

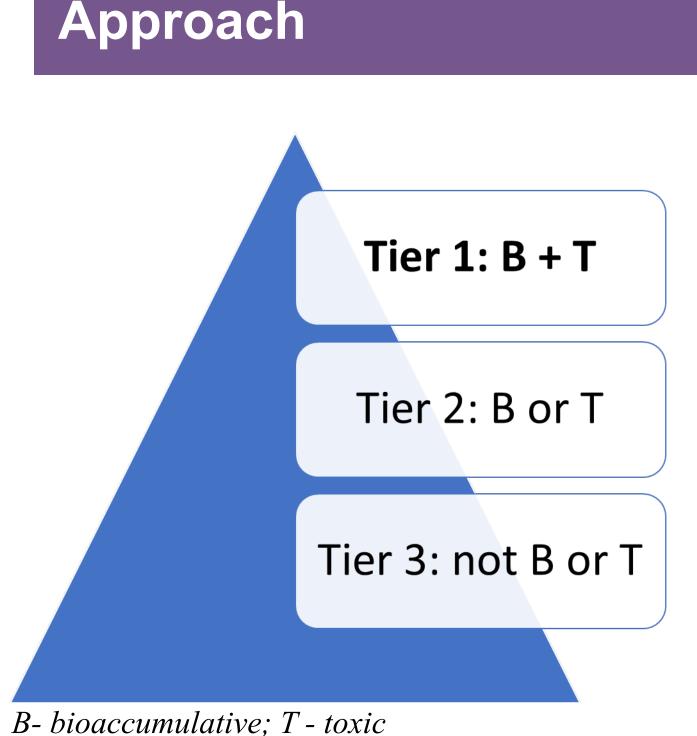
The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Background

Over half of chemicals in commerce are classified as chemical substances of <u>unknown or variable composition</u>, <u>complex</u> reaction products and/or <u>b</u>iological materials (UVCBs). Some UVCBs originate from natural products (e.g., essential oils and petroleum products), while others are developed to meet performance criteria (e.g., surfactant mixtures). Examples of UVCBs include:

Petroleum & petroleum products

Fats and oils (e.g. vegetable oil)



Commercial surfactant mixtures

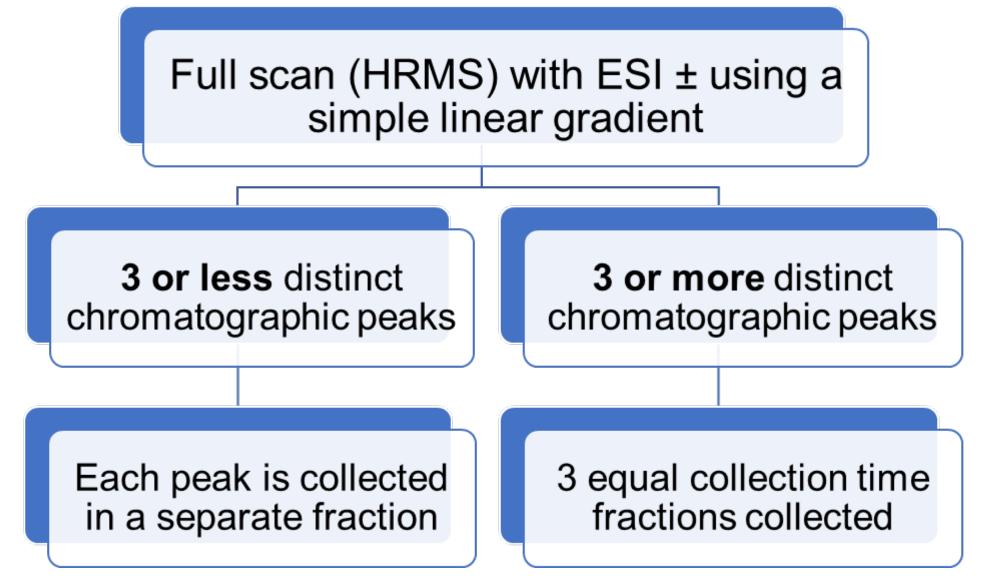
The Challenge

Individual UVCBs are poorly defined at the chemical structure and weight fraction levels, making traditional exposure and risk assessment methodologies poorly suited for evaluating UVCB safety. As such, there is a need for new methods to further define UVCB compositions and categorize exposure and hazard potential.

This research proposes a tiered approach for prioritizing UVCB components for in-depth chemical compositional analysis via high resolution mass spectrometry (HRMS) based on parallel in vitro bioactivity and metabolism assays.

U.S. Environmental Protection Agency Office of Research and Development

References: Baron, M. G., et al. (2017). Pharmaceutical metabolism in fish: using a 3-D hepatic in vitro model to assess clearance. PLoS One, 12(1), e0168837 Houston, J. B., et al. (2007). Evaluation of cryopreserved human hepatocytes as an alternative in vitro system to microsomes for the prediction of metabolic clearance. Drug metabolism and disposition, 35(2), 293-301.

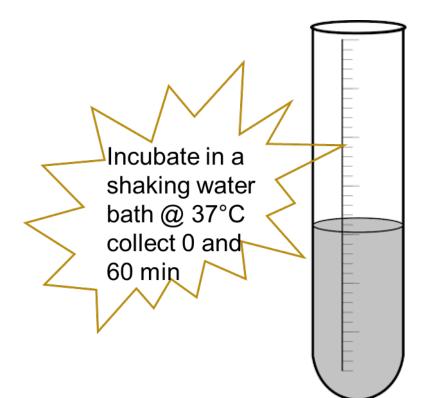

New Approach Methodologies to Prioritize and Identify Key Components of UVCBs

Allison L. Phillips¹, James P. McCord², Brett R. Blackwell³, Keith A. Houck³, and Elin M. Ulrich³

¹Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Participant. Center for Computational Toxicology and Exposure, U.S. Environmental Agency, Research Triangle Park, NC. ²Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC. ³Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC and Duluth, MN.

UVCB Fractionation

UVCBs will be initially characterized by HRMS using full-scan (m/z 150-2,000) MS1 data collected in both positive and negative electrospray ionization modes. Following initial characterization, subfractions will be collected using a liquid chromatography system equipped with an automated fraction collector.



UVCBs and their associated fractions will then be assessed in parallel bioaccumulation and bioactivity assays.

In Vitro Assays

Metabolism

The metabolism and potential bioaccumulation of individual UVCB features will be estimated via a substrate depletion approach using an incubation system consisting of human liver subcellular fractions (S9) and cofactors that support both Phase I and II biotransformation.

Fraction or mixture (in the micromolar range) **Human S9** (1 mg/mL, final concentration) **Cofactors:** UDPGA (2 mM) GSH (5 mM) PAPS (0.1 mM) Alamethicin (25 µg/mL)

Reference pharmaceuticals with varying levels of intrinsic hepatic clearance (CL_{INT.HEPATIC}) will be used as positive controls (Houston 2007; Baron 2107).

• High – propranolol; $CL_{INT,HEPATIC} = 50 \text{ mL/min/kg}$ • Mid – quinidine; $CL_{INT,HEPATIC} = 17 \text{ mL/min/kg}$ • Low – atenolol; $CL_{INT,HEPATIC} = 5.1 \text{ mL/min/kg}$ The abundance of a feature observed at sixty minutes will be divided by that observed at zero minutes, and this value will be converted to a percentage and reported as "% remaining at 60 min".

Allison. L Phillips | Phillips.allison@epa.gov | 919-541-4174

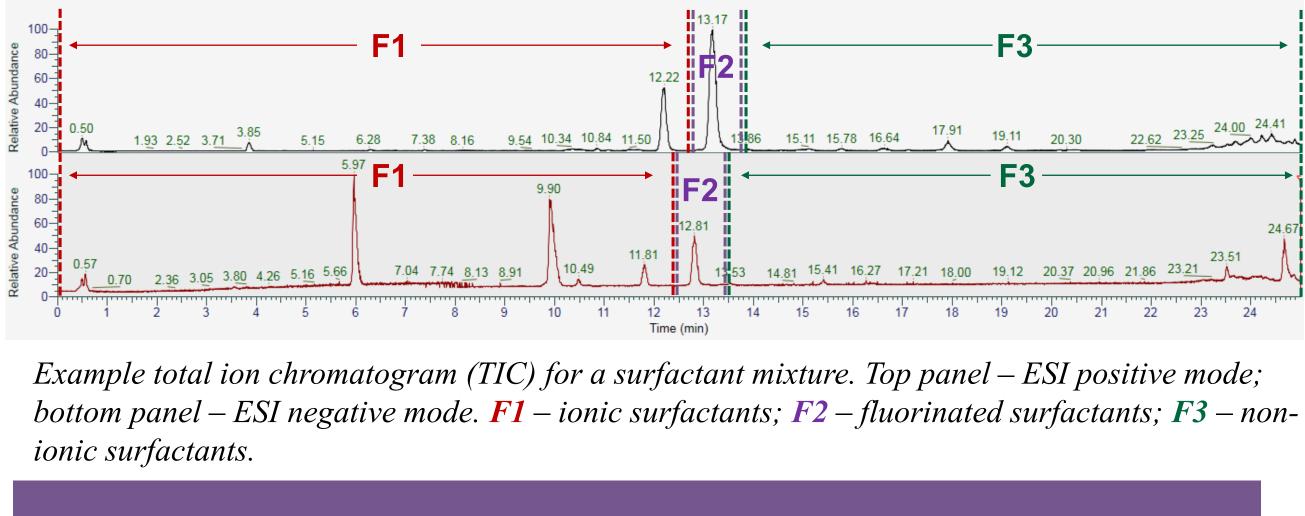
Potassium phosphate buffer (100 mM) **NADPH regeneration system** (2.6 mM NADP+)

In Vitro Assays Cont'd.

Bioactivity

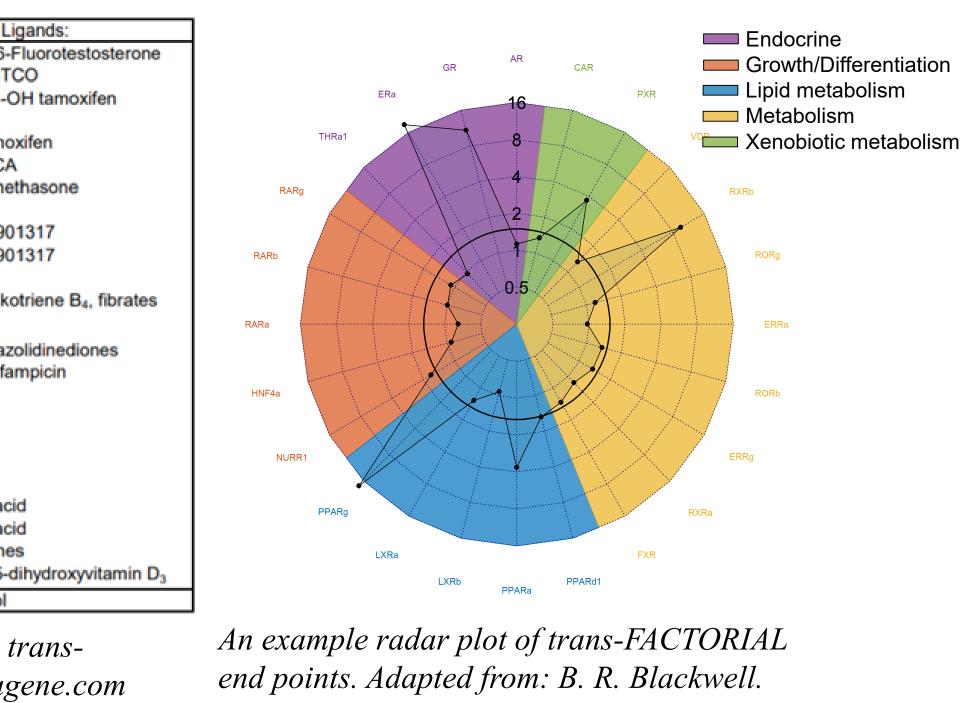
Bioactivity of UVCB fractions will be evaluated via Attagene's trans-FACTORIAL assay to assess interaction of test samples with 24 human nuclear receptors in the liver HepG2 cell line, a method previously used for testing contaminated surface waters.

#	Name:	Nomenclature:	Li
1	AR	NR3C4	Testosterone, 6-F
2	CAR	NR1I3	Xenobiotics, CIT(
3	ERα	NR3A1	Estradiol-17, 4-C
4	ERRα	NR3B1	Orphan
5	ERRy	NR3B3	DES, 4-OH tamo
6	FXR	NR1H4	Bile acids, CDCA
7	GR	NR3C1	Cortisol, dexame
8	HNF4α	NR2A1	Orphan
9	LXRa	NR1H3	Oxysterols, T090
10	LXRβ	NR1H2	Oxysterols, T090
11	NURR1	NR4A2	Orphan
12	PPARα	NR1C1	Fatty acids, leuko
13	PPARõ	NR1C2	Fatty acids
14	PPARy	NR1C3	Fatty acids, thiaz
15	PXR	NR112	Xenobiotics, Rifa
16	RARa	NR1B1	Retinoic acid
17	RARB	NR1B2	Retinoic acid
18	RARY	NR1B3	Retinoic acid
19	RORB	NR1F2	Orphan
20	RORY	NR1F3	Orphan
21	RXRa	NR2B1	9-cis-Retinoic aci
22	RXRβ	NR2B2	9-cis-Retinoic aci
23	TRα	NR1A1	Thyroid hormone
24	VDR	NR1I1	Vitamin D, 1,25-d
25	GAL4	yeast	negative control


End points measured using the trans-FACTORIAL assay. From: Attagene.com

Analytical Characterization

Features and fractions scoring the highest in both assays will be prioritized for in depth structural characterization using nontargeted, HRMS techniques, and potentially further fractionation and bioassay tests. When possible, tentative identifications will be confirmed with authentic standards and concentrations will be estimated.


Preliminary Data

The efficacy of this approach will be tested in case studies with two commercial UVCBs: a surfactant and a nonylphenol mixture. Initial HRMS characterization and fractionation is underway.

Implications

Generated data will aid modelers in assessing UVCB exposure and hazard potential in support of risk assessment for complex chemical mixtures.

