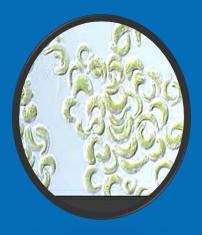


High Throughput Transcriptomics: A Multi-Species Approach

Presented by Kevin Flynn

to


US EPA BOSC

Chemical Safety Subcommittee Meeting

ORD Strategic Research Action Plan

CSS.1.7:

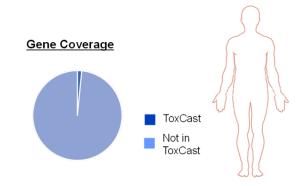
Develop, evaluate, and apply <u>non-mammalian</u> high-throughput toxicity tests for priority endpoints and pathways in ecological species for ecological risk assessment

CSS.4.4:

Develop rationale and case studies that apply AOPs and HTT data to inform test-order decisions and establish scientific support for waiving testing requirements for pesticides

A Chemical Numbers Problem

U.S. EPA Strategic Plan (2018-2022), Objective 1.4, Ensure Safety of Chemicals in the Marketplace


Problem Statement:

Tens of thousands of chemicals are currently in use and hundreds more are introduced to the market every year. Only a small fraction has been thoroughly evaluated for potential risks to human health and the environment.

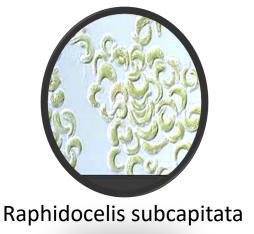

"Too many chemicals, too little data"

A Biological Numbers Problem

"Throughout the development and execution of ToxCast and Tox21, key limitations of the current suite of HTS assays have been identified (Tice, et al., 2013). The limitations include **inadequate coverage of biological targets and pathways**" Thomas et al. 2019



The Eco Data Gap:


- Humans are just a tiny fraction of the biological diversity we are charged to protect.
- Many genes/pathways are conserved
- Unique physiology in other kingdoms, phyla, classes...

Daphnia magna

Pimephales promelas

Chironomus dilutus

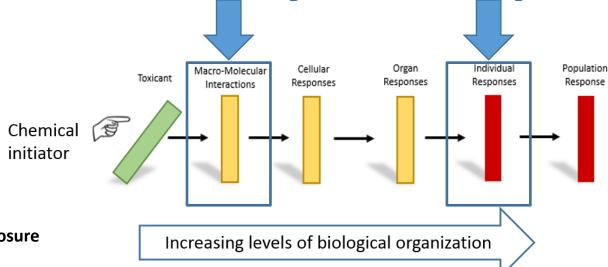
- Modify standard protocols and methods to allow rapid toxicity tests with small aquatic organisms in 96-well plates – 4 species
- Conduct exposures with diverse chemicals (ex. metals, neonics, pharmaceuticals, PFAS)
- Compare traditionally derived LC50 values to LC50 values calculated from 96-well plate-based exposures
- Use RNA-seq data to calculate transcriptomic-based point-of-departure (PODs) that can be anchored to apical responses

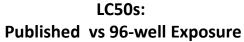
24 h exposure		
	Control	
Replicates	A	

Phenotypic anchoring

- survival
- behavior
- growth?

Species	Guideline Test Method	Age at Start	Temp
Daphnia magna	850.1010 Aquatic Invert Acute Toxicity	72-hour	20° C
Pimephales promelas	850.1075 Fish Acute Toxicity	24-hour	25° C
Chironomus dilutus	850.1790 Chironomid Sediment Toxicity	3 rd instar	20° C
Raphidocelis subcapitata	850.4500 Algal Toxicity	Log-phase	24° C


Exposures Design


- 1 ml deep 96-well plates
- 12 concentration 8 replicates per concentration
- 1 individual per well (algae ~5 x 10⁴ cells/ml)
- 24-hour static exposures
- phenotypic endpoints assessed
 - animals: survival and behavior
 - algae: cell viability & division, photopigments
- then after homogenization, RNA extracted for transcriptomics

Species	Time to Load Plate	Control 24-hour Survival	RNA Qty per Well
Daphnia magna	~45 minutes	72-hour	~1000 ng
Pimephales promelas	~30 minutes	24-hour	~1500 ng
Chironomus dilutus	~60 minutes	3 rd instar	~900 ng
Raphidocelis subcapitata	~10 minutes	Log-phase	~300 ng

Office of Research and Development Center for Computational Toxicology and Exposure

Office of Research and Development Center for Computational Toxicology and Exposure

- In internal review process, linking to apical endpoints essential
- Apical Endpoints
 - Survival
 - Reproduction
- Behavior
- "Imageable" measurements

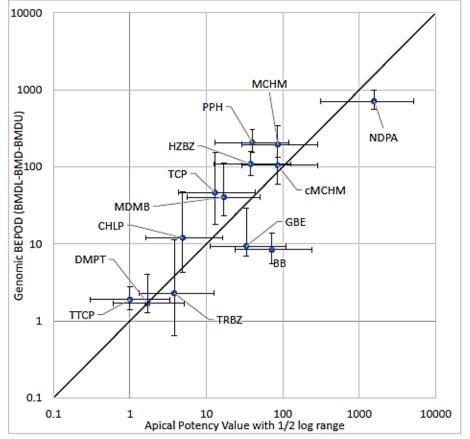
Chemicals	Chemical Class	Rationale	Data Use
CuSO4, NiSO4, ZnSO4	metal	OW; ease of exp.; mouse & RBT data	APCRA case study; 4 eco-species
Clothianidin, Thiacloprid, Imidacloprid	Neonicotinoid	OPP	APCRA case study; 4 eco-species; Challenge
Flupyradifurone	Butenolide	OPP	APCRA case study; 4 eco-species
Sertraline, Fluoxetine, Paroxetine	SSRI	Existing data at GLTED	APCRA case study; 4 eco-species
Atrazine and similar	Herbicide	Herbicide	Challenge; 4 eco-species
Methoxyfenozide and similar	Carbohydrazide	Insecticide	Challenge; 4 eco-species
Parathion, methidathion, fenthion	Organophosphate	mouse data	4 eco-species
Phthalate TBD	Phthalates	TSCA high priority	4 eco-species
~20 specific PFAS	PFAS	PFAS plus up; small # in vivo	4 eco-species
50 – 100 additional		StRAP	4 eco-species

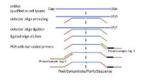
HTP Eco Transcriptomics

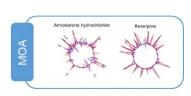
NTP RESEARCH REPORT ON NATIONAL TOXICOLOGY PROGRAM APPROACH TO GENOMIC DOSE-RESPONSE MODELING NTP RR 5 APRIL 2018

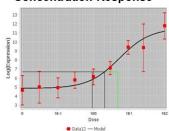
- Number of mammalian studies have shown short-term transcriptomics-based PODs are predictive of apical potency.
- Generally within ½ log.

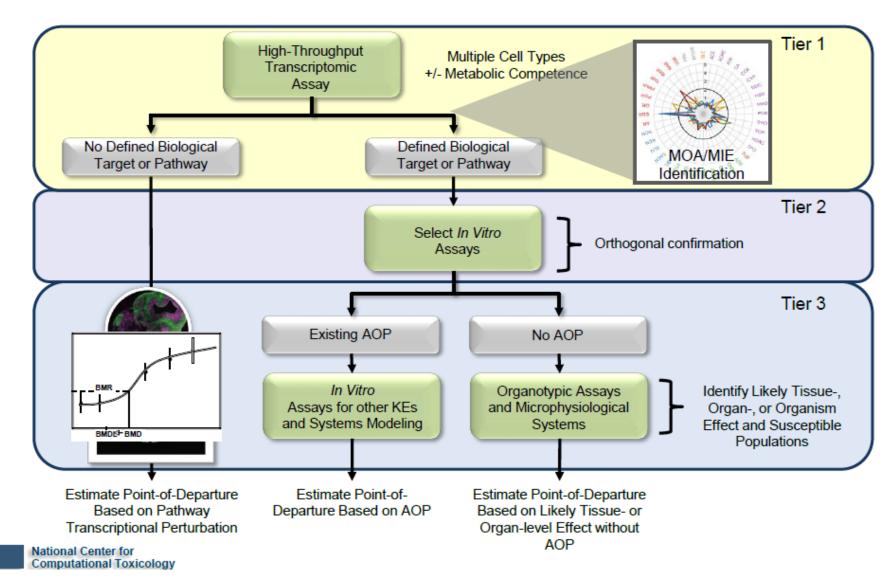
A.3 Global Comparison of POD and BEPOD




Figure 14. Comparison of the Most Sensitive Apical ½ Log Potency Range to the Most Sensitive GO Biological Processes BEPOD


Data from Figure 1–Figure 13 in this document were compiled to allow a larger scale comparison of apical and gene set-based biological potency estimates. The most sensitive apical potency values (NOAEL or BMD) from guideline toxicity assessments are plotted on the x-axis and the BEPOD range (BMD), BMD) from the GO Biological Processes analysis from 4– or 5-day GDRS studies are plotted on the y-axis. A diagonal 1-to-1 line is drawn as reference to perfect agreement between the potency values. The points to the left of the line demonstrate more sensitive apical endpoints, whereas those to the right exhibited more sensitive BEPODs. Overall, the apical and BEPOD values strongly agree, as indicated by R² = 0.89.


HTP Eco Transcriptomics

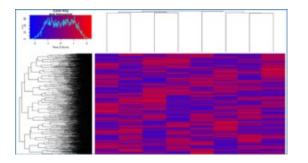

Whole Genome Transcriptomics & Analysis

Concentration Response

HTP Eco Transcriptomics

EcoTox TARGET Challenge

Develop high quality, low-cost tools that assess global gene expression in common aquatic toxicity test organisms

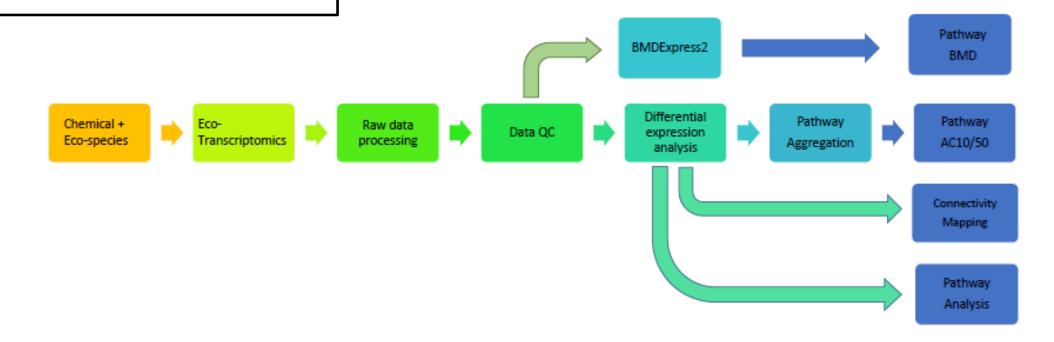

- · Daphnia magna (a crustacean)
- . Chironomous dilutus (an insect; formerly Chironomous tentans)
- · and Raphidocelis subcapitata (a green algae)

Think you have a winning technology? Learn more at:

Commercial Development
4 "Solvers"

Detection/analysis technology

Commercially available
Low cost (<\$50/sample)
High quality
Maximal coverage



Eco Transcriptomics Data Analysis

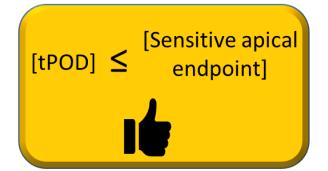
Transcriptomics Analysis Workflow

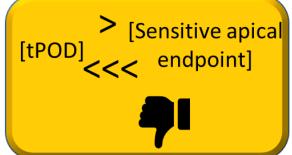
- not re-inventing the wheel
- mirror ToxCast data analysis

Current Status

- Derive transcriptomics-based points of departure for 20 chemicals
- Testing with fathead minnow only
- Compare with traditional apical PODs
- Evaluate hypothesis that tPODs are protective relative to apical
- Includes chemicals of direct interest to Program Offices and partners

Workflow in Brief

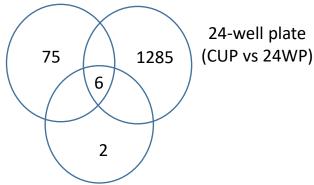

RNA-seq data was obtained from each well; all raw reads were assembled into transcript models, aligned with annotations, counted, normalized, and log2 transformed for each transcript


- Low count feature filtering: any given feature had to have a count of 10 or more in a minimum of 4 samples or that feature was filtered out
- Differentially expressed genes (DEGs) determined by NTP guidelines and transcriptomic POD for a chemical defined as median POD of all (DEGs)

(https://ntp.niehs.nih.gov/publications/reports/rr/rr05/index.html)

Current Status

Chemical	Transcriptomic POD	96-hour LC50	Mortality-based POD
CuSO4	0.03 mg/L	0.3 mg/L	0.2 mg/L
ZnSO4	0.00023 mg/L	2.2 mg/L	3.2 mg/L
NiSO4	0.33 mg/L	6.2 mg/L	3.9 mg/L
Imidacloprid	8.8 mg/L	173 mg/L	> 10 mg/L
Flupyradifurone	1.3 mg/L	Not in ECOTOX	> 10 mg/L
Clothianidin	8.1 mg/L	0.5 (104) mg/L	> 10 mg/L
Thiacloprid	57.2 mg/L	104 mg/L	85 mg/L
Sertraline	0.6 mg/L	0.1 mg/L	0.9 mg/L
Fluoxetine	0.02 mg/L	0.2 mg/L	0.8 mg/L
Paroxetine	1.0 mg/L	3.5 mg/L	1.1 mg/L

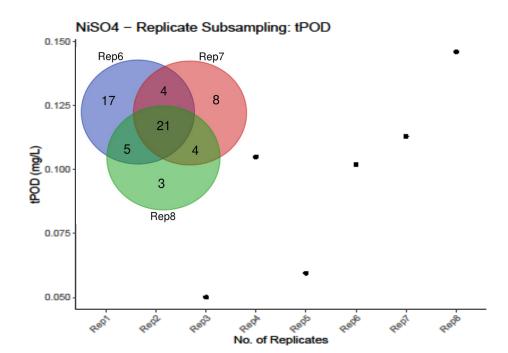

Upcoming Work - Validation

Assay Development

- Verify water quality parameters
 - dissolved oxygen
 - pН
 - ammonia
- Chemical bioavailability

POD Calculation for CuSo4 in each Volume				
BMDExpress2 Results	Volume Format			
	CUP	24WP	96WP	
#DEGs passing NTP filters1	128/369	52/159	108/208	
Median POD (mg/L)	0.0445	0.045201	0.025	

96-well plate (CUP vs 96WP)


Office of Research and Development

15 mL vessel (24WP vs 96WP) **Center for Computational Toxicology and Exposure**

Transcriptomics

- Complete Challenge
 - platform development
 - genome annotation
- Definition/Implementation of analysis pipeline
- Assess variability focused on tPODs
 - intra/inter exposure plate
 - between exposure plates
 - appropriate replication

Contributors

The "We"

ORD CCTE GLTED-MIB: Adam Biales, David Bencic, Robert Flick, John Martinson

ORD CCTE GLTED-STB: Kevin Flynn, Dan Villeneuve, Kathy Jensen, Jenna Cavallin

ORD CCTE GLTED-TTB: Russ Hockett, Teresa Norberg-King

ORISE FELLOWS: Michelle Le, Kelvin Santana-Rodriguez, Kendra Bush, Monique Hazemi

References

- U.S. EPA Strategic Plan (2018-2022), Objective 1.4, Ensure Safety of Chemicals in the Marketplace
- Thomas, R. S., Bahadori, T., Buckley, T. J., Cowden, J., Deisenroth, C., Dionisio, K. L., ... & Williams, A. J. (2019). The next generation blueprint of computational toxicology at the US Environmental Protection Agency. Toxicological Sciences, 169(2), 317-332.
- EcoTox TARGET Challenge: https://www.challenge.gov/challenge/ecotox-challenge/
- National Toxicology Program Approach to Genomic Dose-Response Modeling: https://ntp.niehs.nih.gov/publications/reports/rr/rr05/index.html