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Outline

• Overview of the Generalised Read-Across (GenRA) Approach 

• Using GenRA standalone for prediction of toxicity with chemical 
structure and transcriptomic descriptors

• Evaluation of predictions 

• Future work & conclusions 



Background & Definitions

• Read-across is a data gap filling technique utilized to predict the toxicity of a 
target chemical using toxicity data from source analogues that have similar 
properties. 

• A target chemical is a chemical which has a data gap that needs to be filled i.e. the subject of 
the read-across. 

• A source analogue is a chemical that has been identified as an appropriate chemical for use 
in a read-across based on similarity to the target chemical and existence of relevant data.

Liver 
Toxicity??



Read-Across Tools 

(Patlewicz et al., 2017)



Generalised Read-Across (GenRA)

• The Generalised Read-Across (GenRA) 
approach facilitates automated read-
across predictions for untested 
chemicals. 

• Aims to make binary and quantitative 
predictions of toxicity outcomes based 
on neighboring chemicals 
characterized by chemical and/or 
bioactivity descriptors (Shah et al, 
2016). 

• Current version available on the EPA 
CompTox Chemicals Dashboard. 



General Approach

I. Data
• Chemical Data (chm)

• Structural 
Descriptors (i.e. 
Morgan 
fingerprints)

• Bioactivity Data (bio)
(i.e. bioactivity 
assays)

• Toxicity Outcomes 
(tox)             
(ToxRefDB)

II. Generate Local 
Neighborhoods
• Group chemicals 

using a similarity-
weighted activity 
score of nearest 
neighbors.
• Similarity calculated 

using Jaccard 
distance. 
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∑𝒋𝒋
𝒌𝒌 𝒔𝒔𝒊𝒊𝒋𝒋

III. GenRA
• Evaluation of the 

performance of chm, 
bio, and hybrid 
descriptors for the 
prediction of toxicity 
outcomes in local 
neighborhoods . 



Current Application 

• Previously, high throughput screening bioactivity data were collected from 
ToxCast.

• This study investigates the impact of biological similarities (as 
characterized by transcriptomic data) on local neighborhood formation and 
overall read-across performance in qualitatively predicting hazard based 
on toxicological study data summarized in US EPA ToxRefDB v2.0.

• We expanded on the previous approach with an updated data set 
composed of high throughput transcriptomics biological data 
from HepaRG™ cells treated with 8 concentrations across 1060 ToxCast 
chemicals for 93 transcripts.



Current Application 

I. Data
• Chemical Data (chm)

• Structural 
Descriptors (i.e. 
Morgan fingerprints)

• Bioactivity Data (bio)
• (i.e. bioactivity 

assays)

• Toxicity Outcomes 
(tox) (ToxRefDBv2)

• Chemical Clusters
• Shah el al (2016)

II. Evaluation of 
Optimal Number of 
Nearest Neighbors 
and Similarity 
Metric
• scikit-learn grid search 

5-fold cross validation

III. Generate Local 
Neighborhoods
• Group chemicals using 

a similarity-weighted 
activity score of 
nearest neighbors.
• Similarity calculated 

by:
• Jaccard
• Manhattan
• Euclidean

IV. GenRA
• Global performance 

evaluation of chm, bio 
and hybrid descriptors 
in the prediction 
toxicity endpoints using 
area under the ROC 
curve (AUC).

• Local performance 
evaluation of chm, bio, 
and hybrid descriptors 
in the prediction of 
toxicity endpoint using 
predefined chemical 
cluster using area 
under the ROC curve 
(AUC).

GenRA-py



Data
• Chemical Data (C)

• Morgan Chemical Fingerprints (mrgn)
• Torsion Topological Fingerprints (tptr)
• ToxPrints (toxp)

• Chemical Clusters
• Identified in Shah et al, 2016

• Biological Data (B)
• HepaRG™ LTEA (Life Technologies/Expression Analysis) Assay 

Wambaugh et al, 2020
• LTEA assay results analyzed with the ToxCast pipeline package in R 

(tcpl) for curve fitting
• Assay level hit call data 
• Gene level hit call data

• Toxicity Data
• ToxRefDBv2.0 negative (0) and positive(1) toxicity endpoints for several study 

types:
• Developmental (dev)
• Multigeneration reproductive (mgr)
• Reproductive (rep)
• Developmental neurotoxicity (dnt)

• Chronic (chr)
• Subchronic (sub)
• Acute (acu)
• Subacute (sac)

• Neurological (neu)
• Other (oth)



HepaRGTM Data

Transcriptomic Concentration 
Response data

TCPL Curve Fitting
(Assay Level)

Transcriptomic Hit/Activity 
Call Data
1= Active

0 = Inactive

1060 ToxCast 
Chemical + 
Chemical 
References

93 Transcripts

• Treated with 8 concentrations of 1,060 chemicals for 24 hours 
and the expression of 93 transcripts was measured using 
quantitative reverse transcription polymerase chain reaction 
(qRT-PCR).

• Transcripts measure the expression of genes involved in nuclear 
receptor activation, xenobiotic metabolism, cellular stress, cell cycle 
progression, and apoptosis.

• Concentration-response data for the 93 transcripts were 
analyzed with the ToxCast analysis pipeline package in R (tcpl) 
for curve fitting.

• The hit-call for each chemical and transcript was assigned a 
binary active (1) or inactive (0) value based on tcpl level 5 data.

• The transcriptomic data for each chemical was represented 
using the hit calls in two ways.

• Vector of binary hit-calls for the 95 genes (termed gene)
• Vector of binary hit- calls with 190 directional activities of 95 genes 

(termed assay).



HepaRG LTEA Exploratory Data Analysis 

Level 5 Hit Call Data

#Chems per Assay 1084 chems and controls

#Assays/Genes 189/95

Mean 25.68

SD 29.18

Median 13.00

Min 1.0

Max 242.0

Level 5 Hits Per Chemical



Descriptor Descriptions
Descriptor Type Descriptor name # of Chemicals # of Descriptors

Chemical(C) morgan(mrgn) 1017 2048
torsion (tptr) 1017 2048

toxprints (toxp) 1017 729
CA 

(all chemical, mrgn, 
tptr, toxp)

1017 4825

Biological (B) gene 1065 95
assay 1065 189

Hybrid (CB) Morgan/gene (mg) 1017 2143
Morgan/assay (ma) 1017 2237
Torsion/gene (ttg) 1017 2143
Torsion/assay (tta) 1017 2237

ToxPrints/gene (txg) 1017 824

ToxPrints/assay (txa) 1017 918
CB 

(all chemical and 
Biological, mrgn, tptr, 

toxp, gene, assay)

1017 5109

Toxicity 
Data: # of Chem # of 

Study/effects
Study types 
/Endpoints

ALL 935 922
neu, sub, rep, 

chr, dnt, sac, mgr, 
dev, acu, oth

Liver 935 9

chr_liver, 
dev_liver, 
dnt_liver, 
mgr_liver, 
neu_liver, 
oth_liver, 
rep_liver, 
sac_liver, 
sub_liver



Performance Tuning 

Liver Effect
Descriptor 

Type

Descriptor 

Name
AUC Metric

Number of 

Neighbors

Chr_liver

Chm tptr 0.6303 euclidean 9

Chm mrgn 0.64549 jaccard 8

Chm toxp 0.61379 jaccard 7

Bio gene 0.648847 euclidean 14

Bio assay 0.6632 euclidean 11

CB mrgn/assay 0.6883 jaccard 13

CB toxp/gene 0.7044 jaccard 10

CB tptr/gene 0.6818 euclidean 6

CB (CB) all 0.6999 jaccard 14

Chm (CA) all 0.6702 jaccard 10

CB mrgn/gene 0.7049 jaccard 10

CB toxp/assay 0.6992 jaccard 14

CB tptr/assay 0.6721 manhattan 5

• Conducted 5-fold grid search cross validation with ROC AUC 
scoring to determine optimal number of neighbors (range 1-
15) and distance/similarity metric (Euclidean, Jaccard, 
Manhattan)  for all descriptor types. 
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Evaluating Overall Global Performance for 
Prediction of Liver Toxicity Endpoints

• Biological descriptors outperformed the singular 
chemical descriptors.
• 10% increase in predictive performance.

• Hybrid descriptors generated an overall 16% 
increase in predictive performance in comparison 
to singular chemical descriptors and a 6% 
increase in comparison to biological.

• The all chemical descriptor combination 
outperformed all other descriptors and 
combinations for predicting liver toxicity 
• 9% increase over the hybrid descriptors.
• 15% increase over the biological descriptors.
• 27% increase over the individual chemical 

descriptors. 
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Evaluating Overall 
Global Performance 
for Prediction of All 
Toxicity Endpoints

• Toxicity endpoints were aggregated by 
study type.

• Overall performance score for each 
study type was calculated.

• Hybrid descriptors consistently 
outperformed the individual 
descriptors for the prediction of all 
toxicity endpoints. 

• Chemical hybrid descriptors consisting 
of all chemical structure fingerprints 
had the best predictive performance 
overall. 

Study Gene(B) Mrgn(C) MG(CB) B >= 70 C >=70 CB >=70 B > CB | C C> B |CB CB > B |C

Chr (364) 0.51 | 0.07 0.50 | 0.07 0.54 | 0.09 2 | 1.2% 2 | 1.2% 7 | 4.2% 41 | 25% 40 | 24% 86 | 51%

Dev (43) 0.49 | 0.07 0.49 | 0.08 0.50 | 0.09 2 | 1.7% 4 | 3.4% 3 | 2.6% 29 | 25 % 45 | 38% 43 | 37%

Dnt (61) 0.44 | 0.12 0.42 | 0.11 0.48 | 0.13 1 | 1.5 % 2 | 3.0 4 | 6.1% 12 | 18% 20 | 30% 34 | 52%

Mgr (201) 0.48 | 0.09 0.48 | 0.09 0.50 | 0.11 3 | 2.2% 3 | 2.2% 8 | 6.0% 39 | 29% 40 | 30% 55 | 41%

Rep (51) 0.45 | 0.12 0.45 | 0.15 0.45 | 0.14 1 | 1.5% 6 | 9.0% 4 | 6.0% 23 | 34% 20 | 30% 24 | 36%

Sac (99) 0.49 | 0.11 0.46 | 0.12 0.50 | 0.12 6 | 4.7% 5 | 3.9% 8 | 6.3% 41 | 32% 45 | 35% 41 | 32%

Sub (315) 0.50 | 0.07 0.49 | 0.08 0.54 | 0.10 3 | 1.8% 5 | 3.0% 12 | 7.1% 36 | 21% 40 | 24% 93 | 55%

ALL 0.49 | 0.09 0.48 | 0.10 0.51 | 0.11 18 | 2.26% 27 | 3.39% 46 | 5.9% 221 | 26% 250 | 30% 376 | 44%
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Evaluating Local Performance
• Explored performance of the basis of 

individual clusters 

• Filtered clusters consisting of 2 or more 
positive and negative endpoints

• Identified clusters where each individual 
descriptors outperformed the others Custer Study Gene(B) Mrgn(C) MG(CB) B>=70 C>=70 CB>=70 B > CB | C C> B |CB CB > B |C

67

Chr(3)
0.61 | 

0.19

0.44 | 

0.13

0.57 | 

0.22

1 | 

33.33%
0 | 0

1 | 

33.33%

1 | 

33.33%
0 | 0

2 | 

66.67%

Dev(3) 0.6 | 0.3
0.62 |l 

0.38

0.36 | 

0.23

2 | 

66.67%

1 | 

33.33%
0 | 0 3 | 100% 0 | 0 0 | 0

Mgr(2)
0.75 | 

0.35

0.48 | 

0.26

0.24 | 

0.22
1 | 50% 0 | 0 0 | 0 1 | 50% 1 | 50% 0 | 0

Sac(2) 1 | 0 1 | 0 0.5 | 0 2 | 100% 2 | 100% 0 | 0 1 | 50% 1 | 50% 0 | 0

Sub(3)
0.44 | 

0.19

0.29 | 

0.16

0.24 | 

0.13
0 | 0 0 | 0 0 | 0

1 | 

33.33%

2 | 

66.67%
0 | 0

All(13)
0.65 | 

0.27

0.54 | 

0.30

0.38 | 

0.21

6 | 
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3 | 23. 
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7 | 

53.84%

4 | 

30.77%

2 | 

15.38%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

gene

mg

mrgn

0

5

10

15

20

25

30

gene mg mrgn

Frequency of Best Descriptor Performer 
Overall



Example Nearest 
Neighborhood 
Prediction for Target 
Chemical in Cluster-80

• Target Chemical: PD-0333941
• Calculation of similarity between target chemical and 

other chemicals in a predefined chemical cluster based 
on Jaccard similarity of gene descriptors and Morgan 
chemical structure descriptors. 

Calculated with Gene Descriptors Calculated with Morgan Chemical Descriptors 



Example Nearest 
Neighborhood 
Prediction for Target 
Chemical in Cluster-80

• Target Chemical: Diethyl phthalate
• Calculation of similarity between target chemical and 

other chemicals in a predefined chemical cluster based 
on Jaccard similarity of gene descriptors and Morgan 
chemical structure descriptors. 

Calculated with Gene Descriptors Calculated with Morgan Chemical Descriptors 



Summary
• Chemical structure combination (composed of mrgn, tptr, and toxp) 

resulted in the best global performance on average for all toxicity 
endpoints.

• However, an overall increase in read-across performance was noted for 
various toxicity endpoints when using either transcriptomic and hybrid 
fingerprints over baseline (mrgn chemical fingerprints).

• For liver endpoints:
• Transcriptomic fingerprints resulted in a 10% improvement in performance.
• Hybrid resulted in a 16% improvement in performance.

• Local predictive performance of various toxicity endpoints across the 
diverse chemical clusters varied between the diverse set of descriptors.

• In general, biological descriptors more frequently performed the best across various 
chemical clusters.



Future Work and Conclusions

• GenRA was previously shown to predict toxicity using previous HTS of Toxcast
compounds but now shown to be applicable on HTTr datasets.

• Here we were able to show that biological descriptors alone or combined with 
chemical information offer significant benefit in predicting in vivo toxicity 
outcomes on both a ‘global’ and ‘local’ level.

• Future efforts will focus on expanding to diverse/larger transcriptomic data both 
binary and quantitative.
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