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ORD Facility in
Research Triangle Park, NC

•The Office of Research and Development (ORD) is the scientific research arm of EPA
• 543 peer-reviewed journal articles in 2019

•Research is conducted by ORD’s four national centers, and three 
offices organized to address:
•Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

•13 facilities across the United States

US EPA Office of Research and Development

•Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees
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Paracelsus

“What is there that is not poison? All things are poison and nothing is 
without poison. Solely the dose determines that a thing is not a 
poison” — Paracelsus (1493-1541)

Complications (adapted from Grandjean, 2016):
• Many thousands of chemicals in the environment
• Developmental windows of susceptibility
•Confounding benefits (nutrition vs. toxicity)
• Genetic variability in susceptibility
• Variability in exposure (occupational, heavy users)

“From a public health viewpoint, toxicology needs to 
provide better guidance on decision-making under 

ever-present uncertainty” — Grandjean (2016)
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Three Components for Chemical Risk in the 
United States

Exposure

Hazard

Chemical Risk 

NRC (1983)

The U.S. EPA oversees the U.S. Toxic Substances 
Control Act (TSCA), which regulates most non-
drug and non-food chemicals

Dose-Response
(Toxicokinetics 

/Toxicodynamics)

The U.S. National Academy 
of Sciences, Engineering 
and Medicine (1983) 
outlined three components 
for determining chemical 
risk

EPA must determine risk to the 
general public, sensitive, and 
occupationally-exposed populations
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• There are roughly 10,000 TSCA-relevant chemicals in 
commerce
–Traditional methods are too resource-intensive to 

address all of  these
• Therefore, high throughput risk prioritization needs:

1. High throughput hazard characterization                            
(Dix et al., 2007, Collins et al., 2008)

2. High throughput exposure forecasts                       
(Wambaugh et al., 2013, 2014; Ring et al., 2019)

3. High throughput toxicokinetics (i.e., dose-response 
relationship) linking hazard and exposure                                                          
(Wetmore et al., 2012, 2015)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Decision‐Making Under Ever‐Present 
Uncertainty
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New Approach Methodologies (NAMs)

• NAMs include:
• High throughput screening (ToxCast)
• High throughput exposure estimates 

(ExpoCast)
• High throughput toxicokinetics 

(HTTK)

• TSCA was updated in 2016 to allow more 
rapid evaluation of chemicals

• TSCA Proof of concept: Examine ~200 chemicals with ToxCast, ExpoCast and HTTK
• Toxicokinetics was rate limiting factor on number of chemicals in study
• “A Proof-of-Concept Case Study Integrating Publicly Available Information to Screen Candidates for 

Chemical Prioritization under TSCA”
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High-Throughput Bioactivity 
Screening Projects

 High throughput screening (HTS) for in vitro bioactivity 
potentially allows characterization of thousands of chemicals for 
which no other testing has occurred

 Tox21:  Examining >8,000 chemicals using ~50 assays intended to 
identify interactions with biological pathways (Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran >1100 
additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format (identify 50% 
activity concentration – AC50 – and efficacy if data described by a 
Hill function, Filer et al., 2016)

 All data are public: http://comptox.epa.gov/dashboard/

http://comptox.epa.gov/dashboard/
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The Margin Between Exposure and Hazard

Aylward and Hays (2011)
This study was limited to five chemicals by general population data on exposure

estimated or measured 
average concentrations 
associated with the LOAEL 
in animal studies

Humans with chronic 
exposure reference values 
(solid circles)

NOAEL in animal studies

Biomonitored occupational 
populations

Volunteers using products 
containing the chemical

General populations

x

+

in vivo

in vitro
Each “Box and 
whisker” plot 
indicates 
median and 
range of active 
concentrations 
across (then) 
615 ToxCast 
assays
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“NAMs were taken in a broad context to include 
in silico approaches, in chemico and in vitro 
assays, as well as the inclusion of information 
from the exposure of chemicals in the context of 
hazard assessment”

“…the committee sees the potential for the 
application of computational exposure science to 
be highly valuable and credible for comparison 
and priority-setting among chemicals in a risk-
based context.”

New Approach Methodologies and Exposure

Slide from Kristin Isaacs
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NAMs for Toxicokinetics: HTTK

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

...
.... ..

..1 2

CLmetab

CLGFR

Gut Lumen
Primary

Compartment

kabs

httk
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R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for >1000 chemicals
• Oral, intravenous, and inhalation 

exposure routes
• Described in Pearce et al. (2017)

https://CRAN.R-project.org/package=httk
Open-Source Tools and Data for HTTK

https://cran.r-project.org/package=httk
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Far-field
(the world)
for example:
Rosenbaum et al. (2008)
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Near-field 
(the home)

for example:
Isaacs et al. (2014)

NAMs for Exposure: 
High Throughput Models Occupational

for example:
ChemSteer

Slide from Kristin Isaacs
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Selecting the Appropriate Model 
Depends on Chemical Use

Occurrence of Chemicals in Retail Products
>2000 chemicals with Material Safety Data Sheets 

Goldsmith et al., 2014
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• Different chemicals are involved in different 
exposure pathways

• Some pathways have much higher average 
exposures!

• Near field sources have been known to be 
important at least since 1987 – see Wallace, et al.
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How Can we Know Chemical Use?
Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative chemical 
composition

CPDat
Functional 
Use Data

The roles that 
chemicals serve in 
products

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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Machine Learning NAMs for Exposure

Chemical Structure and 
Property Descriptors
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Machine Learning Based Classification Models
(Random Forest, Breiman, 2001)

Prediction of
Of Potential 

Alternatives from 
Chemical Libraries

Use Database (FUSE)

Phillips et al. (2017)

“…machine learning can be 
thought of as inferring plausible 

models to explain observed 
data.” Gharamani (2015)
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Evaluation NAMs for Exposure:  
The SEEM Framework

• We use Bayesian methods to incorporate multiple models into consensus predictions for 
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM)
(Wambaugh et al., 2013, 2014; Ring et al., 2018)

Hurricane path 
prediction is an 

example of 
integrating 

multiple models

Estimate 
Uncertainty

Space of 
Chemicals

Chemicals 
with 

Monitoring 
Data

In
fe

rr
ed

 In
ta

ke
 R

at
e

Model 1
Model 2…

Calibrate 
models

Apply calibration and estimated uncertainty to 
other chemicals

Evaluate Model Performance
and Refine Models

Dataset 1
Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors
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Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(for example, Wetmore et al., 2015)

Exposure intake rates  can 
be inferred from 
biomarkers
(for example, Ring et al., 2018)
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Ring et al. (2017)

Chemical Prioritization NAMs
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Summary
 We must consider exposure to identify chemical risk – for 

example, windows of developmental susceptibility and 
occupational exposure

 In the U.S. both the toxic potency (hazard) and the magnitude 
of the exposure is needed to calculate risk
• There are thousands of chemicals in commerce and the 

environment without these data

 New approach methodologies (NAMs) are being developed to 
prioritize these existing and new chemicals for testing
• These NAMs include TK and exposure (Wambaugh et al., 2019)

 If the uncertainty in these tools is properly evaluated and 
quantified, we can inform public health decision making

The views expressed in this presentation are those of the authors 
and do not necessarily reflect the views or policies of the U.S. EPA

Potential 
Exposure Rate

mg/kg BW/day

Potential hazard 
from in vitro

converted to dose 
by  HTTK
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Medium 
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