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A chemical category is a group of chemicals whose physicochemical and human
health and/or ecotoxicological properties and/or environmental fate properties are
likely to be similar or follow a regular pattern, usually as a result of structural
similarity. - OECD

Applications of chemical categorization include first tier assessment efforts and read across
from structurally similar analogs:

—Toxic Substances Control Act (TSCA) New Chemical Program Chemical Categories
(NCC; US EPA)

—ECOSAR (focus of presented work)
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US EPA ECOSAR chemical classifications

* Class-based SAR to predict aquatic toxicity

« Classification scheme identifies excess toxicity

 Estimates acute and chronic toxicity based on accumulated

data and past decisional precedents

Acute Effects:

Chronic Effects:

B s T Fish 96-hr LC;, Fish ChVv
N SRS —E oy Daphnid 48-hr EC;, Daphnid Chv
Algae 72/96-hr EC,, Algae ChV
« Profiler in OECD QSAR Toolbox
_ Office of Research and Development
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SEPA . L -
Vi Narcosis vs. specific-acting toxicity MOA

1
Less Toxic o | “Baseline” or “Narcosis” mechanism shown by all
organic toxicants lacking a more specific mechanism
-1
Regulators (ECCC) > 2 |
consider MOA f::: 3
information to e 4
[ J
determine the size % 5| . :
of assessment = 6 : . i .
o) i
factors S 7 Points falling below the “Baseline Toxicity” . N .
-8 | presumed to have more specific mechanism o
More Toxic 2 |
-2 -1 0 1 2 3 4 5 6

LogP
¢ Narcosis * AChE Inhibitors ¢ Reactive « Unknown * Uncouplers = Neurotoxicants
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"’EA Potential approach for updating chemical categories

- Almost half of all New Chemical
inventories across regulatory jurisdictions

Not catenorized cannot be categorized using NCC or
459 ECOSAR

- Some fall into multiple categories

How do we update?

* Incorporate New Approach Methodologies (NAMs) —
i.e., ToxCast and Tox21 biological activity information

« Apply cheminformatic approaches
gg':(t::roffo?%?nig:t::ignl)aﬁ\fl'eolsiz?lggl and Exposure
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ToxPrint (TxP) model development
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SEPA EnviroTox training set chemicals
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NAM data
1904

Consensus

MOA: N

(880) or S
(350)

Traini t chemical
m Office of Research and Development
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1. Chemicals with in vivo eco-data — from the
EnviroTox! database — 4016

2. Sub-selection for chemicals with NAM data
(ToxCast and Tox21) - 1904

3. MOA predictions based on 4 publicly-available
classification models
= VERHAAR, ASTER, OASIS, TEST

= Each predicts Narcotic, Specific-Acting or
Unclassified

Consensus MOA (cMOA) with confidence scores?

Examples: Results:
SN = Y, SEolts =e 880 Narcotic

NNSN = N, score= 2 L _
SUSS = S, score= 2 350 Specific-acting

NUNS = U, score =0 674 Unclassified

IHealth and Environmental Sciences Institute (HESI). 2019. EnviroTox Database & Tools. Version 1.1.0
Available: http://www.envirotoxdatabase.org/
2 Kienzler et al.. Environ Toxicol and Chem. 2019, 38(10) 2294-2304



wEPA Characterize EnviroTox training set chemicals: ECOSAR classes
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Not classified:
“enriched” in unclassified cMOA

Consensus MOA

Narcotic

Not classified

Specific-acting
. Unclassified

EcoSAR
Classification

Neutral Organics non-Neutral Organics

Neutral Organics:
“enriched” in narcotics
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Non-Neutral Organics:
includes narcotics (e.g., esters)
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Vit ... EXpanding the Envirotox chemical space
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 Additional 6215 chemicals with NAM data (invitrodb v3.2)
« Applied the same consensus MOA methodology

4000 .
] Invitrodb v3.2
200 B EnviroTox w/ NAM
3000
TV; 2500
O * Increased chemical coverage across
2000 s q
QE, all classes, specifically in the
S 1500 unclassified cMOAs relative to N/S
=
1000 classes
500

N S U

Consensus MOA
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* Pull in chemotype information for our

chemicals via ToxPrints (TxPs)
* Publicly available tool
* EPA Comptox Chemicals Dashboard

ToxPrints:

v 729 chemical features

v’ Chemically interpretable

v Coverage of diverse chemistry

v’ Hierarchical: Includes scaffolds,
functional groups, chains, rings,
bonding patterns, atom-types

Office of Research and Development
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Characterize training set chemicals: ToxPrints
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Yang et al. J. Chem. Inf. Model. 2015. Richard et al., Chem. Res. Toxicol. 2016, 29(8) 1225 —
1251, Strickland et al., Arch Toxicol. 2018 92(1) 487 — 500; Wang et al., Environment
International 2019, 126 377 — 386




SEL... TxP model details
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®* Random Forest (Boosted Gradient Method) provided the best model results:
* Split data into 80% training and 20% hold out (test) sets

* Hyperparameter tuning with 5-fold cross validation, square-root sampling, etc.

* Training set: “balanced” down-sampled subset (2104 chemicals w/ a cMOA = N or S)
* High accuracy in both training and test sets (training = 99.7%; test = 95.8%) Random Forest Simplified

Total Accuracy on all N + S data set =97.6% (4356 cMOA =N or S) el

Random Forest — _—

* Across all N + S chemicals -> 105 chemicals misclassified: F ;N e
. CR AR O R
® 24 F {predlcted S} dbdbdbdd dbdd cﬁq;’dpb cﬁj’;b é0'éd
pos Tree-1 Tree-2 Tree-n
i 81 Fneg{pFEdlCtEd N} Claiss-A C‘Ea|ss-B Class-B

l Majority-Voting ;

Final-Class

Office of Research and Development https://medium.com/@williamkoehrsen/random-
Center for Computational Toxicology and Exposure forest-simple-explanation-377895a60d2d



SEM\ . Distribution of prediction confidence [0,1] by (N,S) class
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Training set Test set cMOA = U set
S g N S N S
§. .

06

Prediction (Consensus _MOA) Prediction (Consensus _MOA) Prediction (Consensus . MOA)

Unclassified Set

Test Set

Training Set

Median:
Mean:

Median:
Mean:

Median:
Mean:
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“EPA  Prediction confidence across the cMOA =N or S

Distribution of Prediction Confidence

4065 Chemicals
> 0.9 PC

* Distribution of prediction confidence (PC) tends to (93.3% of data)
be > 0.8 for the classified data (cMOA =N or S) 21995 Chemicals
- Model has fewer # misclassifications in S > 0.8 PC

(97.0% of data)
—Mlisclassifications for 93 cMOA confidence = 2,

and 12 with 1,3 scores (recall 3>2>1 for
confidence)

—~46% of the misclassifications can be attributed ' ' —
to the chemicals with PC< 0.8 131 Chemicals
<0.8 PC
—~67% of the misclassification can be attributed (3.0% of data)

to chemicals with PC < 0.88
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ToxPrint (TxP) domains
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g Characterization of TxP coverage per consensus MOA class
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(U: 540 TxPs) Heatmap representation of ToxPrints

\ e s Mlissing structural
I S——— full dataset:

93 2
* = ] ) Metal &

328 > metalloid bonds
o
|_

— Propyleneoxide

= ChainS
. (S: 435 TxPs) v =———%: Bicyclo ring
(N: 388 TxPs) Dataset | | Unclassified | | Specific W structures

# ToxPrints: Dataset > Unclassified > Specific-acting > "'arcotic
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e UNIQUE TXPS iN the unclassified set
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« ~¥7x more unique features in U (than in
N or S)

« Could explain the lower prediction
confidence in N/S classification of the
U set

« Potential for additional categories
based on structure:

— 2 atom TxPs (metal group lll)

2000

=]

b -1_1
' Il

A

Frequency of TxPs per consensus MOA class

Narcotic & Specific-acting

Mwﬁ%«

’, W\ e g4

g /.0

— 38 bond TxPs (metalloid: silane and =
siloxanes...)

— 8 chain TxPs (ethyleneoxide alkanes
C10-C20)

— 19 group TxPs (amino acids, A

polydentate ligands)
—8 ring TxPs
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ToxPrint (TxP) model application to Envirotox dataset
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memnaeasen | XP Model predicted MOAs of the EnviroTox unclassified set

* 674 chemicals in the EnviroTox dataset that had low confidence or ambiguous
consensus

« Applied TxP model to the unclassified set and compared predictions to ECOSAR
classification

 Currently extending this analysis to the additional 3089 unclassified chemicals
361 predicted as Narcotic 313 predicted as Specific-acting

ECOSAR Classified

ECOSAR Not Classified

Cen
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Less Toxic

Log molar toxicity, (LC50, 96h, FISH):
TxP model predicted MOA (N,S) for cMOA (N,S,U) data

cMOA classified data (N,S)

cMOA unclassified data (U)

Log Molar Toxicity

# <LC50>: 795

Log Molar Toxicity

# <LC50>: 383

More Toxic

Office of Research and Development
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I
o

B TxP model predicted specific

Log P

-acting

] TxP model predicted narcotic

Log P

Size proportional to cMOA confidence score =[0,1,2,3]




wEPA Cumulative distribution function:

United States

wa™T L og molar toxicity, (LC50, 96h, FISH) for cMOA classes (N,S,U)

1.0 1

0.9

0.8

0.7 1

0.6

0.5

0.4 1

fraction chemicals/class

0.0-

« cMOA classification is sufficient
to discriminate N,S

« U presents some challenges

Narcotic
Specific-acting
Unclassified

65 6.0 55 5.0 45 40 -35 -3.0 -25 -20 -1.5 -1.0 05 0.0 05 1.0 15 2.0 25 3.0

Log Molar Toxicity

More Toxic
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wEPA Cumulative Distribution Function:
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Log molar toxicity, (LC50, 96h, FISH) for TxP model predicted classes (N,S)

cMOA classified data (N,S) cMOA unclassified data (U)

1.0 4 1.0 e
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Log Molar Toxicity

] TxP model predicted specific-acting ] TxP model predicted narcotic
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|dentifying relevant NAM data
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EPA Enriched TxPs: Unclassified chemicals, TxP model predicted specific-acting
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Criteria: Results:
* 23 chemicals per * Ketones
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classes

« Use chemotype enrichments to
inform potential NAM data streams

« Example: sulfonyl TxP enrichments
across NovaScreen (NVS) assay
platform

* [dentified 47 assays due to sulfonyl
TxP enrichment

Assay platform identification:

ATG BSK CLD NVS

27 Office of Research and Development
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Exploring assay platforms across TxP model predicted

“"EPA Example: Differences in model prediction vs. cMOA:
Triasulfuron
* N-sulfonylurea herbicide r«\ ., %
* Model prediction: Specific-acting “f”‘*i ey -
* EnviroTox consensus MOA: Narcotic

: sificatign: Sulfonvl Urea ~
» 5(=0)_sulfonyl ToxPrint is enriched in the specific-acting MOA CASRN 82097-50-5
space and 47 assays DTXSID0024345

Triasulfuron I I I
. Active

558859898 26, Edg %z, . PEEEY I
] T LR IS
O ot estes MO P PEE T PRI S MET
S E R TR T EE s L EE F R L
B Y3 ¢ B i
Crfface of Ressarchand Development gl E H: EI g EI EI

ot [ Tox21



SEPA -
Ve . NVS Platform: TxP model class predictions

Agency
cMOA classified data (N,S)

1.1 A
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TxP model class prediction
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* Increased the available chemical space of EnviroTox w/ cMOA classifications
« Developed a robust structural TxP model

—Robust N/S classification

—Challenges in unclassified chemistries

* Investigated model predictions to inform ECOSAR preliminary set of unclassified
chemicals

—Majority of unclassified chemicals predicted to have a specific acting MOA
—|dentified primary chemotypes for specific-acting MOAs
« Exploring methods to fold in NAM data streams

—Using chemotype enrichments to identify potential bioassays with bioactivity to
provide support of NAM data in category development

Office of Research and Development
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Thank you!
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