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So… When Was Computational Toxicology 
Actually Born?

• Short answer… It depends.

• Application of computational modeling to toxicological endpoints began with 
development of QSARs in 1970s.

• In early 1970s, first physiologically-based pharmacokinetic (PBPK) models were 
developed

• In 1980s, significant growth in computer modeling in QSAR and PBPK modeling

• In 1990s, development of physiologically-based pharmacodynamic (PBPD) 
models for AChE inhibition and cell death/proliferation/mutation

• In the late 1990s, use of the term ‘computational toxicology’ appeared in the 
literature

• Strategic plan for Computational Toxicology research at EPA released in 2003

• National Academy of Sciences report on transforming toxicity testing released 
in 2007
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Multiple Factors Contributed to the Formation and 
Development of Computational Toxicology
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EPA Memo and Work Plan Continues to Spur Development 
and Shift Towards Computational Toxicology

o Goals:
 Reduce requests for, and funding of, mammalian studies by 

30% by 2025
 Eliminate all mammalian study requests and funding by 2035
 Come as close as possible to excluding reliance on 

mammalian studies from its approval process (subject to 
applicable legal requirements).

o Work Plan Objectives and Strategies:
 Evaluate Regulatory Flexibility for Accommodating NAMs
 Develop Baselines and Metrics for Assessing Progress
 Establish Scientific Confidence in NAMs and Demonstrate 

Application to Regulatory Decisions
 Develop NAMs to Address Scientific Challenges and Fill 

Important Information Gaps
 Engage and Communicate with Stakeholders

www.epa.gov/nam
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A Few Topics for Highlighting the Emergence of 
Computational Toxicology from the Teenage Years…

• Establishing expectations on the variability of 
current toxicity studies

• Technological advances to evaluate large numbers 
of chemicals across toxicological space

• Addressing limitations of in vitro test systems

• Put results in a dose context

• Building confidence through regulatory focused 
case studies
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Why Evaluate the Reliability and Relevance of 
Traditional Toxicity Testing Models

• Section 4(h) in the new TSCA legislation requires –
• “…Administrator shall reduce and replace, to the extent 

practicable and scientifically justified…the use of vertebrate 
animals in the testing of chemical substances or mixtures…”

• Alternative approaches need to provide “information of 
equivalent or better scientific quality and relevance…” than the 
traditional animal models

• EPA NAM Work Plan includes an objective to characterize the 
scientific quality and relevance of existing animal tests
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Evaluating Reproducibility of Traditional Toxicity 
Studies By Mining Legacy Data

ToxRefDB Version 2.0

>1,200 chemicals

Watford et al., Reprod Toxicol. 2019
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Qualitative Reproducibility of Traditional Toxicity 
Studies

LyLy Pham and Katie Paul-Friedman, Unpublished

Organ Species Repeated 
negative

Mixed
effects

Repeated 
positive

% 
Concordance

Liver
dog 20 26 46 71.7

mouse 30 40 69 71.2
rat 42 71 132 71.0

Kidney
dog 49 33 10 64.1

mouse 61 51 27 63.3
rat 60 105 80 57.1

Spleen
dog 64 21 7 77.2

mouse 93 31 15 77.7
rat 132 84 29 65.7

Testes
dog 65 20 7 78.3

mouse 110 20 9 85.6
rat 135 87 23 64.5

Adrenal 
gland

dog 76 12 4 87.0
mouse 109 23 7 83.5

rat 142 83 20 66.1

Reproducibility in Qualitative Target Organ Effects in Repeat Dose 
Toxicity Studies

Two ways to 
statistically model 
the data across 
multiple study 

types

Variability 
within a specific 

study type

Reproducibility in Quantitative Effect Levels from In Vivo 
Repeat Dose Toxicity Studies

Using an RMSE=0.59, the 95% PI of an 
LEL/LOAEL is:

1 mg/kg/day  0.07 – 14 mg/kg/day.
10 mg/kg/day  0.7 – 143 mg/kg/day.

Pham et al., Comp Toxicol., 2020
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Application of High-Throughput Assays to Test 
Thousands of Chemicals

Concentration 
Response 
Screening

Thousands of 
Chemicals

• 96, 384, and 1536-well, laboratory automation compatible
• Relatively expensive (~$20,000 - $30,000 / chemical) 
• Coverage of molecular and phenotypic responses
• Multiple assay vendors/labs

Mode-of-Action Identification

Concentration Response 
Modeling

ToxCast Assays
Transcription Factors

Transporter
Cytokines

Kinases
Nuclear Receptors

CYP450 / ADME
Cholinesterase
Phosphatases

Proteases
XME metabolism

GPCRs
Ion channels

~700 Assay Endpoints
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Application of High-Throughput Assays to Identify 
Potential Endocrine Disrupting Chemicals
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ToxCast In Vitro Assays Measure ER- and AR-Related Activity

Judson et al., Tox Sci. 2015
Browne et al., ES&T. 2015
Kleinstreuer et al., EHP 2016

Accuracy 0.93

Sensitivity 0.93

Specificity 0.92

ER Reference Agonists

Application to Regulatory Decisions

Kleinstruer et al., Chem Res Toxicol. 2017

AR Reference Antagonists

Accuracy 0.98

Sensitivity 1.00

Specificity 0.95
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Beginning to Incorporate Xenobiotic Metabolism 
Into In Vitro Assays

AIME Method: S9 Fraction Immobilization in 
Alginate Microspheres on 96- or 384-well peg 

lids

Screening Window of VM7 (formerly BG1) 
ER Transactivation Assay 
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Incorporating High-Content Technologies to 
Increase Biological Coverage

Concentration 
Response 
Screening

Mode-of-Action Identification

Concentration Response 
Modeling

Thousands of 
Chemicals

Multiple Cell 
Types

Whole Genome 
Transcriptomics

Multi-Parameter Cellular 
Phenotypic Profiling

H-33342 Casp3/7 PIDNA RNA/ER AGP Mito

• 384-well, laboratory automation compatible
• Relatively inexpensive ($2.50 - $1,500 per chemical)
• Broad complementary coverage of molecular and phenotypic responses
• Integration of reference materials and controls for performance standards
• Increased portability
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High-Throughput Phenotypic Profiling as a 
Measure of ‘Cellular Pathology’

Mode-of-Action Identification

Concentration Response 
Modeling

Thousands of 
Chemicals

Multiple Cell 
Types

Images from PerkinElmer
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Evaluating ‘Cellular Pathology’ in U2OS Cells for 
Different MOAs and In Vivo Pathology Responses

Nyffeler et al., TAAP, 2020
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Developing Organotypic Culture Models to Translate 
Molecular Events into Tissue/Organ Effects

Deisenroth et al., Toxicol Sci, 2020
Blue, Hoechst 33342 /DNA
Green, Phalloidin/Actin
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Putting In Vitro Test Results in a Dose Context

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012
Wetmore et al., Tox Sci., 2015
Wambaugh et al.,Tox Sci., 2018
Wambaugh et al.,Tox Sci., 2019

Oral Dose Required to 
Achieve Concentrations 

Equivalent to In Vitro
Bioactivity

Liver 
Metabolism

Plasma Protein 
Binding

Population-Based  
IVIVE Model

R package “httk”
• Open source, transparent, and peer-reviewed tools and 

data for high throughput toxicokinetics (httk)
• Allows in vitro-in vivo extrapolation (IVIVE) and 

physiologically-based toxicokinetics (PBTK)
• v1.10 features 942 total chemicals
• Now allows propagation of uncertainty

Tissue 
Partitioning
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Continued Improving and Expanding Toxicokinetic 
Modeling Capabilities

Assume 100% 
Bioavailability

Using CaCo2 
Bioavailability

Expanding Exposure Routes to InhalationImproving Predictivity of Oral TK and PBTK Models

QSAR Model for 
Bioavailability

Linakis et al., In Press.
J. Wambaugh, Unpublished
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Case Study on Application To Screening Level 
Assessments 

• Multiple international case studies stemming from 
2016 inter-governmental workshop

• Example: In Vitro Bioactivity as a Conservative Point 
of Departure

• Participants include EPA, Health Canada, ECHA, 
EFSA, JRC, and A*STAR

• Goal:  Determine whether in vitro bioactivity from 
broad high-throughput screening studies (e.g., 
ToxCast) can be used as a conservative point-of-
departure and when compared with exposure 
estimates serve to prioritize chemicals for future study 
or as lower tier risk assessment.
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Case Study on Application To Screening Level 
Assessments 

PODtrad
PODNAM

EPA - ToxCast

Apply httk

Exposure Bioactivity-
exposure ratio

PODtrad : 
PODNAM ratio

• NOEL, LOEL, 
NOAEL, or LOAEL

• Oral exposures
• Mg/kg-bw/day units

~400 chemicals

5th %0-5th

%
95th %

ExpoCast

ToxVal
EFSA
ECHA
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Regulatory Focused Case Study on Bioactivity as a 
Point-of-Departure
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For ~89% of the 
chemicals, PODNAM
was conservative.

(~100-fold on 
average), but less 
conservative than 

a TTC

ExpoCast PODNAM (PODTraditional PODEFSA PODHC)

Chemicals where 
PODNAM was not 

conservative 
enriched in 

OPs/carbamates
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Others Are Applying the Concept to Screening-
Level Regulatory Decisions

https://www.nc3rs.org.uk/sites/default/files/A.%20Scott%20-
%20Unilever%20funders%20perspective.pdf

https://www.epa.gov/sites/production/files/2020-
01/documents/6_508_tara_barton-maclaren_nams_2019.pdf

https://www.nc3rs.org.uk/sites/default/files/A.%20Scott%20-%20Unilever%20funders%20perspective.pdf
https://www.epa.gov/sites/production/files/2020-01/documents/6_508_tara_barton-maclaren_nams_2019.pdf
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Take Home Messages…

• Computational toxicology is emerging from the teenage years and new Agency 
initiatives are accelerating the maturation of the field

• Statutory language and the EPA NAM Work Plan require establishing expectations 
for the performance of computational toxicology methods by better characterizing 
the variability and relevance of existing models

• New technologies exist for rapidly and comprehensively covering toxicological 
space at significantly less cost

• Addressing previous technical limitations such as a lack of metabolism and 
higher-level tissue effects are within reach

• Toxicokinetic modeling and in vitro-to-in vivo extrapolation methods continue to be 
improved and expanded for broader application 

• Continuing to partner with regulators on case studies will increase confidence and 
acceleration application to chemical risk assessment 
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