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e Overview of the Generalised Read-Across (GenRA) Approach

* Using GenRA standalone for prediction of toxicity with chemical
structure and transcriptomic descriptors

 Evaluation of predictions

e Future work & conclusions
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=7 Background & Definitions

* Read-across is a data gap filling technique utilized to predict the toxicity of a
target chemical using toxicity data from source analogues that have similar
properties.

e Atarget chemical is a chemical which has a data gap that needs to be filled i.e. the subject of
the read-across.

* A source analogue is a chemical that has been identified as an appropriate chemical for use
in a read-across based on similarity to the target chemical and existence of relevant data.
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Computational Toxicology

* The Generalised Read-Across (GenRA
approach facilitates automated read-
across predictions for untested
chemicals.

Computational Toxicology

ELSEVIER journal homepage: www.elsevier.com/locate/comtox

Extending the Generalised Read-Across approach (GenRA): A systematic my
analysis of the impact of physicochemical property information on read- e

Transitioning the generalised read-across approach (GenRA) to quantitative )
across performance =

predictions: A case study using acute oral toxicity data
George Helman™”, Imran Shah”, Grace Patlewicz""
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" Wl Costr fur Compuutunal Tosicobogy (NOUT), Offce: of Ressarch ana Derelopeman, LS Frptrnsnantal Prosestion Apncy, 108 TW Alesunder v, Researih
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ARTICLE INFO ABSTRACT
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= o abecnce of in Who lowkily, This cursent m‘,’ fguod the mpact hal skelacy n boaval repeat dasc tosicity studics available in ToxRefDB (Helman ct al, 2019). Here we investigated the application of
GenltA to quantitative valucs, specifically using a large datasct of rat oral acute LD50 toxicity data (LDS0 values

altoring the local s el s performance relative q . t
1o basclinn Gesil, usleg physicachernical ,..-,.-.q,- formation wt » g for bﬁ:mulubm:y‘ T for 7011 discrete chemicals) that had been collected under the auspices of the ICCVAM acute toxicity workgroup
(ATWG). GenRA LD50 predictions were made based on the following criteria - chemicals were characterised by
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i 2 ot (up 0 s mervane) improvernend i strustural ased read across prodictioss,

on neighboring chemicals
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Systematically evaluating read-across prediction and performance ®MM
using a local validity approach characterized by chemical structure
and bioactivity information
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EINFO ABSTRACT
e Compatational approaches have reoently gained papalarity (i the field of read-across to astomatically fil data
ARTICLE INFO ABSTRACT Computational toxkcoligy yaps for umtestesd chemicals, Previausly, we developed the generalized resd.across (GealtA) toal, which utilizes

i vitro biesctivily data in conjunction with chemical descriptor information to derive local validity domains to
predict harards slerved in in vive tosicity studies, Hee, we modified GeaA to quastitatively prodict point of

departare (POD) valoes ohtained from US EPA'S Toxicity Refervace Database (ToxlellHI) verson 20. To
:::‘x;;;.'”"“ fo o ety and addvession: uncertainties. Here we deawonsisate s algo s, sulvmaied approscd Chemingarmatics evaliste GenRA predictans, we first aggregated oes Towest Dferved Adverse et Levels (LOAEL) for 1,014
o 3 ey 2006 o evaliate the wtilty of sing i Vit biactivity data (“biactivity descriptors, s ToaCast cheanicals iy systemic, , an effects. The mean LOAKL values for
fualable oeling 9 May 2018 prosgranm) in conjunetion with chesmical desceiptos information o derive focal validity donains (specitic each chemical were coaverted o lag molar squivalents. Applying GeaA 10 ol chemicals with 3 minimum
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vilues of 0,23, 022, 0,14, and 0.43, respoctively, Howeves, when evaluating GenA localy (@ clasers
structurally-simsilar chemicals (containing 2 bo 362 chemicals), sverage B values for systemic, developmentsl,
reproducsive, and cholinesicrase LOARL predictions improved o 0,79, 066, 060 and 0.7, respectively. Our

al

KRN ey oulconnes U chemical descriploss or 4 combisation of bt Thes generalized - firuings highlight the complexity of the chemical.wricity landscape and the imporiance of dentifying local
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w- General Approach

|. Data

e Chemical Data (chm)

e Structural
Descriptors (i.e.
Morgan
fingerprints)

e Bioactivity Data (bio)
(i.e. bioactivity
assays)

e Toxicity Outcomes
(tox)
(ToxRefDB)

Il. Generate Local
Neighborhoods

e Group chemicals
using a similarity-
weighted activity
score of nearest
neighbors.

e Similarity calculated
using Jaccard
distance.

k
_ ) Sij%j
-— k -
Zj Sij

Vi

Ill. GenRA

e Evaluation of the
performance of chm,
bio, and hybrid
descriptors for the
prediction of toxicity
outcomes in local

neighborhoods .
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&= Current Application

* Previously, high throughput screening bioactivity data were collected from
ToxCast.

 This study investigates the impact of biological similarities (as
characterized by transcriptomic data) on local neighborhood formation and
overall read-across performance in qualitatively predicting hazard based
on toxicological study data summarized in US EPA ToxRefDB v2.0.

* We expanded on the previous approach with an updated data set
composed of high throughput transcriptomics biological data
from HepaRG™ cells treated with 8 concentrations across 1060 ToxCast
chemicals for 93 transcripts.
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= Current Application

. Data

e Chemical Data (chm)

e Structural
Descriptors (i.e.

Morgan fingerprints)

e Bioactivity Data (bio)
e (i.e. bioactivity
assays)

e Toxicity Outcomes
(tox) (ToxRefDBv2)

¢ Chemical Clusters
e Shah el al (2016)

Il. Evaluation of
Optimal Number of
Nearest Neighbors
and Similarity
Metric

e scikit-learn grid search
5-fold cross validation

Ill. Generate Local
Neighborhoods

e Group chemicals using
a similarity-weighted
activity score of
nearest neighbors.

e Similarity calculated
by:
e Jaccard
e Manhattan

e Euclidean

IV. GenRA

¢ Global performance

evaluation of chm, bio
and hybrid descriptors
in the prediction
toxicity endpoints using
area under the ROC
curve (AUC).

Local performance
evaluation of chm, bio,
and hybrid descriptors
in the prediction of
toxicity endpoint using
predefined chemical
cluster using area
under the ROC curve
(AUC).
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* Chemical Data (C)
* Morgan Chemical Fingerprints (mrgn)

* Torsion Topological Fingerprints (tptr) ot & ]
%, @ 13
 ToxPrints (toxp) @ e T
Cizs T3
Clag : } f-"’a:u
: a8
e Chemical Clusters css « s
 Identified in Shah et al, 2016 i as
izl os9 . g C::;::ﬁznuphosoha&.
C'Lﬁle Clgs kefar.y:n"‘ennxmrmnﬁjr
P C\J"“’}d‘::&g ’ -/ c;‘.’_gs Niliga
. . : __ .
* Biological Data (B) 2 ' £S G,
* HepaRG™ LTEA (Life Technologies/Expression Analysis) Assay ; s :
P
Wambaugh et al, 2020 o

e LTEA assay results analyzed with the ToxCast pipeline package in R
(tcpl) for curve fitting

e Assay level hit call data
* @Gene level hit call data

Fig. 1. Qustering chemicals by structural similarnity. The dendrog am shows the results of hierarchical agglomerative clustering of the centroids of all 98 clusters (see Methods). Each
leaf node in the tree is a cluster where the number of chemicals in the cluster is proportional to the size of the circle. Some illustrative examples of the predominant chemical classes
in clusters are labeled.

* Toxicity Data
» ToxRefDBv2.0 negative (0) and positive(1) toxicity endpoints for several study
types:
e  Chronic (chr) Developmental (dev) *  Neurological (neu)
*  Subchronic (sub) Multigeneration reproductive (mgr) ¢  Other (oth)

*  Acute (acu) *  Reproductive (rep)
*  Subacute (sac) *  Developmental neurotoxicity (dnt)
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* Treated with 8 concentrations of 1,060 chemicals for 24 hours
and the expression of 93 transcripts was measured using

guantitative reverse transcription polymerase chain reaction
(qRT-PCR). Transcriptomic Concentration

* Transcripts measure the expression of genes involved in nuclear Response data
receptor activation, xenobiotic metabolism, cellular stress, cell cycle
progression, and apoptosis.

1060 ToxCast
* Concentration-response data for the 93 transcripts were Chemical +
analyzed with the ToxCast analysis pipeline package in R (tcpl) TCPL Curve Fitting __ Chemical
for curve fitting. (Assay Level) References

* The hit-call for each chemical and transcript was assigned a 93 Transcripts

binary active (1) or inactive (0) value based on tcpl level 5 data.

Transcriptomic Hit/Activity
Call Data

* The transcriptomic data for each chemical was represented 1= Active
using the hit calls in two ways.

* Vector of binary hit-calls for the 95 genes (termed gene)

* Vector of binary hit- calls with 190 directional activities of 95 genes
(termed assay).

0 = Inactive
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&= HepaRG LTEA Exploratory Data Analysis

Level 5 Hits Per Chemical

#Chems per Assay 1084 chems and controls
#Assays/Genes 189/95
R 1V T
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- Descriptor Descriptions

Descriptor Type  Descriptor name # of Chemicals # of Descriptors Toxicity ¢ chem # of Study types
Chemical(C) morgan(mrgn) 1017 2048 Ddid Study/effects __/Endpoints
torsion (tptr) 1017 2048 AL . . h”e;' :“b' rep,
toxprints (toxp) 1017 729 chf, dnt, sac, mef,
A dev, acu, oth
(all chemical, mrgn, 1017 4825 chr_Ii.ver,
tptr, toxp) dev_liver,
dnt_liver,
Biological (B) gene 1065 95 ! 93 5 mgr_ll.lver,
assay 1065 189 iver 5 neu_ .|ver,
-] ot ver
Hybrid (CB) Morgan/gene (mg) 1017 2143 :‘2—:;\\:::’
Morgan/assay (ma) 1017 2237 ub Iive;
Torsion/gene (ttg) 1017 2143 =
Torsion/assay (tta) 1017 2237
ToxPrints/gene (txg) 1017 824
ToxPrints/assay (txa) 1017 918
CB
'(allc.:hemlcaland 1017 5109
Biological, mrgn, tptr,
toxp, gene, assay)




<EPA

United States

Environmental Protection

Agency

Performance Tuning

Conducted 5-fold grid search cross validation with ROC AUC
scoring to determine optimal number of neighbors (range 1-
15) and distance/similarity metric (Euclidean, Jaccard,
Manhattan) for all descriptor types.

Average Number of Neighbors Similarity Metric Occurances

2 4 6 8 10 12

O manhattan M@jaccard MEeuclidean

@ euclidean Mjaccard [manhattan

Liver Effect

Chr_liver

Descriptor Descriptor Number of
Type Name Neighbors
Chm tptr 0.6303 euclidean 9
Chm mrgn 0.64549 jaccard 8
Chm toxp 0.61379 jaccard 7

Bio gene 0.648847 euclidean 14
Bio assay 0.6632 euclidean 11
CB mrgn/assay 0.6883 jaccard 13
CB toxp/gene 0.7044 jaccard 10
CB tptr/gene 0.6818 euclidean 6
CB (cB) all 0.6999 jaccard 14
Chm (cA)all 0.6702 jaccard 10
CB mrgn/gene 0.7049 jaccard 10
CB toxp/assay 0.6992 jaccard 14
CB tptr/assay 0.6721 manhattan 5
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Prediction of Liver Toxicity Endpoints

* Biological descriptors outperformed the singular Average Liver Toxicity Prediction Scores
chemical descriptors. 07

0.6

* 10% increase in predictive performance. 05

0.4

0.3

 Hybrid descriptors generated an overall 16% o
increase in predictive performance in comparison o

to Singular chemical descriptors and 3 6‘V Assay(B) Gene(B) Mrgn(C) Toxp(C) Tptr(C) MA(CB) MG(CB) TTA(CB) TTG(CB) TXA(CB) TXG(CB) CA(C) CB(CB)
0]
increase in comparison to biological.

Predictive Performance by Liver Endpoints

e  27% increase over the individual chemical Chr Dev Dnt Mer Rep Sac Sub

descriptors. mGene(B) ®Mrgn(C) = MG(CB)

* The all chemical descriptor combination
outperformed all other descriptors and
combinations for predicting liver toxicity

* 9% increase over the hybrid descriptors.

0.8

0.6

0.4

0.2

Average

* 15% increase over the biological descriptors.




\e’UEI?SA Evaluating Overa" Average Predictive Performa.nce Scores for all Toxicity
Global Performance .. Endpoints

Environmental Protection
0.53

for Prediction of All -~

0.51

Toxicity Endpoints -

* Toxicity endpoints were aggregated by 047
study type. 0.46

0.45
Assay(B)Gene(B) Mrgn(C) Toxp(C) Tptr(C) MA(CB) MC(CB) TTA(CB) TTG(CB) TXA(CB) TXG(CB) CA(C) CB(CB)

e Qverall performance score for each
Study type was calculated. Study Gene(B)  Mrgn(C)  MG(CB) B >=70 C>=70 CB>=70 B>CB|C C>B|CB CB>B|C

Chr(364) 0.51]0.07 0.50]0.07 0.54]0.09 2]|12%  2]|12%  7]|42%  41]|25% 40|24%  86|51%

* Hybrid descriptors .cor.\s.istently Dev(43) 049|007 049|008 050|009 2|17%  4]34%  3|2.6% 29|25% 45|38% 43 |37%
outperformed the individual
descriptors for the prediction of all Dnt(61) 044|012 042]011 048|013 1]|15% 2130 4161%  12]18%  20|30%  34|52%

toxicity endpoints.
Mgr (201) 0.48|0.09 0.48]0.09 0.50]|0.11 3|2.2% 312.2% 816.0%  39|29%  40|30% 55| 41%

Rep(51) 0.45]0.12 045|015 045|014 1]15%  6]9.0%  4]|6.0%  23|34% 20|30% 24| 36%

* Chemical hybrid descriptors consisting
of all chemical structure fingerprints Sac(99) 0.49|0.11 046|012 050|012 6]47%  5|39%  8]63%  41]32%  45|35% 41| 32%

had the best predictive performance
ove ra” Sub (315) 0.50]0.07 0.49|0.08 0.54]0.10 3|1.8% 5] 3.0% 12 | 7.1% 36 | 21% 40 | 24% 93 | 55%

- ALL 049009 048]0.10 Jo51]010 18]226% 27|3.39%f 46|59%) 221]26% 250 |30% f 376 | 44%
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Evaluating Local

Performance

Agency
4.5
4
3.5
* Explored performance of the basis of 3
individual clusters 25 one
2
1.5
1 Hmrgn
* Filtered clusters consisting of 2 or more 05 |I I I | | |I | I |
positive and negative endpoints 0
o NN R AR P SO S SAIE
oa,@’ ‘;@f‘ & f;@' ‘,7@' ,@‘ a)@ ,@ & z 8 - ‘;@}' o‘;& ‘,7@' R ,@ z & ef"
P TS T T
* |dentified clusters where each individual
. Custer Study Gene(B) Mrgn(C) MG(CB) B>=70 C>=70 CB>=70 B>CB|C | C>B|CB | CB>B |C
descriptors outperformed the others
0.61 | 0.44 | 0.57 | 1] 1] 1] 2 |
Chr(3) 0|0 of|o
. [ 0, [) 0,
Frequency Of Best DESCFIptOF Performer 0.19 0.13 0.22 33.33% 33.33% 33.33% 66.67%
Overall 0.62 |1 0.36 | 2| 1]
Dev(3) | 0.6]0.3 0|0 3 | 100% 0|0 0|0
30 0.38 0.23 66.67% 33.33%
25 0.75 | 0.48 | 0.24 |
Mgr(2) 1]50% 0|0 00 1]50% 1]50% 0|0
20 0.35 0.26 0.22
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o Sac(2) 1]0 1]0 050 | 2]100% | 2]|100% 0|0 1| 50% 1| 50% 0|0
> 0.44 | 0.29 | 0.24 | 1] 2|
Sub(3) 0|0 0|0 0|0 0|0
0 0.19 0.16 0.13 33.33% 66.67%
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0.65 | 0.54 | 0.38 | 6| 3] 23. 7| 4| 2|
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Example Nearest
Neighborhood
Prediction for Target
Chemical in Cluster-80

Target Chemical: PD-0333941

Calculation of similarity between target chemical and
other chemicals in a predefined chemical cluster based
on Jaccard similarity of gene descriptors and Morgan
chemical structure descriptors.

PREFERRED_NAME 0 1
PD-0333941 23 72
Fluoxastrobin Fluoxastrobin 21 74 Propoxycarbazone-sodium
Benzyl butyl phthalate ? e v Di(2-ethylhexyl) phthalate Y
] 3-lodo-2-propynyl-N- — ~ ey
H @J\} o butylcarbamate 53 36 ,_:} g - 1/ —a,
Di-n-octyl phthalate ‘ fg Monobenzyl phthalate 82 13 $ { @ rt Diethyl phthalate
/\A A RV Azoxystrobin Di{2-ethylhexyl) phthalate 87 8 e H’(>
Dihexyl phthalate 87 8 .. W,
/ . 4-Nonylphenol, branched 89 6 DIISObUtVI phthalate 2{__('}\ \ / E o
N i Di-n-octyl phthalate 88 7 . 0.12 o
W\H 0. (:5 0.78 P j:l N é Benzyl butyl phthalate 88 7 - \ 0f14 / C;‘ _\CH
L ~ / S ™
0.07 0.78 ~, 0.12 0.13
4-Nonylphenol, branched ~ - : o ~ /
A~ 0 ><: Fludioxonil Ny NP TS OU S
.‘,/K/\/\/@W — 007 — A e Y I 0.63 — J Lf — 012 — o 0.13 — N
PD-0333941 A= Di-n-octyl phthalate PD-0333941 Benzyl butyl phthalate
N C | v N NS
0.10 / \ 0.37 N 0.12 / \ 0.13
s AN Jodo-2- N 7013 o3 N
Dihexyl phthalate é j),.lo 0.16 3-lodo-2-propynyl-N-butylcarbamate Dihexyl phthalate / . \ .,
el /\/\/‘L /‘\\ HE, )_Jz: = @
. _ “ - = Ua! v ‘]: ] Monobenzyl phthalate
\_\1% . J C/_c. N L\x _ é . JL\If n “ o
g OO ey Swd

Di(2-ethylhexyl) phthalate Monobenzyl phthalate

Calculated with Gene Descriptors

Dibutyl phthalate Azoxystrobin

Calculated with Morgan Chemical Descriptors
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Target Chemical: Diethyl phthalate

Calculation of similarity between target chemical and
other chemicals in a predefined chemical cluster based
on Jaccard similarity of gene descriptors and Morgan
chemical structure descriptors.

Neighborhood
Prediction for Target
e .

Chemical in Cluster-80
PREFERRED_NAME 01
Diethyl phthalate 93 2
Diisobutyl phthalate 93 2
Fludioxonil . "’}_m! 4-Nonylphenol, branched 89 6
><r .4 Diisobutyl phthalate Benzyl butyl phthalate 88 7
o @ Di(2-ethylhexyl) phthalate 87 8
y = H!&$ D?allyl phthalate 92 3
3-lodo-2-propynyl-N-butylcarbamate \ y/ / Dihexyl phthalate 87 8
\ Monobenzyl phthalate 8213

4-Nonylphenol, b hed
'«M:J‘-’“\l 0.04 1.00 OLI‘IWP enol, branche Di-n-octyl phthalate 88 7
~ “ ’ P 2 3-lodo-2-propynyl-N-
Di-n-octyl phthalate . 0.06 0.33 N butylcarbamate 5936
SO0 ~ Fludioxonil 4550
- 013 — o — 0.2 — @
H\H C;( Benzyl butyl phthalate
“ hyl phthal T
Diethyl phthalate
0.15 , \ 0.25

Monobenzyl phthalate ; -
. 0.25 0.25 N f
@A@ / v s

ﬂ_-/:m‘
Dihexyl phthalate

o -y Diallyl phthalate
O ;_\

\cu,

Calculated with Gene Descriptors

Y Di(2-ethylhexyl) phthalate

Azoxystrobin o
§ Dibutyl phthalate
wel M o .
Propoxycarbazone-sodium ‘} o He o Y=
., \_\_ “” _ Diisobutyl phthalate
el \ / ;
Y 018 057
- . : P
Monobenzyl phthalate 0. 21 "’c> 0 56 '
@:(L/\@ — 039 — — 051 — jS:( Diallyl phthalate
0.41 Dlethyl phthalate -
\ 0.51
Benzyl butyl phthalate @ 0. 46 0.49 N

7 \ ; Dihexyl phthalate

/
— + g A

P /

AW 1

Di(2-ethylhexyl) phthalate

g ]

L-pi—n—mctyl phthalate
S

Calculated with Morgan Chemical Descriptors
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* Chemical structure combination (composed of mrgn, tptr, and toxp)
resulted in the best global performance on average for all toxicity
endpoints.

* However, an overall increase in read-across performance was noted for
various toxicity endpoints when using either transcriptomic and hybrid
fingerprints over baseline (mrgn chemical fingerprints).

* For liver endpoints:
e Transcriptomic fingerprints resulted in a 10% improvement in performance.
* Hybrid resulted in a 16% improvement in performance.

* Local predictive performance of various toxicity endpoints across the
diverse chemical clusters varied between the diverse set of descriptors.

* In general, biological descriptors more frequently performed the best across various
chemical clusters.




<EPA

United States
Environmental Protection
Agency

Future Work and Conclusions

* GenRA was previously shown to predict toxicity using previous HTS of Toxcast
compounds but now shown to be applicable on HTTr datasets.

* Here we were able to show that biological descriptors alone or combined with
chemical information offer significant benefit in predicting in vivo toxicity
outcomes on both a ‘global’ and ‘local’ level.

* Future efforts will focus on expanding to diverse/larger transcriptomic data both
binary and quantitative.
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