UTILIZING ISOZYME-SPECIFIC CLEARANCE RATES TO INFORM POPULATION TOXICOKINETIC VARIABILITY

CARLETON UNIVERSITY TOXICOLOGY SEMINAR SERIES 1/13/2021

ANNA KREUTZ

U.S. ENVIRONMENTAL PROTECTION AGENCY, ORISE FELLOW OFFICE OF RESEARCH AND DEVELOPMENT CENTER FOR COMPUTATIONAL TOXICOLOGY AND EXPOSURE

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. EPA

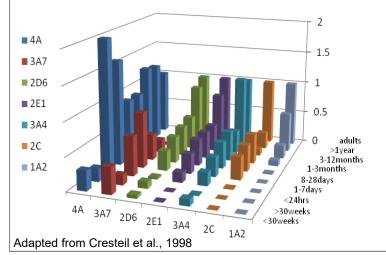
POPULATION TOXICOKINETIC (TK) VARIABILITY

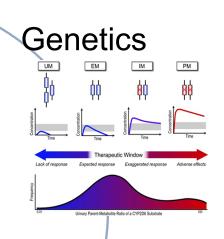
Identical exposures may lead to differing in vivo concentrations and health impacts

Body burden of general population

Ŧ

Body burden of at risk populations


WHY?


DRIVERS OF TK VARIABILITY

Physiology

- Variation in ADME processes
- Major driver in the elderly

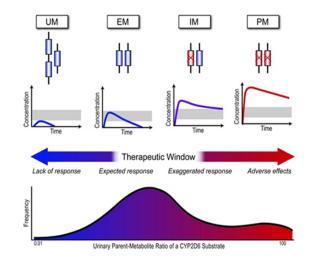
Ontogenetics


Contributors to Variability	Effect Window	Extent of Effect	Frequency
Physiologic (e.g., tissue weights,	All lifestages;	Moderate	All populations &
blood flow rates)	greatest early & late		lifestages
Ontogenetic (e.g., differing	Early lifestages	Can be significant	All within relevant
abundances in enzymes,			lifestages
transporters, etc.)			
Genetic (e.g., functional	All life stages	Depends on	0-10% of
differences in enzymes,		polymorphism	population
transporters)			
Exposomic (e.g., co-exposures,	Throughout life	Unkown	Unknown
lifestyle, microbiome)			

DRIVERS OF TK VARIABILITY: PHYSIOLOGY

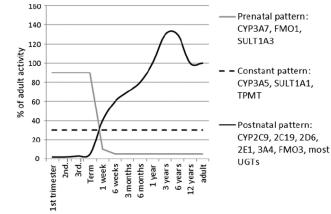
- Cardiac output
- Glomerular filtration rate
- Muscle mass, water content
- Enzymatic 1/2 life

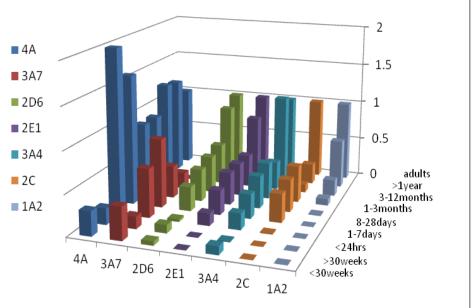
- Volume of distribution
- Chemical half life


DRIVERS OF TK VARIABILITY: GENETICS

Insights from genomics

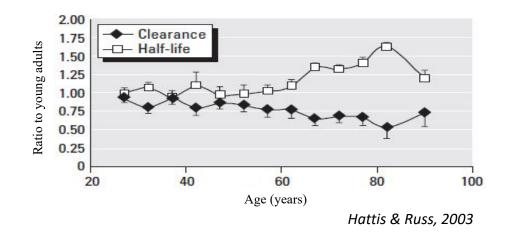
- CYP2D6
 - Drug metabolism
 - >100 variants
 - I00+X functional variability


CYP2D6


Copy #	Metabolizer Group	% Distribution	
2+	Ultrarapid	5	
2	Extensive	70	
1	Intermediate	15	
0	Poor	10	

DRIVERS OF TK VARIABILITY: ONTOGENETICS

- Liver bank studies
- Differences in abundances
 - Binding affinities
 - Absorption
- Functional overlap


Adapted from Cresteil et al., 1998

DRIVERS OF TK VARIABILITY IN CHILDREN

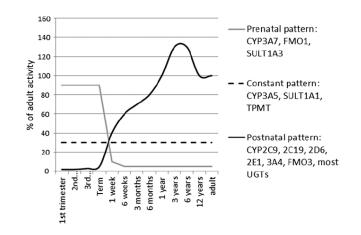
Developmental Feature	Relevant Lifestage	Impact on TK		
Body composition: lower lipid, greater water content	Birth through 3 months	 ↓ partitioning and retention of lipid- soluble cmpds ↑ V_d for water soluble cmpds 		
Larger liver:body weight ratio	Birth through 6 yr (largest ratios, birth-2yr)	 Hepatic extraction/metabolite clearance potential metabolic activation 		
Immature Phase I/II enzyme functionality	Birth through 1 yr (largest differences in first 2 months) t removal of activated metabolic			
Larger brain:body weight ratio; greater CNS blood flow; higher BBB permeability	Birth through 6 yr (largest differences in first 2 yr)	↑ CNS exposure, particularly for water soluble agents normally impeded by BBB		
Immature renal function	Birth through 2 months	<pre>↓ elimination of renally cleared chemicals/metabolites</pre>		
Limited serum protein binding capacity	Birth through 3 months	 potential, free toxicant distribution of chemicals normally bound/unavailable 		

DRIVERS OF TK VARIABILITY IN THE ELDERLY

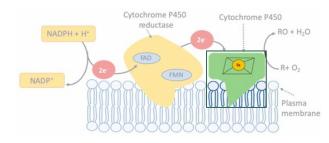
- < Cardiac outputs, tissue blood flow (hepatic 25% \downarrow)
- < Muscle mass, body water (up to $25\% \downarrow$)
- Lipid content (↑ Vd; longer T1/2, lipophilic compounds)
- Plasma protein binding (15-25% ↓; higher free drug conc.)
- Renal clearance, glomerular filtration rate
- Hepatic clearance (\u00ed liver size, P450 content, bile flow, blood flow)

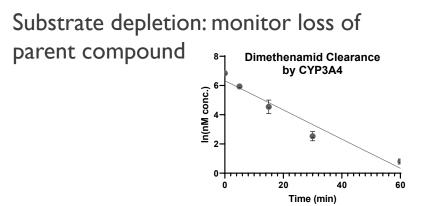
ADDITIONAL CONSIDERATIONS FOR TK VARIABILITY

- Exposomic- diet, exercise, drugs
- Mixtures
- Contributors working in parallel
 - Overlap, may obviate contribution

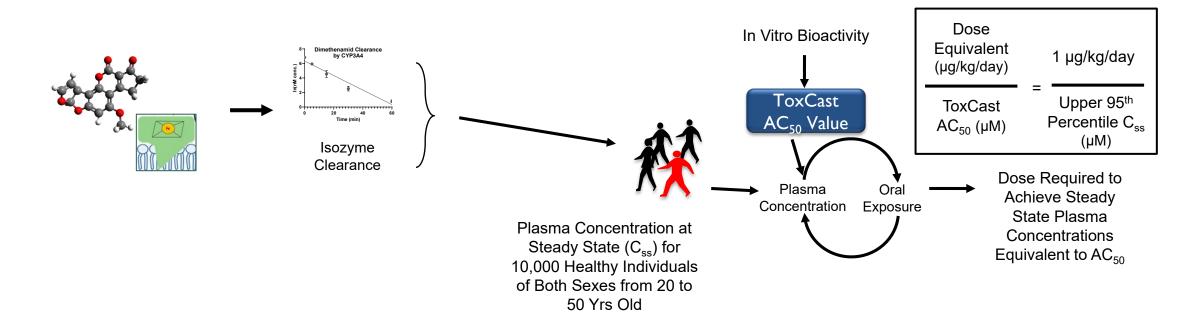

IMPLEMENTATION OF TK VARIABILITY

- Dearth of data
- Rarely incorporated into tox studies
- Clinical studies typically on Caucasian Healthy Volunteers
- Need for systematic approach


USING RECOMBINANT ISOZYMES TO STUDY TOXICOKINETIC VARIABILITY

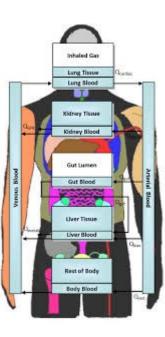

Informs population & lifestage variability

Recombinant Isozyme, i.e. Cytochrome P450 1A2



R=Compound of Interest

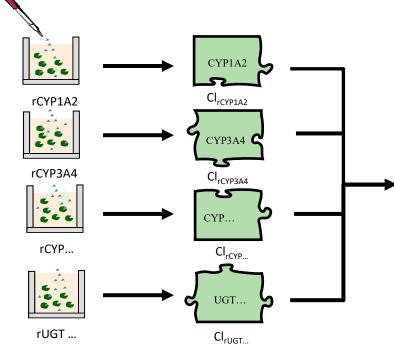
TRANSLATING CLEARANCE RATES INTO HUMAN PLASMA STEADY STATE CONCENTRATIONS

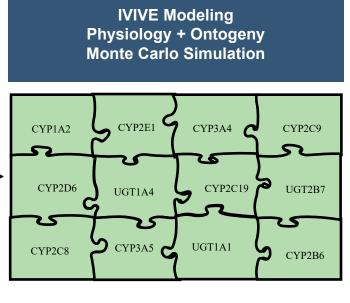

- In vitro—in vivo extrapolation (IVIVE) combines in vitro TK data with population-specific physiologic and ontogenetic information to predict in vivo systemic exposure
- "Reverse dosimetry" used to derive dose equivalents

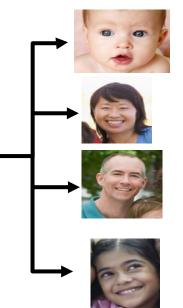
NEW APPROACH METHODOLOGIES (NAMS)

- Any non-mammalian approach that can inform risk assessment & characterization of chemical hazard
- Mechanism of Action (MOA), Adverse Outcome Pathways (AOPs)
- Inform prioritization
- Modeling

PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING


- Interspecies
- Clinical
 - Dosing, especially pediatric
 - Need for clinical trials
- US FDA
- US EPA
 - httk, httk-pop
 - 80,000 registered chemicals, 30,000 in routine use




PRIOR WORK (WETMORE ET AL., 2014, TOXICOL SCI)

Intrinsic Clearance Rates

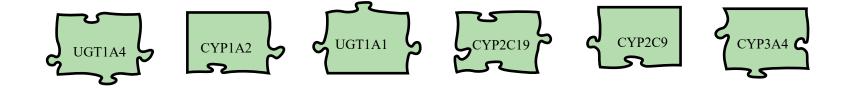
Plasma Steady State Concentration (C_{ss}) for:

Neonates

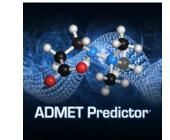
Asians

Northern Europeans

Children


etc.

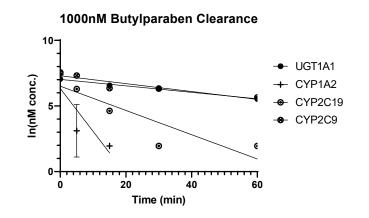
EXTENSION OF THIS WORK


- Higher throughput
- Expanded chemical space
- Examining trends, profiles, lifestage effects

EXTENSION OF THIS WORK

- Higher throughput
 - Major CYPs & UGTs

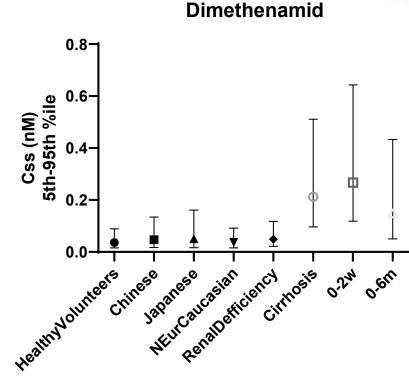
- Expanded chemical space
 - Identify chemicals likely cleared by enzyme panel
 - Elevated exposure
 - Prioritize child-care products



Examining trends, profiles, lifestage effects

GENERATION OF ISOZYME-SPECIFIC CLEARANCE RATES

TBD

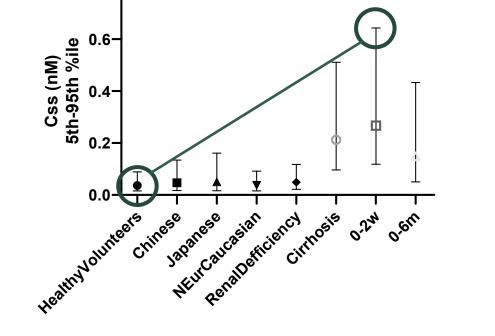

 Clearance rates generated for 6 compounds; remaining 6 in progress

Chemical	CYPIA2	CYP2C9	CYP2C19	CYP3A4	UGTIAI	UGTIA4
Ametryn	X		X			
Butylparaben	X	X	X		X	
Dimethenamid				X		
Fenbuconazole				X		
Fenhexamid		X	X		X	
Glyphosate						
Piperonyl Butoxide						
Diethylhexyl Phthalate						
2-phenoxyethanol						
Phenol						
Styrene						
Propranolol						

PREDICTION OF C_{SS} FOR SPECIFIC SUBPOPULATIONS

- Monte carlo simulations run using SimCyp (Certara) software
- Population parameters
 - N=1000
 - I µg/kg/day
 - 20-50 y
 - **50% F**
- Using predicted
 - Isozyme-specific clearance rates
 - Fraction unbound
 - f_{umic}
 - etc. physicochemical properties

UNCERTAINTY FACTORS (UF) IN RISK ASSESSMENT


- Applied to benchmark dose (BMD), no adverse effect level (NOAEL) to derive acceptable intake
- Typically 100X
 - IOX interspecies variability
 - IOX intraspecies variability
 - 3.2X TK & 3.2X toxicodynamic
- Chemical specific adjustment factors

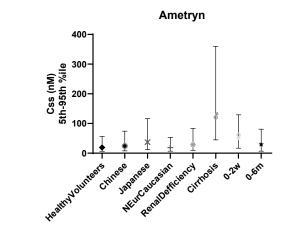
CALCULATION OF HUMAN TK ADJUSTMENT FACTORS (HK $_{AF}$) TO ASSESS POPULATION VARIABILITY

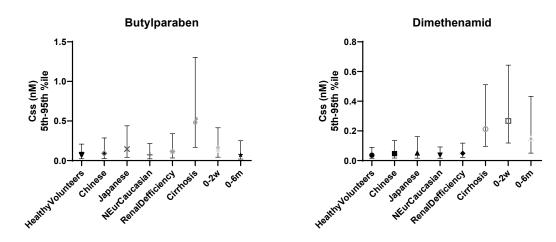
Population variability consists of TK & toxicodynamic variability

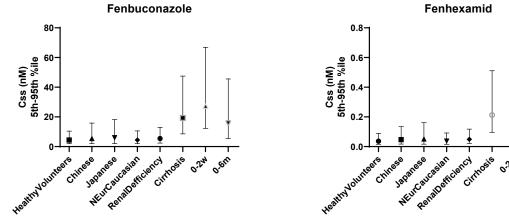
Dimethenamid

0.8-

 $HK_{AF} =$

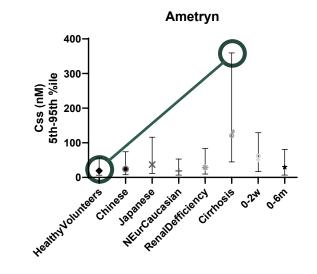

95th percentile Css for most sensitive population


median of healthy population


PRELIMINARY RESULTS

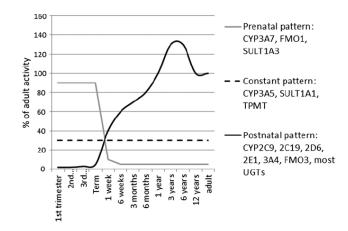
C_{SS} OF SPECIFIC SUBPOPULATIONS

The early pediatric lifestage and cirrhosis patients are generally the most sensitive populations



0.24

0.61


$HK_{AF}S$

- HK_{AF}s for the most vulnerable subgroups fall above the default uncertainty factor of 3.2
 - Ametryn=18.8 for patients with severe cirrhosis
 - Butylparaben=17.7 for patients with severe cirrhosis
 - Dimethenamid=17.5 for 0-2 week olds
 - Fenbuconazole=15.1 for 0-2 week olds
 - Fenhexamid=9.0 for 0-2 week olds

NEXT STEPS

- Examine trends that impact population variability
 - Chemical properties
 - Metabolic profiles
- Mapping out of neonatal variability
- Exposure estimates
 - Population adjusted dose (PAD)
 - Adverse exposure ratios

SUMMARY & FUTURE DIRECTIONS

- Responses to chemicals vary due to population TK variability
- Need for approaches to assess TK variability
- Need for incorporation into risk assessment
- Data generation is currently underway for 12 chemicals; with clearance data for 6 described here.
- The early pediatric lifestage and cirrhosis patients are generally the most vulnerable subpopulations.

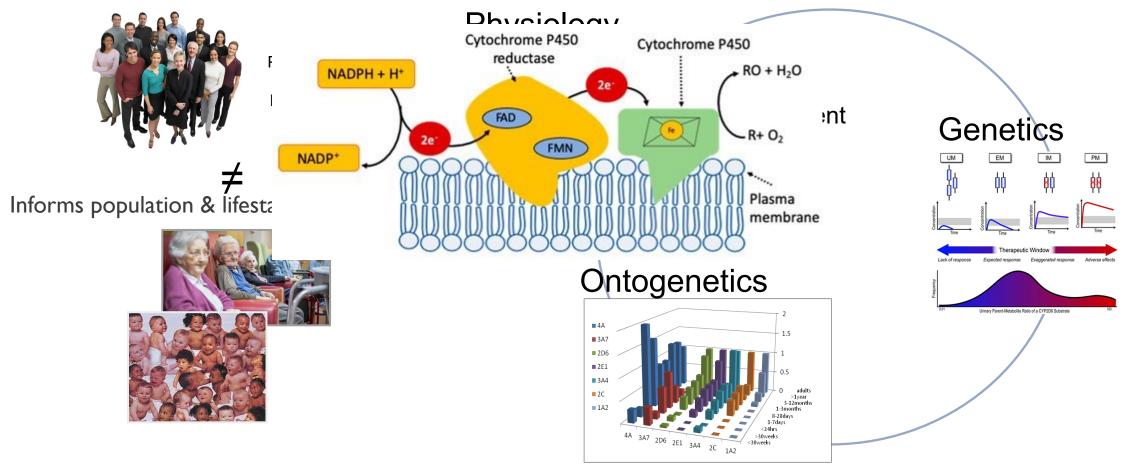
Future work will:

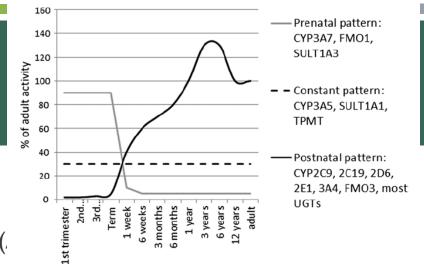
- More closely define variability ranges within first 6 months of life;
- Examine trends that may contribute to population variability;
- Compare C_{ss} values to exposure estimates for these chemicals to help inform regulatory decision-making regarding uncertainty factors.

ACKNOWLEDGEMENTS

- Wetmore Lab
 - Barbara Wetmore, Ph.D.
 - Marci Smeltz, Ph.D.
 - Lucas Albrecht, M.S.
 - Matthew Phillips, M.S.
 - Evgenia Korol-Bexel, Ph.D.
- Oak Ridge Institute for Science and Education

Research supported by the Chemical Safety for Sustainability National Research Program Rapid Exposure Modeling and Dosimetry Group Director: Jeff Frithsen




DRIVERS OF TOXICOKINETIC (TK) VARIABILITY

Adapted from Cresteil et al., 1998

POTENTIAL RESEARCH NEEDS

- Chemical Metabolism Prediction Tools
 - Isozyme-level predictions
 - isozymes relevant for chemical domains of interest
 - Assess against in vitro and/or in vivo data; Assess IVIVE approach
- Ontogeny Data
 - Identify needs (isozymes relevant for environmental pollutants/chemicals)
 - Data generation: resources; quality assessment
 - Sufficient data to discern variability within specific lifestages?
- Genetic Polymorphisms (for chemical domains of interest)
- Looking beyond Plasma $C_{ss} \rightarrow Target Tissue$
- Physiology Data
 - Mine available resources; Supplement as necessary
- Exposomic Considerations
 - Cumulative and/or Co-exposures / Health Status / Lifestyle Effects
- Integrative Database and Tool Development

- Bioavailability- fraction of drug that enters the systemic circulation; =(.
- Xenobiotic- foreign to the body
- Distribution depends on: lipophilicity, blood flow, capillary permeability, plasma & tissue binding, vol of distribution
 - Vd=(amt drug in body/[plasma drug]); helps determine if mostly in tissue vs plasma
 - High MW drugs tend to be protein bound
- Km=[S] at ½ Vmax; Michaelis constant; <u>https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2015.pdf</u>