly-health protective (20x lower than LOAELs) the  $c_f$  are highly correlated with LOAELS ( $\rho_p \sim 0.4$ ).

#### 4. Future directions

Analyzing the systems biology of adaptive stress response pathways in order to further investigate the molecular basis of cellular resilience and tipping points, to streamline the development of NAMs for evaluating untested chemicals based adaptive stress responses and overcome barriers to acceptance.



# Acknowledgements

US EPA UniLever, UK

Todor Antonijevic Alistair Middleton

**Bryant Chambers** 

Thomas Knudsen University of Cambridge, UK

Tim Shafer Andreas Bender

Brian Chorley Danilo Basili

Joshua Harrill

John Cowden